Characterization and Discrimination of Volatile Compounds of Donkey and Horse Meat Based on Gas Chromatography–Ion Mobility Spectrometry
Abstract
:1. Introduction
2. Material and Methods
2.1. Ethical Statement, Sample Collection, and Processing
2.2. GC-IMS Analysis of VOCs in DM and HM
2.3. Identification of VOCs
2.4. Statistic Analysis
3. Results
3.1. VOC Profiles of DM and HM
3.2. Characteristic Flavors
3.3. Difference in VOCs
3.4. Multivariate Analysis of VOCs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stadnik, J. Nutritional value of meat and meat products and their role in human health. Nutrients 2024, 16, 1446. [Google Scholar] [CrossRef] [PubMed]
- Qiao, M.; Zhu, J.; Li, R.; Pan, J.; Xiao, R.; Wang, H.; Tang, K.H.D.; Zhang, Z. Spatiotemporal distribution, environmental risk and carbon emission reduction potential of livestock manure in Shaanxi Province, China. Front. Agric. Sci. Eng. 2024, 11, 381–396. [Google Scholar]
- Li, M.; Zhang, D.; Chai, W.; Zhu, M.; Wang, Y.; Liu, Y.; Wei, Q.; Fan, D.; Lv, M.; Jiang, X.; et al. Chemical and physical properties of meat from Dezhou black donkey. Food Sci. Technol. Res. 2022, 28, 87–94. [Google Scholar]
- Ivanković, A.; Šubara, G.; Bittante, G.; Šuran, E.; Amalfitano, N.; Aladrović, J.; Kelava Ugarković, N.; Pađen, L.; Pećina, M.; Konjačić, M. Potential of endangered local donkey breeds in meat and milk production. Animals 2023, 13, 2146. [Google Scholar] [CrossRef]
- Wang, D.; Wang, L.; Xue, C.; Han, Y.; Li, H.; Geng, J.; Jie, J. Detection of meat from horse, donkey and their hybrids (mule/hinny) by duplex real-time fluorescent PCR. PLoS ONE 2021, 15, e0237077. [Google Scholar] [CrossRef]
- Sujiwo, J.; Lee, S.; Kim, D.; Lee, H.; Oh, S.; Jung, Y.; Jang, A. Physicochemical features and volatile organic compounds of horse loin subjected to sous-vide cooking. Foods 2024, 13, 280. [Google Scholar] [CrossRef]
- Zhou, C.; Liu, L.; Xiang, J.; Fu, Q.; Wang, J.; Wang, K.; Sun, X.; Ai, L.; Xu, X.; Wang, J. Identification of horse, donkey and pig ingredients by species-specific ERA-based methods to assess the authenticity of meat products. Food Biosci. 2023, 53, 102827. [Google Scholar]
- Li, M.; Ren, W.; Chai, W.; Zhu, M.; Man, L.; Zhan, Y.; Qin, H.; Sun, M.; Liu, J.; Zhang, D. Comparing the profiles of raw and cooked donkey meat by metabonomics and lipidomics assessment. Front. Nutr. 2022, 9, 851761. [Google Scholar] [CrossRef] [PubMed]
- Beldarrain, L.R.; Morán, L.; Sentandreu, M.Á.; Barron, L.J.R.; Aldai, N. Effect of ageing time on the volatile compounds from cooked horse meat. Meat Sci. 2022, 184, 108692. [Google Scholar]
- Li, M.; Sun, L.; Du, X.; Ren, W.; Man, L.; Chai, W.; Zhu, M.; Liu, G.; Wang, C. Characterization of lipids and volatile compounds in boiled donkey meat by lipidomics and volatilomics. J. Food Sci. 2024, 89, 3445–3454. [Google Scholar]
- Sohail, A.; Al-Dalali, S.; Wang, J.; Xie, J.; Shakoor, A.; Asimi, S.; Shah, H.; Patil, P. Aroma compounds identified in cooked meat: A review. Food Res. Int. 2022, 157, 111385. [Google Scholar] [CrossRef] [PubMed]
- Listrat, A.; Lebret, B.; Louveau, I.; Astruc, T.; Bonnet, M.; Lefaucheur, L.; Picard, B.; Bugeon, J. How muscle structure and composition influence meat and flesh quality. Sci. World J. 2016, 2016, 3182746. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhu, M.; Chai, W.; Wang, Y.; Fan, D.; Lv, M.; Jiang, X.; Liu, Y.; Wei, Q.; Wang, C. Determination of lipid profiles of Dezhou donkey meat using an LC-MS-based lipidomics method. J. Food Sci. 2021, 86, 4511–4521. [Google Scholar] [CrossRef] [PubMed]
- Marino, R.; Della Malva, A.; Maggiolino, A.; De Palo, P.; D Angelo, F.; Lorenzo, J.M.; Sevi, A.; Albenzio, M. Nutritional profile of donkey and horse meat: Effect of muscle and aging time. Animals 2022, 12, 746. [Google Scholar] [CrossRef]
- Cai, D.; Li, X.; Liu, H.; Wen, L.; Di, Q. Machine learning and flavoromics-based research strategies for determining the characteristic flavor of food: A review. Trends Food Sci. Technol. 2024, 154, 104794. [Google Scholar] [CrossRef]
- Liu, D.; Bai, L.; Feng, X.; Chen, Y.P.; Zhang, D.; Yao, W.; Zhang, H.; Chen, G.; Liu, Y. Characterization of Jinhua ham aroma profiles in specific to aging time by gas chromatography-ion mobility spectrometry (GC-IMS). Meat Sci. 2020, 168, 108178. [Google Scholar] [CrossRef]
- Wang, S.; Chen, H.; Sun, B. Recent progress in food flavor analysis using gas chromatography–ion mobility spectrometry (GC–IMS). Food Chem. 2020, 315, 126158. [Google Scholar] [CrossRef]
- Chen, J.; Wang, W.; Jin, J.; Li, H.; Chen, F.; Fei, Y.; Wang, Y. Characterization of the flavor profile and dynamic changes in Chinese traditional fish sauce (Yu-lu) based on electronic nose, SPME-GC-MS and HS-GC-IMS. Food Res. Int. 2024, 192, 114772. [Google Scholar] [CrossRef]
- He, L.; Yang, H.; Lan, F.; Chen, R.; Jiang, P.; Jin, W. Use of GC-IMS and stoichiometry to characterize flavor volatiles in different parts of lueyang black chicken during slaughtering and cutting. Foods 2024, 13, 1885. [Google Scholar] [CrossRef]
- Maggiolino, A.; Lorenzo, J.M.; Centoducati, G.; Domínguez, R.; Dinardo, F.R.; Marino, R.; Malva, A.D.; Bragaglio, A.; De Palo, P. How volatile compounds, oxidative profile and sensory evaluation can change with vacuum aging in donkey meat. Animals 2020, 10, 2126. [Google Scholar] [CrossRef]
- Polidori, P.; Santini, G.; Klimanova, Y.; Zhang, J.; Vincenzetti, S. Effects of ageing on donkey meat chemical composition, fatty acid profile and volatile compounds. Foods 2022, 11, 821. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Zhang, C.; Gao, L.; Zhuang, H.; Feng, T.; Xu, G. Analysis of volatile flavor compounds of green wheat under different treatments by GC-MS and GC-IMS. Food Biochem. 2021, 46, e13875. [Google Scholar]
- Yan, J.; Chen, J.; Huang, Z.; He, L.; Wu, L.; Yu, L.; Zhu, W. Characterisation of the volatile compounds in nine varieties and three breeding selections of celery using GC–IMS and GC–MS. Food Chem. X 2024, 24, 101936. [Google Scholar] [PubMed]
- Man, L.; Ren, W.; Qin, H.; Sun, M.; Yuan, S.; Zhu, M.; Liu, G.; Wang, C.; Li, M. Characterization of the relationship between lipids and volatile compounds in donkey, bovine, and sheep meat by UHPLC–ESI–MS and SPME–GC–MS. Lebensm.-Wiss. Technol. 2023, 175, 114426. [Google Scholar]
- Li, X.; Amadou, I.; Zhou, G.; Qian, L.; Zhang, J.; Wang, D.; Cheng, X. Flavor Components Comparison between the Neck Meat of Donkey, Swine, Bovine, and Sheep. Food Sci. Anim. Resour. 2020, 40, 527–540. [Google Scholar]
- Ni, Q.; Amalfitano, N.; Biasioli, F.; Gallo, L.; Tagliapietra, F.; Bittante, G. Bibliometric review on the volatile organic compounds in meat. Foods 2022, 11, 3574. [Google Scholar] [CrossRef]
- Liu, H.; Hui, T.; Zheng, X.; Li, S.; Wei, X.; Li, P.; Zhang, D.; Wang, Z. Characterization of key lipids for binding and generating aroma compounds in roasted mutton by UPLC-ESI-MS/MS and Orbitrap Exploris GC. Food Chem. 2022, 374, 131723. [Google Scholar]
- Dein, M.; Moore, A.; Ricketts, C.; Huynh, C.; Munafo, J.P.J. Characterization of odorants in chardonnay marc skins. J. Agric. Food. Chem. 2021, 69, 12262–12269. [Google Scholar]
- Jiang, F.; Zhang, J.; Zhang, R.; Zhang, W. Effects of ultrasound-assisted vacuum tumbling on the flavor of spiced beef. Food Biosci. 2024, 58, 103652. [Google Scholar]
- Wang, J.; Yang, P.; Liu, J.; Yang, W.; Qiang, Y.; Jia, W.; Han, D.; Zhang, C.; Purcaro, G.; Fauconnier, M. Study of the flavor dissipation mechanism of soy-sauce-marinated beef using flavor matrices. Food Chem. 2024, 437, 137890. [Google Scholar]
- Yu, L.; Pang, Y.; Shen, G.; Bai, B.; Yang, Y.; Zeng, M. Identification and selection of volatile compounds derived from lipid oxidation as indicators for quality deterioration of frozen white meat and red meat using HS-SPME-GC–MS combined with OPLS-DA. Food Chem. 2025, 463, 141112. [Google Scholar] [PubMed]
- Weng, K.; Song, L.; Bao, Q.; Cao, Z.; Zhang, Y.; Zhang, Y.; Chen, G.; Xu, Q. Comparative characterization of key volatile compounds in slow- and fast-growing duck raw meat based on widely targeted metabolomics. Foods 2022, 11, 3975. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Tian, Y.; Wang, Y.; Du, J.; Chen, L.; Gu, T.; Song, M.; Lu, L.; Sun, C. Dietary effect of Dendrobium officinale leaves on chicken meat quality, fatty acid composition, and volatile compounds profile. Food Chem. X 2024, 22, 101330. [Google Scholar] [PubMed]
- Li, Y.; Yuan, L.; Liu, H.; Liu, H.; Zhou, Y.; Li, M.; Gao, R. Analysis of the changes of volatile flavor compounds in a traditional Chinese shrimp paste during fermentation based on electronic nose, SPME-GC-MS and HS-GC-IMS. Food Sci. Hum. Wellness 2023, 12, 173–182. [Google Scholar]
- Cavanna, D.; Zanardi, S.; Dall’Asta, C.; Suman, M. Ion mobility spectrometry coupled to gas chromatography: A rapid tool to assess eggs freshness. Food Chem. 2019, 271, 691–696. [Google Scholar]
- Yuan, J.; Li, H.; Cao, S.; Liu, Z.; Li, N.; Xu, D.; Mo, H.; Hu, L. Monitoring of volatile compounds of ready-to-eat kiwifruit using GC-IMS. Foods 2023, 12, 4394. [Google Scholar] [CrossRef]
- Zhang, L.; Shi, P.; Sun, J.; Xie, M.; Wang, H.; Shi, T.; Yu, M. Analysis of roasted peanuts based on GC–MS combined with GC–IMS. Food Sci. Nutr. 2024, 12, 1888–1901. [Google Scholar]
- Ren, W.; Sun, M.; Shi, X.; Wang, T.; Wang, Y.; Wang, X.; Huang, B.; Kou, X.; Liang, H.; Chen, Y.; et al. Effects of roughage on the lipid and volatile-organic-compound profiles of donkey milk. Foods 2023, 12, 2231. [Google Scholar] [CrossRef]
- Li, M.; Sun, M.; Ren, W.; Man, L.; Chai, W.; Liu, G.; Zhu, M.; Wang, C. Characterization of volatile compounds in donkey meat by gas chromatography-ion mobility spectrometry (GC-IMS) combined with chemometrics. Food Sci. Anim. Resour. 2024, 44, 165–177. [Google Scholar]
- Li, H.; Zhao, X.; Qin, S.; Li, J.; Tang, D.; Xi, B. GC-IMS and multivariate analyses of volatile organic components in different Chinese breeds of chickens. Heliyon 2024, 10, e29664. [Google Scholar]
- Li, H.; Xi, B.; Lin, S.; Tang, D.; Gao, Y.; Zhao, X.; Liang, J.; Yang, W.; Li, J. Volatile Flavor Analysis in Yak Meat: Effects of different breeds, feeding methods, and parts using GC-IMS and multivariate analyses. Foods 2024, 13, 3130. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Du, R.; Wang, Y.; Zhang, S.; Wang, L.; Wang, L. Characterization and differentiation of flavor profile of 12 air-dried yak meat products using GC–IMS and multivariate analysis. Foods 2024, 13, 2626. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Xia, L.; Huang, C.; Yang, J.; Shen, C.; Jiang, H.; Chu, Y. Rapid analysis and identification of meat species by laser-ablation electrospray mass spectrometry (LAESI-MS). Rapid Commun. Mass Spectrom. 2016, 30, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, M.T.; Samar, M.; Shami, A.A.; Mumtaz, M.W.; Mukhtar, H.; Tahir, A.; Shahzad-ul-Hussan, S.; Chaudhary, S.U.; Kaka, U. 1H-NMR-Based metabolomics: An integrated approach for the detection of the adulteration in chicken, chevon, beef and donkey meat. Molecules 2021, 26, 4643. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, H.; Liu, M.; Zhao, X.G.; Luo, H. Effect of breed on the volatile compound precursors and odor profile attributes of lamb meat. Foods 2020, 9, 1178. [Google Scholar] [CrossRef]
- Guo, Y.; Cao, Z.; Weng, K.; Zhang, Y.; Zhang, Y.; Chen, G.; Xu, Q. Effect of chilled storage period on the volatile organic compounds and bacterial community in goose meat. Food Chem. X 2024, 23, 101685. [Google Scholar] [CrossRef]
- Aroua, M.; Fehri, N.E.; Ben Said, S.; Quattrone, A.; Agradi, S.; Brecchia, G.; Balzaretti, C.M.; Mahouachi, M.; Castrica, M. The use of horse and donkey meat to enhance the quality of the traditional meat product (kaddid): Analysis of physico-chemical traits. Foods 2024, 13, 2974. [Google Scholar] [CrossRef]
- Li, P.; Zhao, W.; Liu, Y.; Zhang, A.; Liu, S.; Song, R.; Zhang, M.; Liu, J. Precursors of volatile organics in foxtail millet (Setaria italica) porridge: The relationship between volatile compounds and five fatty acids upon cooking. J. Cereal Sci. 2021, 100, 103253. [Google Scholar] [CrossRef]
- Varlet, V.; Prost, C.; Serot, T. Volatile aldehydes in smoked fish: Analysis methods, occurence and mechanisms of formation. Food Chem. 2007, 105, 1536–1556. [Google Scholar] [CrossRef]
- Kong, S.; Su, Y.; Li, Z.; Chi, X.; Huang, Y.; Zhang, J.; Ai, N. The hotspot of consumers complaints on infant formula: Exploring the relationship among volatile components, sensory evaluation, and aroma recombination and omission experiment. J. Food Compos. Anal. 2024, 134, 106555. [Google Scholar] [CrossRef]
- Wang, W.; Sun, B.; Hu, P.; Zhou, M.; Sun, S.; Du, P.; Ru, Y.; Suvorov, A.; Li, Y.; Liu, Y.; et al. Comparison of differential flavor metabolites in meat of lubei white goat, jining gray goat and boer goat. Metabolites 2019, 9, 176. [Google Scholar] [CrossRef]
Count | Compound | CAS # | Formula | MW | RI | Rt [s] | Dt [a.u.] |
---|---|---|---|---|---|---|---|
1 | Octanal-M | C124130 | C8H16O | 128.20 | 1014.50 | 603.17 | 1.42 |
2 | Octanal-D | C124130 | C8H16O | 128.20 | 1014.50 | 603.17 | 1.82 |
3 | 2-pentyl furan | C3777693 | C9H14O | 138.20 | 994.70 | 573.84 | 1.25 |
4 | Oct-1-en-3-ol-M | C3391864 | C8H16O | 128.20 | 985.70 | 553.45 | 1.16 |
5 | Oct-1-en-3-ol-D | C3391864 | C8H16O | 128.20 | 984.30 | 550.47 | 1.60 |
6 | Unidentified 1 | unidentified | * | 0.00 | 989.70 | 562.37 | 1.43 |
7 | Heptanol | C53535334 | C7H16O | 116.20 | 977.40 | 535.60 | 1.40 |
8 | Benzaldehyde | C100527 | C7H6O | 106.10 | 963.50 | 506.70 | 1.14 |
9 | (E)-hept-2-enal-M | C18829555 | C7H12O | 112.20 | 959.30 | 498.20 | 1.25 |
10 | (E)-hept-2-enal-D | C18829555 | C7H12O | 112.20 | 959.50 | 498.62 | 1.66 |
11 | Dihydro-2(3h)-furanone | C96480 | C4H6O2 | 86.10 | 924.60 | 433.93 | 1.08 |
12 | Heptanal-M | C111717 | C7H14O | 114.20 | 903.40 | 398.66 | 1.34 |
13 | Heptanal-D | C111717 | C7H14O | 114.20 | 904.10 | 399.80 | 1.69 |
14 | 2-heptanone-M | C110430 | C7H14O | 114.20 | 891.20 | 379.89 | 1.27 |
15 | 2-heptanone-D | C110430 | C7H14O | 114.20 | 892.00 | 381.02 | 1.62 |
16 | n-Hexanol-M | C111273 | C6H14O | 102.20 | 873.20 | 355.42 | 1.33 |
17 | n-Hexanol-D | C111273 | C6H14O | 102.20 | 871.90 | 353.72 | 1.64 |
18 | (E)-2-hexenal-M | C6728263 | C6H10O | 98.10 | 853.50 | 330.40 | 1.18 |
19 | (E)-2-hexenal-D | C6728263 | C6H10O | 98.10 | 851.60 | 328.12 | 1.51 |
20 | Hexanal-M | C66251 | C6H12O | 100.20 | 796.70 | 267.82 | 1.27 |
21 | Hexanal-D | C66251 | C6H12O | 100.20 | 792.70 | 263.84 | 1.55 |
22 | 2-Hexanone | C591786 | C6H12O | 100.20 | 782.10 | 253.59 | 1.19 |
23 | 3-Hexanone | C589388 | C6H12O | 100.20 | 783.00 | 254.45 | 1.17 |
24 | Pentan-1-ol-M | C71410 | C5H12O | 88.10 | 765.70 | 237.81 | 1.26 |
25 | Pentan-1-ol-D | C71410 | C5H12O | 88.10 | 765.70 | 237.81 | 1.52 |
26 | 3-hydroxybutan-2-one | C513860 | C4H8O2 | 88.10 | 716.80 | 196.37 | 1.07 |
27 | Propanoic acid-M | C79094 | C3H6O2 | 74.10 | 704.20 | 186.96 | 1.11 |
28 | Propanoic acid-D | C79094 | C3H6O2 | 74.10 | 703.60 | 186.51 | 1.27 |
29 | Unidentified 2 | unidentified | * | 0.00 | 687.10 | 175.27 | 1.12 |
30 | Unidentified 3 | unidentified | * | 0.00 | 687.10 | 175.27 | 1.32 |
31 | Pentanal-M | C110623 | C5H10O | 86.10 | 701.40 | 184.92 | 1.20 |
32 | Pentanal-D | C110623 | C5H10O | 86.10 | 703.60 | 186.50 | 1.42 |
33 | 2-methyl-1-propanol | C78831 | C4H10O | 74.10 | 646.50 | 159.12 | 1.18 |
34 | 2-Butanone-M | C78933 | C4H8O | 72.10 | 591.00 | 139.46 | 1.06 |
35 | 2-Butanone-D | C78933 | C4H8O | 72.10 | 587.30 | 138.24 | 1.24 |
36 | Nonanal | C124196 | C9H18O | 142.20 | 1105.50 | 749.04 | 1.49 |
37 | (E)-2-octenal | C2548870 | C8H14O | 126.20 | 1068.50 | 685.86 | 1.33 |
38 | Benzene acetaldehyde | C122781 | C8H8O | 120.20 | 1044.60 | 647.93 | 1.26 |
39 | Unidentified 4 | unidentified | * | 0.00 | 688.70 | 175.97 | 1.36 |
40 | Pent-1-en-3-ol | C616251 | C5H10O | 86.10 | 677.80 | 171.44 | 0.94 |
41 | Methyl isobutyl ketone | C108101 | C6H12O | 100.20 | 732.20 | 208.62 | 1.17 |
42 | Hexanoic acid | C142621 | C6H12O2 | 116.20 | 992.10 | 567.77 | 1.31 |
43 | Benzaldehyde | C100527 | C7H6O | 106.10 | 963.60 | 506.91 | 1.46 |
Count | Name | Class | DM | HM | log2FC | p Value | VIP |
---|---|---|---|---|---|---|---|
1 | (E)-2-hexenal-D | Aldehyde | 1.47 ± 0.13 a | 0.48 ± 0.04 b | 1.61 | 0.0000 | 1.10 |
2 | (E)-2-hexenal-M | Aldehyde | 7.71 ± 0.72 a | 2.88 ± 0.29 b | 1.42 | 0.0001 | 1.06 |
3 | (E)-2-octenal | Aldehyde | 2.44 ± 0.26 a | 0.48 ± 0.04 b | 2.33 | 0.0000 | 1.14 |
4 | (E)-hept-2-enal-D | Aldehyde | 6.96 ± 0.69 a | 1.01 ± 0.08 b | 2.79 | 0.0000 | 1.15 |
5 | (E)-hept-2-enal-M | Aldehyde | 26.39 ± 2.27 a | 4.66 ± 0.75 b | 2.50 | 0.0000 | 1.14 |
6 | 2-Butanone-D | Ketone | 10.50 ± 1.11 a | 4.28 ± 0.43 b | 1.30 | 0.0001 | 1.07 |
7 | 2-Hexanone | Ketone | 5.02 ± 0.35 a | 2.48 ± 0.17 b | 1.02 | 0.0000 | 1.08 |
8 | 2-heptanone-D | Ketone | 12.92 ± 1.50 a | 1.40 ± 0.32 b | 3.21 | 0.0000 | 1.14 |
9 | 2-heptanone-M | Ketone | 19.91 ± 1.66 a | 5.99 ± 0.87 b | 1.73 | 0.0000 | 1.11 |
10 | 2-methyl-1-propanol | Alcohol | 29.76 ± 2.73 a | 10.93 ± 0.79 b | 1.45 | 0.0000 | 1.09 |
11 | 2-pentyl furan | Furan | 12.67 ± 1.74 a | 2.03 ± 0.40 b | 2.64 | 0.0000 | 1.12 |
12 | Heptanal-D | Aldehyde | 18.61 ± 1.74 a | 1.85 ± 0.37 b | 3.33 | 0.0000 | 1.16 |
13 | Heptanal-M | Aldehyde | 20.27 ± 1.36 a | 5.75 ± 0.93 b | 1.82 | 0.0000 | 1.12 |
14 | Heptanol | Alcohol | 3.98 ± 0.29 a | 1.18 ± 0.07 b | 1.76 | 0.0000 | 1.13 |
15 | Hexanal-D | Aldehyde | 229.16 ± 15.15 a | 79.20 ± 11.79 b | 1.53 | 0.0000 | 1.11 |
16 | Nonanal | Aldehyde | 5.19 ± 0.43 a | 1.86 ± 0.13 b | 1.48 | 0.0000 | 1.11 |
17 | Octanal-D | Aldehyde | 4.30 ± 0.38 a | 1.08 ± 0.09 b | 2.00 | 0.0000 | 1.12 |
18 | Octanal-M | Aldehyde | 11.72 ± 0.83 a | 3.54 ± 0.31 b | 1.73 | 0.0000 | 1.14 |
19 | Pentanal-D | Aldehyde | 49.83 ± 3.92 a | 3.27 ± 0.88 b | 3.93 | 0.0000 | 1.16 |
20 | Pentanal-M | Aldehyde | 39.27 ± 2.57 a | 9.12 ± 2.23 b | 2.11 | 0.0008 | 1.10 |
21 | Benzene acetaldehyde | Aldehyde | 2.76 ± 0.28 a | 0.46 ± 0.06 b | 2.58 | 0.0000 | 1.14 |
22 | Hexanoic acid | Acid | 3.30 ± 0.37 a | 1.22 ± 0.14 b | 1.43 | 0.0002 | 1.04 |
23 | n-Hexanol-D | Alcohol | 17.59 ± 0.80 a | 2.11 ± 0.42 b | 3.06 | 0.0000 | 1.16 |
24 | n-Hexanol-M | Alcohol | 35.83 ± 2.07 a | 10.98 ± 1.54 b | 1.71 | 0.0000 | 1.13 |
25 | Oct-1-en-3-ol-D | Alcohol | 19.55 ± 1.78 a | 3.94 ± 0.73 b | 2.31 | 0.0000 | 1.12 |
26 | Oct-1-en-3-ol-M | Alcohol | 74.50 ± 5.48 a | 25.44 ± 3.56 b | 1.55 | 0.0000 | 1.11 |
27 | Pentan-1-ol-D | Alcohol | 78.63 ± 7.00 a | 13.68 ± 2.51 b | 2.52 | 0.0000 | 1.14 |
28 | Pentan-1-ol-M | Alcohol | 74.70 ± 4.74 a | 37.70 ± 3.31 b | 0.99 | 0.0001 | 1.07 |
29 | Unidentified 1 | Unidentified | 44.91 ± 3.88 a | 14.83 ± 2.44 b | 1.60 | 0.0001 | 1.09 |
30 | Unidentified 4 | Unidentified | 28.76 ± 2.30 a | 8.15 ± 0.76 b | 1.82 | 0.0000 | 1.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Du, X.; Liu, S.; Sun, M.; Man, L.; Zhu, M.; Liu, G.; Zahoor Khan, M.; Wang, C.; Li, M. Characterization and Discrimination of Volatile Compounds of Donkey and Horse Meat Based on Gas Chromatography–Ion Mobility Spectrometry. Foods 2025, 14, 1203. https://doi.org/10.3390/foods14071203
Zhao Y, Du X, Liu S, Sun M, Man L, Zhu M, Liu G, Zahoor Khan M, Wang C, Li M. Characterization and Discrimination of Volatile Compounds of Donkey and Horse Meat Based on Gas Chromatography–Ion Mobility Spectrometry. Foods. 2025; 14(7):1203. https://doi.org/10.3390/foods14071203
Chicago/Turabian StyleZhao, Yan, Xinyi Du, Shuang Liu, Mengqi Sun, Limin Man, Mingxia Zhu, Guiqin Liu, Muhammad Zahoor Khan, Changfa Wang, and Mengmeng Li. 2025. "Characterization and Discrimination of Volatile Compounds of Donkey and Horse Meat Based on Gas Chromatography–Ion Mobility Spectrometry" Foods 14, no. 7: 1203. https://doi.org/10.3390/foods14071203
APA StyleZhao, Y., Du, X., Liu, S., Sun, M., Man, L., Zhu, M., Liu, G., Zahoor Khan, M., Wang, C., & Li, M. (2025). Characterization and Discrimination of Volatile Compounds of Donkey and Horse Meat Based on Gas Chromatography–Ion Mobility Spectrometry. Foods, 14(7), 1203. https://doi.org/10.3390/foods14071203