Identification and Nutrient Composition of a Wild Pleurotus pulmonarius Strain from Tibet, and the Antioxidant and Cytotoxic Activities of Polysaccharides from This Fungus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Preparation
2.2. Isolation and Identification
2.2.1. Morphological Identification
2.2.2. Molecular Identification
2.3. Biological Characteristics of Mycelial Growth
2.3.1. Carbon Source
2.3.2. Nitrogen Source
2.3.3. Temperature
2.3.4. pH
2.4. Cultivation of P. pulmonarius Fruiting Bodies
2.5. Nutritional Analysis of Fruiting Bodies
2.6. Antioxidant Activity of PPP
2.6.1. Preparation and Quantification of PPP
2.6.2. ABTS Free Radical Scavenging Activity
2.6.3. DPPH Radical Scavenging Activity
2.6.4. Hydroxyl Radical Scavenging Activity
2.6.5. Ferric Ion Reducing Antioxidant Power (FRAP)
2.7. MTT Assay of Cytotoxicity
2.8. Statistical Analysis
3. Results and Discussion
3.1. Identification of Wild P. pulmonarius from Tibet
3.1.1. Morphological Characterization of Fruiting Bodies
3.1.2. Molecular Characterization of Fruiting Bodies
3.2. Biological Characteristics of Mycelial Growth
3.3. Cultivation of P. pulmonarius Fruiting Bodies
3.4. Nutrient Contents of P. pulmonarius Fruiting Bodies
3.4.1. Conventional Nutrient Contents
Nutrient Composition | Content (g/100 g) | ||||
---|---|---|---|---|---|
P. pulmonarius | Pleurotus ostreatus [38] | Pleurotus eryngii [39] | Pleurotus citrinopileatus [16] | Egg [40] | |
Moisture (%) (fresh) | 94.40 | 91.01 | - | 91.70 | 75.20 |
Moisture (g) (dry) | 9.50 | 6.46 | 9.16 | 11.40 | - |
Crude protein (g) | 26.30 | 17.06 | 19.15 | 28.50 | 12.04 |
Total sugar (g) | 7.10 | - | 6.85 | 4.50 | 0.70 |
Fat(g) | 1.30 | 1.21 | 0.56 | 1.40 | 8.60 |
Dietary fiber (g) | 41.80 | 23.63 | 27.50 | 34.00 | 0 |
Ash (g) | 8.00 | 7.82 | 6.40 | 10.20 | 0.90 |
Na (mg) | 16.10 | - | - | 13.00 | 131.50 |
3.4.2. Amino Acid Composition
Nutrient Composition | Contents (g/100 g) | ||||
---|---|---|---|---|---|
Amino Acid Composition | P. pulmonarius | Pleurotus ostreatus [38] | Pleurotus citrinopileatus [16] | Egg [45] | |
EAAs (essential amino acids) | Ile | 0.57 | 0.53 | 0.49 | 0.65 |
Val | 0.98 | 0.83 | 0.93 | 0.64 | |
Lys | 1.29 | 0.10 | 1.16 | 0.85 | |
Met | - | - | - | 0.33 | |
Leu | 1.17 | 1.23 | 1.02 | 1.05 | |
Phe | 0.82 | 0.61 | 0.69 | 0.65 | |
Thr | 1.03 | 0.78 | 0.93 | 0.59 | |
Trp | - | - | - | 0.19 | |
NEAA (nonessential amino acid) | Arg | 1.33 | 0.11 | 0.89 | 0.74 |
His | 0.50 | 0.35 | 0.41 | 0.27 | |
Tyr | 0.43 | 0.58 | 0.4 | 0.50 | |
Ala | 1.24 | 0.14 | 1.14 | 0.66 | |
Pro | 0.86 | 0.71 | 0.78 | 0.34 | |
Ser | 1.15 | 0.75 | 1.08 | 0.91 | |
Glu | 4.68 | 2.31 | 3.81 | 1.59 | |
Gly | 0.98 | 0.87 | 0.99 | 0.39 | |
Asp | 2.17 | 1.47 | 1.72 | 1.21 | |
Cys | - | - | - | 0.50 | |
EAAs (essential amino acids) | 5.86 | 4.08 | 5.22 | 4.93 | |
NEAA (nonessential amino acid) | 13.34 | 7.29 | 11.18 | 7.11 | |
TAA (total amino acid) | 19.20 | 11.37 | 16.4 | 12.04 | |
E/T (essential/total amino acid ratio) | 0.30 | 0.35 | 0.32 | 0.41 | |
E/N (essential/nonessential amino acid ratio) | 0.44 | 0.56 | 0.44 | 0.69 |
3.5. Antioxidant Activities of PPP
3.5.1. ABTS Radical Scavenging Activity
3.5.2. DPPH Radical Scavenging Activity
3.5.3. Hydroxyl Radical Scavenging Activity
3.5.4. FRAP Assay
3.6. Cytotoxicity of PPP on Liver and Breast Cancer Cells
Samples | EC50 Values (mg/mL) | IC50 Values (mg/mL) | References | |||
---|---|---|---|---|---|---|
ABTS Radical Scavenging Activity | DPPH Radical Scavenging Activity | Hydroxyl Radical Scavenging Activity | HepG2 Cell | MDA-MB-468 Cell | ||
P. pulmonarius polysaccharides | 0.051 | 3.322 | 2.87 | 1.501 | 2.183 | Present study |
Pleurotus citrinopileatus polysaccharides | 0.063 | 1.212 | 3.624 | 1.690 | 1.762 | [16] |
Ascorbic acid | 0.00066 | 0.017 | 1.132 | |||
Cisplatin | 0.00122 | 0.00287 | [59] |
The Contents | The Chemical Profiles | References | ||
---|---|---|---|---|
Total Phenolic Content (mg/g) | Total Flavonoids (mg/g) | Ascorbic Acid (mg/g) | ||
5.79 (mg GAE/g) | 1.76 (mg QE/g) | 0.13 | [11] | |
5.94–11.07 (mg GAE/g) | - | - | phenylvaleric acid, malic acid, and hydroxycinnamic acid derivatives, ascorbic acid, pyroglutamic acid, gallic acid, pyroglutamic acid derivative, cinnamic acid and its hydroxycinnamic acid derivatives, hydroxybenzoic acid derivatives | [10] |
4.31 (mg GAE/g) | 7.79 (mg QE/g) | - | [55] | |
6.32–19.07 (mg GAE/g) | - | - | 136 chemical constituents were detected | [12] |
17.31–21.15 (mg CE/g) | - | - | [56] |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liufang, Y.; Wu, Y.; Zhou, H.; Qu, H.; Yang, H. Recent Advances in the Application of Natural Products for Postharvest Edible Mushroom Quality Preservation. Foods 2024, 13, 2378. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Meng, L.; Wang, X.; Zhao, W.; Shi, X.; Wang, W.; Li, Z.; Wang, L. The yield, nutritional value, umami components and mineral contents of the first-flush and second-flush Pleurotus pulmonarius mushrooms grown on three forestry wastes. Food Chem. 2022, 397, 133714. [Google Scholar] [PubMed]
- Liang, Z.; Yin, Z.; Liu, X.; Ma, C.; Wang, J.; Zhang, Y.; Kang, W. A glucomannogalactan from Pleurotus geesteranus: Structural characterization, chain conformation and immunological effect. Carbohydr. Polym. 2022, 287, 119346. [Google Scholar] [PubMed]
- Contato, A.G.; Inacio, F.D.; Vaz de Araujo, C.A.; Brugnari, T.; Maciel, G.M.; Haminiuk, C.W.I.; Bracht, A.; Peralta, R.M.; de Souza, C.G.M. Comparison between the aqueous extracts of mycelium and basidioma of the edible mushroom Pleurotus pulmonarius: Chemical composition and antioxidant analysis. J. Food Meas. Charact. 2020, 14, 830–837. [Google Scholar]
- Guo, Q.; Liang, S.; Ge, C.; Xiao, Z. Research progress on extraction technology and biological activity of polysaccharides from Edible Fungi: A review. Food Rev. Int. 2023, 39, 4909–4940. [Google Scholar] [CrossRef]
- Yu, R.; Luo, J.; Liu, L.; Peng, X. Hypoglycemic Effect of Edible Fungi Polysaccharides Depends on Their Metabolites from the Fermentation of Human Fecal Microbiota. Foods 2024, 13, 97. [Google Scholar]
- Amirullah, N.A.; Abdullah, E.; Abidin, N.Z.; Abdullah, N.; Manickam, S. Influence of extraction technologies on the therapeutic properties of Pleurotus spp. (oyster mushrooms)—A critical review. Food Biosci. 2023, 56, 103352. [Google Scholar]
- Mokhtar, M.; Leow, C.H.; Mokhtar, N.F.; Xu, Z.; Chuah, C.; Gobert, G.N.; Leow, C.Y. Immunomodulatory effects of bioactive polysaccharides from Pleurotus pulmonarius on LPS-stimulated THP-1 human macrophages. Food Biosci. 2025, 63, 105729. [Google Scholar]
- Hu, Y.; Dong, H.; Chen, H.; Shen, X.; Li, H.; Wen, Q.; Wang, F.; Qi, Y.; Shen, J. PoSnf1 affects cellulose utilization through interaction with cellobiose transporter in Pleurotus ostreatus. Int. J. Biol. Macromol. 2024, 275, 133503. [Google Scholar]
- Amirullah, N.A.; Zainal Abidin, N.; Abdullah, N.; Manickam, S. Application of ultrasound towards improving the composition of phenolic compounds and enhancing in vitro bioactivities of Pleurotus pulmonarius (Fr.) Quél extracts. Biocatal. Agric. Biotechnol. 2021, 31, 101881. [Google Scholar]
- Ramesh, C.; Pattar, M.G. Antimicrobial properties, antioxidant activity and bioactive compounds from six wild edible mushrooms of western ghats of Karnataka, India. Pharmacogn. Res. 2010, 2, 107–112. [Google Scholar]
- Milovanovic, I.; Zengin, G.; Maksimovic, S.; Tadic, V. Supercritical and ultrasound-assisted extracts from Pleurotus pulmonarius mushroom: Chemical profiles, antioxidative, and enzyme-inhibitory properties. J. Sci. Food Agric. 2021, 101, 2284–2293. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Huang, J.J.; Cheung, P.C. Extract of Pleurotus pulmonarius suppresses liver cancer development and progression through inhibition of VEGF-induced PI3K/AKT signaling pathway. PLoS ONE 2012, 7, e34406. [Google Scholar] [CrossRef]
- Mishra, V.; Tomar, S.; Yadav, P.; Singh, M.P. Promising anticancer activity of polysaccharides and other macromolecules derived from oyster mushroom (Pleurotus sp.): An updated review. Int. J. Biol. Macromol. 2021, 182, 1628–1637. [Google Scholar] [CrossRef]
- Arslan, N.P.; Dawar, P.; Albayrak, S.; Doymus, M.; Azad, F.; Esim, N.; Taskin, M. Fungi-derived natural antioxidants. Crit. Rev. Food Sci. Nutr. 2023, 29, 1593–1616. [Google Scholar] [CrossRef]
- Xiao, X.S.; Li, Y.; Li, X.M.; Hu, X.; Zhang, J.L.; Wu, X.P.; Fu, J.S. Identification, Nutrient Composition, and Evaluation of a Wild Pleurotus citrinopileatus Strain (X21156) from Tibet for Antioxidant and Cytotoxic Activities. Horticulturae 2024, 10, 377. [Google Scholar] [CrossRef]
- Ul Haq, F.; Imran, M.; Saleem, S.; Aftab, U.; Muazzam, A.; Rafi, A.; Jamal, M.; Safi, S.Z. Chemical characterization and cytotoxic effect of three edible fungi (Morchella) against breast cancer cells: A therapeutic approach. Kuwait J. Sci. 2025, 52, 100285. [Google Scholar] [CrossRef]
- Pieniądz, P.; Wiater, A.; Pięt, M.; Samorek, E.; Komaniecka, I.; Siwulski, M.; Wlizło, K.; Junka, A.; Woytoń, A.; Choma, A.; et al. Assessment of Biological Activity of Water-Soluble Polysaccharides Isolated from Cultivated Pleurotus pulmonarius and Pleurotus citrinopileatus. Acta Pol. Pharm. 2024, 81, 439–455. [Google Scholar] [CrossRef]
- Chen, J.; Peng, Y.; Zhuang, B.-B.; Liu, S.; Wang, C.-H.; Zhang, G.-L.; Liang, R.-S. Pleurotus pulmonarius polysaccharides inhibit glioma growth through the Hippo signaling pathway and regulate the structure of gut microbiota. Food Biosci. 2024, 59, 104214. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, W.; Zhang, H.; Zhang, W.; He, C.; Yu, H.; Xin, G. Integrated metabolomics and transcriptomics reveal metabolic alterations of Ophiocordyceps sinensis from different geographical regions. Food Biosci. 2024, 62, 105249. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, Q. Identification and cultivation of a wild mushroom from banana pseudo-stem sheath. Sci. Hortic. 2011, 129, 922–925. [Google Scholar]
- Lai, H.N. Chinese Illustrated Catalogue of Macrofungi in Primary Colours (Collection Edition); China Agriculture Press: Beijing, China, 1998. [Google Scholar]
- Wei, J.C. Fungal Identification Manual; Science and Technology Press: Shanghai, China, 1979. [Google Scholar]
- Zhou, L.; Wu, B.; Liu, X.; Sun, T.; Sui, C.; Chen, X. Fungal community analysis of two edible herbs: Citri reticulatae pericarpium and polygalae radix. J. Agric. Food Res. 2024, 16, 101055. [Google Scholar]
- Cao, T.; Luo, S.; Du, P.; Tu, H.; Zhang, Q. Medicinal Value, Biological Characteristics, and Domestication of the Wild Mushroom Pholiota adiposa (Agaricomycetes). Int. J. Med. Mushrooms 2023, 25, 77–90. [Google Scholar] [PubMed]
- Gao, Y.; Li, X.; Xu, H.; Sun, H.; Zhang, J.; Wu, X.; Fu, J. The Liquid-Fermentation Formulation of Sanghuangporus sanghuang Optimized by Response Surface Methodology and Evaluation of Biological Activity of Extracellular Polysaccharides. Foods 2024, 13, 1190. [Google Scholar] [CrossRef]
- Zeng, C.; Ye, G.; Li, G.; Cao, H.; Wang, Z.; Ji, S. RID serve as a more appropriate measure than phenol sulfuric acid method for natural water-soluble polysaccharides quantification. Carbohydr. Polym. 2022, 278, 118928. [Google Scholar] [CrossRef]
- Miller, N.J.; Rice-Evans, C.; Davies, M.J.; Gopinathan, V.; Milner, A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin. Sci. 1993, 84, 407–412. [Google Scholar]
- Blois, M.S. Antioxidant Determinations by the Use of a Stable Free Radical. Nature 1958, 181, 1199–1200. [Google Scholar]
- Hifney, A.F.; Fawzy, M.A.; Abdel-Gawad, K.M.; Gomaa, M. Industrial optimization of fucoidan extraction from Sargassum sp. and its potential antioxidant and emulsifying activities. Food Hydrocoll. 2016, 54, 77–88. [Google Scholar]
- Suresh, V.; Senthilkumar, N.; Thangam, R.; Rajkumar, M.; Anbazhagan, C.; Rengasamy, R.; Gunasekaran, P.; Kannan, S.; Palani, P. Separation, purification and preliminary characterization of sulfated polysaccharides from Sargassum plagiophyllum and its in vitro anticancer and antioxidant activity. Process Biochem. 2013, 48, 364–373. [Google Scholar]
- Yin, Z.H.; Liang, Z.H.; Li, C.Q.; Wang, J.M.; Ma, C.Y.; Kang, W.Y. Immunomodulatory effects of polysaccharides from edible fungus: A review. Food Sci. Hum. Wellness 2021, 10, 393–400. [Google Scholar]
- Vlasenko, V.; Vlasenko, A. Antiviral activity of total polysaccharide fraction of water and ethanol extracts of Pleurotus pulmonarius against the influenza A virus. Curr. Res. Environ. Appl. Mycol. 2020, 10, 224–235. [Google Scholar]
- Wang, X.; Han, Y.; Li, S.; Li, H.; Li, M.; Gao, Z. Edible fungus-derived bioactive components as innovative and sustainable options in health promotion. Food Biosci. 2024, 59, 104215. [Google Scholar]
- Wang, R.; Sar, T.; Mahboubi, A.; Fristedt, R.; Taherzadeh, M.J.; Undeland, I. In vitro protein digestibility of edible filamentous fungi compared to common food protein sources. Food Biosci. 2023, 54, 102862. [Google Scholar]
- Zhang, Y.; Wang, D.; Chen, Y.; Liu, T.; Zhang, S.; Fan, H.; Liu, H.; Li, Y. Healthy function and high valued utilization of edible fungi. Food Sci. Hum. Wellness 2021, 10, 408–420. [Google Scholar]
- Yu, C.; Chen, M.; Li, C.; Wang, H.; Zhao, Y.; Li, Z.; Xi, L.; Feng, A.; Pan, G. Effects of culture substrates on nutritional and flavor components of Volvariella volvacea. Mycosystema 2018, 37, 1731–1740. [Google Scholar]
- Effiong, M.E.; Umeokwochi, C.P.; Afolabi, I.S.; Chinedu, S.N. Assessing the nutritional quality of Pleurotus ostreatus (oyster mushroom). Front. Nutr. 2023, 10, 1279208. [Google Scholar]
- Yu, Q.; Guo, M.; Zhang, B.; Wu, H.; Zhang, Y.; Zhang, L. Analysis of Nutritional Composition in 23 Kinds of Edible Fungi. J. Food Qual. 2020, 2020, 8821315. [Google Scholar]
- Qiu, L.; Deng, Z.; Zhao, C.; Xiao, T.; Weng, C.; Li, J.; Zheng, L. Nutritional composition and proteomic analysis of soft-shelled turtle (Pelodiscus sinensis) egg and identification of oligopeptides with alpha-glucosidase inhibitory activity. Food Res. Int. 2021, 145, 110414. [Google Scholar]
- Wang, M.; Zhao, R. A review on nutritional advantages of edible mushrooms and its industrialization development situation in protein meat analogues. J. Future Foods 2023, 3, 1–7. [Google Scholar]
- Yang, F.; Lv, S.; Liu, Y.; Bi, S.; Zhang, Y. Determination of umami compounds in edible fungi and evaluation of salty enhancement effect of Antler fungus enzymatic hydrolysate. Food Chem. 2022, 387, 132890. [Google Scholar]
- Han, J.; Sun, R.; Huang, C.; Xie, H.; Gao, X.; Yao, Q.; Yang, P.; Li, J.; Gong, Z. Effects of Different Carbon and Nitrogen Ratios on Yield, Nutritional Value, and Amino Acid Contents of Flammulina velutipes. Life 2024, 14, 598. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ma, J.; Fan, S.; Mi, S.; Zhang, Y. Comparison of the Nutritional and Taste Characteristics of 5 Edible Fungus Powders Based on the Composition of Hydrolyzed Amino Acids and Free Amino Acids. J. Food Qual. 2022, 4, 3618002. [Google Scholar]
- Xing, Y. The studies of nonvolatile taste compounds of edible fungi. China Condiment 2008, 5, 32–35. [Google Scholar]
- Ge, Q.; Mao, J.W.; Guo, X.Q.; Zhou, Y.F.; Gong, J.Y.; Mao, S.R. Composition and antioxidant activities of four polysaccharides extracted from Herba lophatheri. Int. J. Biol. Macromol. 2013, 60, 437–441. [Google Scholar]
- Peng, S.; Wang, Y.; Yang, J.; Wang, L. Simple and rapid photometry for measuring low dosage of periodate with bromide ion-catalyzed oxidation of ABTS. J. Environ. Chem. Eng 2023, 11, 111456. [Google Scholar]
- Maity, G.N.; Maity, P.; Khatua, S.; Acharya, K.; Dalai, S.; Mondal, S. Structural features and antioxidant activity of a new galactoglucan from edible mushroom Pleurotus djamor. Int. J. Biol. Macromol. 2021, 168, 743–749. [Google Scholar]
- Panda, P.; Yang, J.; Chang, Y.; Su, W. Modification of different molecular weights of chitosan by p-Coumaric acid: Preparation, characterization and effect of molecular weight on its water solubility and antioxidant property. Int. J. Biol. Macromol. 2019, 136, 661–667. [Google Scholar]
- Ale, M.T.; Mikkelsen, J.D.; Meyer, A.S. Important Determinants for Fucoidan Bioactivity: A Critical Review of Structure-Function Relations and Extraction Methods for Fucose-Containing Sulfated Polysaccharides from Brown Seaweeds. Mar. Drugs 2011, 9, 2106–2130. [Google Scholar] [CrossRef]
- Zhong, K.; Wang, Q.; He, Y.; He, X. Evaluation of radicals scavenging, immunity-modulatory and antitumor activities of longan polysaccharides with ultrasonic extraction on in S180 tumor mice models. Int. J. Biol. Macromol. 2010, 47, 356–360. [Google Scholar]
- Wei, Y.; Li, L.; Liu, Y.; Xiang, S.; Zhang, H.; Yi, L.; Shang, Y.; Xu, W. Identification techniques and detection methods of edible fungi species. Food Chem. 2022, 374, 131803. [Google Scholar]
- Tang, J.; He, Z.; Zhang, B.; Cheng, J.; Qiu, W.; Chen, X.; Chang, C.; Wang, Q.; Hu, J.; Cai, C.; et al. Structural properties, bioactivities, structure-activity relationships and bio-applications of polysaccharides from Auricularia auricula: A review. Int. J. Biol. Macromol. 2024, 280, 135941. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Chen, X.; Gong, P. Classification, structure and mechanism of antiviral polysaccharides derived from edible and medicinal fungus. Int. J. Biol. Macromol. 2021, 183, 1753–1773. [Google Scholar] [CrossRef] [PubMed]
- Zakaria, N.N.A.; Fadzil, N.S.; Tuan Harith, Z.; Abdul Wahab, I.R.; Idris, A.A.; Abdul Rahman, K.A.M.a.; Saidan, N.H.; Abdul Rahman, N.; Naher, L. Macronutrient composition, antioxidant and antibacterial properties of Pleurotus pulmonarius’s fruiting body vs. stem waste. BIO Web Conf. 2024, 131, 05033. [Google Scholar] [CrossRef]
- Blanche, E.O.C.; Valère, K.T.C.; Judith, M.M.A.; Rosalie, N.N.A. Antiradical Activity and Ferric Reducing Antioxidant Power of Pleurotus pulmonarius, Pleurotus floridanus and Pleurotus sajor-caju Formulations Extracts in Vitro. Food Sci. Nutr. 2019, 10, 1202–1211. [Google Scholar]
- Li, Z.; Sun, X.; Liu, X.; Sun, Z.; Li, J. Antitumor Effects of Ruyiping on Cell Growth and Metastasis in Breast Cancer. Cancer Biother. Radiopharm. 2019, 34, 297–305. [Google Scholar] [CrossRef]
- Stindlova, M.; Peroutka, V.; Jencova, V.; Havlickova, K.; Lencova, S. Application of MTT assay for probing metabolic activity in bacterial biofilm-forming cells on nanofibrous materials. J. Microbiol. Methods 2024, 224, 107010. [Google Scholar] [CrossRef]
- Haddou, M.; Elbouzidi, A.; Taibi, M.; Baraich, A.; Loukili, E.H.; Bellaouchi, R.; Saalaoui, E.; Asehraou, A.; Salamatullah, A.M.; Bourhia, M.; et al. Exploring the multifaceted bioactivities of Lavandula pinnata L. essential oil: Promising pharmacological activities. Front. Chem. 2024, 12, 1383731. [Google Scholar] [CrossRef]
- Lavi, I.; Levinson, D.; Peri, I.; Tekoah, Y.; Hadar, Y.; Schwartz, B. Chemical characterization, antiproliferative and antiadhesive properties of polysaccharides extracted from Pleurotus pulmonarius mycelium and fruiting bodies. Appl. Microbiol. Biotechnol. 2010, 85, 1977–1990. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, H.; Gao, L.; Hu, X.; Fu, J.; Zhang, J. Identification and Nutrient Composition of a Wild Pleurotus pulmonarius Strain from Tibet, and the Antioxidant and Cytotoxic Activities of Polysaccharides from This Fungus. Foods 2025, 14, 1198. https://doi.org/10.3390/foods14071198
Jiang H, Gao L, Hu X, Fu J, Zhang J. Identification and Nutrient Composition of a Wild Pleurotus pulmonarius Strain from Tibet, and the Antioxidant and Cytotoxic Activities of Polysaccharides from This Fungus. Foods. 2025; 14(7):1198. https://doi.org/10.3390/foods14071198
Chicago/Turabian StyleJiang, Hao, Lei Gao, Xin Hu, Junsheng Fu, and Junli Zhang. 2025. "Identification and Nutrient Composition of a Wild Pleurotus pulmonarius Strain from Tibet, and the Antioxidant and Cytotoxic Activities of Polysaccharides from This Fungus" Foods 14, no. 7: 1198. https://doi.org/10.3390/foods14071198
APA StyleJiang, H., Gao, L., Hu, X., Fu, J., & Zhang, J. (2025). Identification and Nutrient Composition of a Wild Pleurotus pulmonarius Strain from Tibet, and the Antioxidant and Cytotoxic Activities of Polysaccharides from This Fungus. Foods, 14(7), 1198. https://doi.org/10.3390/foods14071198