Influence of Vineyard Location, Cluster Thinning and Spontaneous Alcoholic Fermentation on Wine Composition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Vineyards
2.2.1. Locations and Grapevine Variety
2.2.2. Climatic Parameters
2.2.3. Reducing the Crop Load and Viticultural Parameters
2.3. Vinification of Grapes
2.3.1. Inoculated Alcoholic Fermentation (iAF)
2.3.2. Spontaneous Alcoholic Fermentation (sAF)
2.4. Analytical Methods
2.4.1. Analysis of Yeast Population
2.4.2. Analysis of Must and Wine Parameters
2.4.3. Analysis of Organic Acids
2.4.4. Analyses of Polyphenols and Anthocyanins
2.4.5. Analysis of Methoxypyrazines
2.4.6. Analysis of Varietal Thiols
2.4.7. Analysis of Higher Alcohols, Ethyl Acetate, Acetaldehyde, and Diethylacetal
2.4.8. Analysis of Esters, 1-Hexanol, (Z)-3-Hexenol, γ-Butyrolactone, and Benzyl Alcohol
2.4.9. Sensory Analysis
2.4.10. Statistical Analysis
3. Results
3.1. Climatic Parameters, Development of the Phenological Stages and Grape Ripening
3.2. Grape Yield per Vine and Must Parameters
3.3. Fermentation Kinetic and Yeast Population Dynamic in Inoculated and Spontaneous Alcoholic Fermentations (AFs)
3.3.1. Fermentations at Location M
3.3.2. Fermentations at Location B
3.4. Influence of Cluster Thinning and Type of Alcoholic Fermentation on Wine Parameters
3.4.1. Location M
3.4.2. Location B
3.4.3. Comparison of Locations M and B
3.5. Comparisons of Wines by Sensory Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jackson, D.I.; Lombard, P.B. Environmental and Management-Practices Affecting Grape Composition and Wine Quality—A Review. Am. J. Enol. Viticult. 1993, 44, 409–430. [Google Scholar] [CrossRef]
- van Leeuwen, C.; Barbe, J.-C.; Darriet, P.; Geffroy, O.; Gomès, E.; Guillaumie, S.; Helwi, P.; Laboyrie, J.; Lytra, G.; Le Menn, N.; et al. Recent advancements in understanding the terroir effect on aromas in grapes and wines. OENO One 2020, 54, 985–1006. [Google Scholar] [CrossRef]
- Pereira, G.E.; Gaudillere, J.-P.; Leeuwen, C.v.; Hilbert, G.; Maucourt, M.; Deborde, C.; Moing, A.; Rolin, D. 1H NMR metabolite fingerprints of grape berry: Comparison of vintage and soil effects in Bordeaux grapevine growing areas. Anal. Chim. Acta 2006, 563, 346–352. [Google Scholar] [CrossRef]
- Cadot, Y.; Caillé, S.; Thiollet-Scholtus, M.; Samson, A.; Barbeau, G.; Cheynier, V. Characterisation of typicality for wines related to terroir by conceptual and by perceptual representations. An application to red wines from the Loire Valley. Food Qual. Prefer. 2012, 24, 48–58. [Google Scholar] [CrossRef]
- Vezinhet, F.; Hallet, J.-N.; Valade, M.; Poulard, A. Ecological Survey of Wine Yeast Strains by Molecular Methods of Identification. Am. J. Enol. Viticult. 1992, 43, 83. [Google Scholar] [CrossRef]
- Knight, S.; Klaere, S.; Fedrizzi, B.; Goddard, M.R. Regional microbial signatures positively correlate with differential wine phenotypes: Evidence for a microbial aspect to terroir. Sci. Rep. 2015, 5, 14233. [Google Scholar] [CrossRef]
- Bokulich, N.A.; Collins, T.S.; Masarweh, C.; Allen, G.; Heymann, H.; Ebeler, S.E.; Mills, D.A. Associations among Wine Grape Microbiome, Metabolome, and Fermentation Behavior Suggest Microbial Contribution to Regional Wine Characteristics. mBio 2016, 7, e00616–e00631. [Google Scholar] [CrossRef] [PubMed]
- Bai, C.; Fan, B.; Hao, J.; Yao, Y.; Ran, S.; Wang, H.; Li, H.; Wei, R. Changes in Microbial Community Diversity and the Formation Mechanism of Flavor Metabolites in Industrial-Scale Spontaneous Fermentation of Cabernet Sauvignon Wines. Foods 2025, 14, 235. [Google Scholar] [CrossRef]
- Wei, R.; Ding, Y.; Chen, N.; Wang, L.; Gao, F.; Zhang, L.; Song, R.; Liu, Y.; Li, H.; Wang, H. Diversity and dynamics of microbial communities during spontaneous fermentation of Cabernet Sauvignon (Vitis vinifera L.) from different regions of China and their relationship with the volatile components in the wine. Food Res. Int. 2022, 156, 111372. [Google Scholar] [CrossRef]
- Liu, D.; Legras, J.-L.; Zhang, P.; Chen, D.; Howell, K. Diversity and dynamics of fungi during spontaneous fermentations and association with unique aroma profiles in wine. Int. J. Food Microbiol. 2021, 338, 108983. [Google Scholar] [CrossRef]
- Alexandre, H. Wine Yeast Terroir: Separating the Wheat from the Chaff—For an Open Debate. Microorganisms 2020, 8, 787. [Google Scholar] [CrossRef] [PubMed]
- Pretorius, I.S. Tasting the terroir of wine yeast innovation. FEMS Yeast Res. 2019, 20, foz084. [Google Scholar] [CrossRef] [PubMed]
- Jolly, N.P.; Varela, C.; Pretorius, I.S. Not your ordinary yeast: Non- Saccharomyces yeasts in wine production uncovered. FEMS Yeast Res. 2014, 14, 215–237. [Google Scholar] [CrossRef] [PubMed]
- Raspor, P.; Čuš, F.; Jemec, K.P.; Zagorc, T.; Čadež, N.; Nemanič, J. Yeast population dynamics in spontaneous and inoculated alcoholic fermentations of Zametovka must. Food Technol. Biotech. 2002, 40, 95–102. [Google Scholar]
- Zabukovec, P.; Čadež, N.; Čuš, F. Isolation and Identification of Indigenous Wine Yeasts and Their Use in Alcoholic Fermentation. Food Technol. Biotech. 2020, 58, 337–347. [Google Scholar] [CrossRef]
- Wu, Z.-Q.; Jiao, M.-L.; Li, D.-M.; Zhang, H.-X.; Xie, Y.-H.; Li, H.-J.; Yang, M.-M.; Duan, X.-R.; Pang, X.-N.; Fan, X.-M. Microbial diversity during wine fermentation in Beijing region and its influence on wine flavor. LWT 2025, 215, 117209. [Google Scholar] [CrossRef]
- Medina, K.; Boido, E.; Fariña, L.; Gioia, O.; Gomez, M.E.; Barquet, M.; Gaggero, C.; Dellacassa, E.; Carrau, F. Increased flavour diversity of Chardonnay wines by spontaneous fermentation and co-fermentation with Hanseniaspora vineae. Food Chem. 2013, 141, 2513–2521. [Google Scholar] [CrossRef]
- Viana, F.; Gil, J.V.; Vallés, S.; Manzanares, P. Increasing the levels of 2-phenylethyl acetate in wine through the use of a mixed culture of Hanseniaspora osmophila and Saccharomyces cerevisiae. Int. J. Food Microbiol. 2009, 135, 68–74. [Google Scholar] [CrossRef]
- Hu, K.; Jin, G.J.; Mei, W.C.; Li, T.; Tao, Y.S. Increase of medium-chain fatty acid ethyl ester content in mixed H. uvarum/S. cerevisiae fermentation leads to wine fruity aroma enhancement. Food Chem. 2018, 239, 495–501. [Google Scholar] [CrossRef]
- Martin, V.; Valera, M.J.; Medina, K.; Boido, E.; Carrau, F. Oenological Impact of the Hanseniaspora/Kloeckera Yeast Genus on Wines-A Review. Fermentation 2018, 4, 76. [Google Scholar] [CrossRef]
- Romano, P.; Suzzi, G.; Domizio, P.; Fatichenti, F. Secondary products formation as a tool for discriminating non-Saccharomyces wine strains. Anton. Leeuw. J. Microbiol. 1997, 71, 239–242. [Google Scholar] [CrossRef]
- Badura, J.; Kiene, F.; Brezina, S.; Fritsch, S.; Semmler, H.; Rauhut, D.; Pretorius, I.S.; Wallbrunn, C.v.; Wyk, N.v. Aroma Profiles of Vitis vinifera L. cv. Gewürztraminer Must Fermented with Co-Cultures of Saccharomyces cerevisiae and Seven Hanseniaspora spp. Fermentation 2023, 9, 109. [Google Scholar] [CrossRef]
- Andorrà, I.; Berradre, M.; Rozès, N.; Mas, A.; Guillamón, J.M.; Esteve-Zarzoso, B. Effect of pure and mixed cultures of the main wine yeast species on grape must fermentations. Eur. Food Res. Technol. 2010, 231, 215–224. [Google Scholar] [CrossRef]
- Ferraro, L.; Fatichenti, F.; Ciani, M. Pilot scale vinification process using immobilized Candida stellata cells and Saccharomyces cerevisiae. Process Biochem. 2000, 35, 1125–1129. [Google Scholar] [CrossRef]
- Nadai, C.; Giacomini, A.; Corich, V. The addition of wine yeast to grape skin surface influences must fermentation and glycerol production. OENO One 2021, 55, 47–55. [Google Scholar] [CrossRef]
- Sadoudi, M.; Tourdot-Maréchal, R.; Rousseaux, S.; Steyer, D.; Gallardo-Chacón, J.J.; Ballester, J.; Vichi, S.; Guérin-Schneider, R.; Caixach, J.; Alexandre, H. Yeast-yeast interactions revealed by aromatic profile analysis of Sauvignon Blanc wine fermented by single or co-culture of non-Saccharomyces and Saccharomyces yeasts. Food Microbiol. 2012, 32, 243–253. [Google Scholar] [CrossRef]
- Benito, S.; Morata, A.; Palomero, F.; González, M.C.; Suárez-Lepe, J.A. Formation of vinylphenolic pyranoanthocyanins by Saccharomyces cerevisiae and Pichia guillermondii in red wines produced following different fermentation strategies. Food Chem. 2011, 124, 15–23. [Google Scholar] [CrossRef]
- Morata, A.; Loira, I.; Heras, J.M.; Callejo, M.J.; Tesfaye, W.; González, C.; Suárez-Lepe, J.A. Yeast influence on the formation of stable pigments in red winemaking. Food Chem. 2016, 197, 686–691. [Google Scholar] [CrossRef]
- Kliewer, W.M.; Dokoozlian, N.K. Leaf Area/Crop Weight Ratios of Grapevines: Influence on Fruit Composition and Wine Quality. Am. J. Enol. Viticult. 2005, 56, 170–181. [Google Scholar] [CrossRef]
- King, P.D.; McClellan, D.J.; Smart, R.E. Effect of Severity of Leaf and Crop Removal on Grape and Wine Composition of Merlot Vines in Hawke’s Bay Vineyards. Am. J. Enol. Viticult. 2012, 63, 500–507. [Google Scholar] [CrossRef]
- Vanderweide, J.; Nasrollahiazar, E.; Schultze, S.; Sabbatini, P.; Castellarin, S.D. Impact of Cluster Thinning on Wine Grape Yield and Fruit Composition: A Review and Meta-Analysis. Aust. J. Grape Wine Res. 2024, 2024, 1–20. [Google Scholar] [CrossRef]
- Bubola, M.; Sivilotti, P.; Janjanin, D.; Poni, S. Early Leaf Removal has a Larger Effect than Cluster Thinning on Grape Phenolic Composition in cv. Teran. Am. J. Enol. Viticult. 2017, 68, 234–242. [Google Scholar] [CrossRef]
- Gil, M.; Esteruelas, M.; González, E.; Kontoudakis, N.; Jiménez, J.; Fort, F.; Canals, J.M.; Hermosín-Gutiérrez, I.; Zamora, F. Effect of Two Different Treatments for Reducing Grape Yield in Vitis vinifera cv Syrah on Wine Composition and Quality: Berry Thinning versus Cluster Thinning. J. Agric. Food Chem. 2013, 61, 4968–4978. [Google Scholar] [CrossRef]
- Condurso, C.; Cincotta, F.; Tripodi, G.; Sparacio, A.; Giglio, D.M.L.; Sparla, S.; Verzera, A. Effects of cluster thinning on wine quality of Syrah cultivar (Vitis vinifera L.). Eur. Food Res. Technol. 2016, 242, 1719–1726. [Google Scholar] [CrossRef]
- Gatti, M.; Civardi, S.; Zamboni, M.; Ferrari, F.; Elothmani, D.; Bavaresco, L. Preliminary results on the effect of cluster thinning on stilbene concentration and antioxidant capacity of Vitis vinifera L. ’Barbera’ wine. VITIS-J. Grapev. R. 2015, 50, 43–44. [Google Scholar] [CrossRef]
- Šuklje, K.; Krebelj, A.J.; Vaupotič, T.; Čuš, F. Effect of cluster thinning within the grapevine variety ’Welschriesling’ on yield, grape juice and wine parameters. Mitt. Klosterneubg 2022, 72, 118–129. [Google Scholar]
- Rutan, T.E.; Herbst-Johnstone, M.; Kilmartin, P.A. Effect of Cluster Thinning Vitis vinifera cv. Pinot Noir on Wine Volatile and Phenolic Composition. J. Agric. Food Chem. 2018, 66, 10053–10066. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, D.H.; Eichhorn, K.W.; Bleiholder, H.; Klose, R.; Meier, U.; Weber, E. Growth Stages of the Grapevine: Phenological growth stages of the grapevine (Vitis vinifera L. ssp. vinifera)—Codes and descriptions according to the extended BBCH scale. Aust. J. Grape Wine Res. 1995, 1, 100–103. [Google Scholar] [CrossRef]
- Hall, A.; Jones, G.V. Spatial analysis of climate in winegrape-growing regions in Australia. Aust. J. Grape Wine Res. 2010, 16, 389–404. [Google Scholar] [CrossRef]
- OIV. Compendium of International Methods of Wine and Musts Analysis; Organisation International de la Vigne et du Vin: Dijon, France, 2021; Volume 2, pp. 515–540. [Google Scholar]
- Pravilnik o pogojih, ki jih mora izpolnjevati grozdje za predelavo v vino, o dovoljenih tehnoloških postopkih in enoloških sredstvih za pridelavo vina in o pogojih glede kakovosti vina, mošta in drugih proizvodov v prometu (Uradni list RS, št. 43/04, 127/04, 112/05 in 105/06–ZVin). 2004. Available online: https://pisrs.si/pregledPredpisa?id=PRAV3779 (accessed on 12 January 2022).
- Lopez, E.F.; Gomez, E.F. Simultaneous determination of the major organic acids, sugars, glycerol, and ethanol by HPLC in grape musts and white wines. J. Chromatogr. Sci. 1996, 34, 254–257. [Google Scholar] [CrossRef]
- Mihelčič, A.; Vanzo, A.; Sivilotti, P.; Vrščaj, B.; Lisjak, K. An investigation of vine water status as a major factor in the quality of Merlot wine produced in terraced and non-terraced vineyards in the Vipava Valley, Slovenia. OENO One 2023, 57, 231–246. [Google Scholar] [CrossRef]
- Rigo, A.; Vianello, F.; Clementi, G.; Rossetto, M.; Scarpa, M.; Vrhovsek, U.; Mattivi, F. Contribution of proanthocyanidins to the peroxy radical scavenging capacity of some Italian red wines. J. Agr. Food Chem. 2000, 48, 1996–2002. [Google Scholar] [CrossRef]
- Jenko, M.; Lisjak, K.; Košmerl, T.; Čuš, F. The Influence of Yeast Strain Combinations on the Quality of Sauvignon Blanc Wine. Food Sci. Technol. Res. 2013, 19, 7–15. [Google Scholar] [CrossRef]
- Tominaga, T.; Dubourdieu, D. A novel method for quantification of 2-methyl-3-furanthiol and 2-furanmethanethiol in wines made from Vitis vinifera grape varieties. J. Agr. Food Chem. 2006, 54, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Bavčar, D.; Česnik Baša, H.; Čuš, F.; Košmerl, T. The influence of skin contact during alcoholic fermentation on the aroma composition of Ribolla Gialla and Malvasia Istriana Vitis vinifera (L.) grape wines. Int. J. Food Sci. Technol. 2011, 46, 1801–1808. [Google Scholar] [CrossRef]
- Bavčar, D. Influence of Maceration on Aromatic properties of White Wines from Primorska Region. Ph.D. Thesis, University of Ljubljana (Biotechnical Faculty), Ljubljana, Slovenia, 2011. [Google Scholar]
- Bavčar, D.; Česnik, H. Validation of the method for the determination of some wine volatile compounds. Acta Agric. Slovenica 2011, 97, 285–293. [Google Scholar] [CrossRef]
- Meilgaard, M.C.; Carr, B.T.; Civille, G.V. Sensory Evaluation Techniques, 3rd ed.; CRC Press: Boca Raton, FL, USA, 1999; pp. 59–121. [Google Scholar]
- Lumivero XLSTAT Statistical and Data analysis Solution. 2024. Available online: https://www.xlstat.com/en (accessed on 5 February 2024).
- Šuklje, K.; Čuš, F. Modulation of Welschriesling wine volatiles through the selection of yeast and lactic acid bacteria. OENO One 2021, 55, 245–260. [Google Scholar] [CrossRef]
- Denat, M.; Pérez, D.; Heras, J.M.; Sáenz-Navajas, M.P.; Ferreira, V. Impact of two yeast strains on Tempranillo red wine aroma profiles throughout accelerated ageing. OENO One 2021, 55, 181–195. [Google Scholar] [CrossRef]
- Arias-Pérez, I.; Sáenz-Navajas, M.P.; de-la-Fuente-Blanco, A.; Ferreira, V.; Escudero, A. Insights on the role of acetaldehyde and other aldehydes in the odour and tactile nasal perception of red wine. Food Chem. 2021, 361, 130081. [Google Scholar] [CrossRef]
- Boubée, D.R.d.; van Leeuwen, C.; Dubourdieu, D. Organoleptic Impact of 2-Methoxy-3-isobutylpyrazine on Red Bordeaux and Loire Wines. Effect of Environmental Conditions on Concentrations in Grapes during Ripening. J. Agric. Food Chem. 2000, 48, 4830–4834. [Google Scholar] [CrossRef]
- van Leeuwen, C.; Seguin, G. The concept of terroir in viticulture. J. Wine Res. 2006, 17, 1–10. [Google Scholar] [CrossRef]
- Martins, V.; Teixeira, A.; Breia, R.; Nóbrega, M.; Macedo, R.; Barbosa, C.; Gerós, H.; López, R. Volatilomics of interactions between native yeasts and grapevine cultivars reveals terroir specificities in wines from Douro region. Food Biosci. 2024, 62, 105463. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, X.; Zhang, F.; Sun, Y. Influence of an indigenous yeast, CECA, from the Ningxia wine region of China, on the yeast community dynamics and aroma of Cabernet Sauvignon wines. LWT 2023, 189, 115506. [Google Scholar] [CrossRef]
- Hall, H.; Zhou, Q.; Qian, M.; Osborne, J. Impact of Yeasts Present during Prefermentation Cold Maceration of Pinot noir Grapes on Wine Volatile Aromas. Am. J. Enol. Viticult. 2017, 68, 81–90. [Google Scholar] [CrossRef]
- van Wyk, N.; Scansani, S.; Beisert, B.; Brezina, S.; Fritsch, S.; Semmler, H.; Pretorius, I.S.; Rauhut, D.; von Wallbrunn, C. The Use of Hanseniaspora occidentalis in a Sequential Must Inoculation to Reduce the Malic Acid Content of Wine. Appl. Sci. 2022, 12, 6919. [Google Scholar] [CrossRef]
- Bakker, J.; Timberlake, C. Isolation, Identification, and Characterization of New Color-Stable Anthocyanins Occurring in Some Red Wines. J. Agr. Food Chem. 1997, 45, 35–43. [Google Scholar] [CrossRef]
- Lemos, W.J.F.; Binati, R.L.; Felis, G.E.; Slaghenaufi, D.; Ugliano, M.; Torriani, S. Volatile organic compounds from Starmerella bacillaris to control gray mold on apples and modulate cider aroma profile. Food Microbiol. 2020, 89, 103446. [Google Scholar] [CrossRef]
- Swiegers, J.H.; Pretorius, I.S. Yeast Modulation of Wine Flavor. In Advances in Applied Microbiology; Academic Press: Cambridge, MA, USA, 2005; Volume 57, pp. 131–175. [Google Scholar]
- Wang, X.; Fan, G.; Peng, Y.; Xu, N.; Xie, Y.; Zhou, H.; Liang, H.; Zhan, J.; Huang, W.; You, Y. Mechanisms and effects of non-Saccharomyces yeast fermentation on the aromatic profile of wine. J. Food Compos. Anal. 2023, 124, 105660. [Google Scholar] [CrossRef]
- Chapman, D.M.; Matthews, M.A.; Guinard, J.-X. Sensory Attributes of Cabernet Sauvignon Wines Made from Vines with Different Crop Yields. Am. J. Enol. Viticult. 2004, 55, 325–334. [Google Scholar] [CrossRef]
- Marbach, C.; Hall, C.; Botezatu, A. Unravelling the influence of cluster thinning on wine quality: A narrative systematic review. OENO One 2025, 59, 8238. [Google Scholar] [CrossRef]
- De Bei, R.; Wang, X.; Papagiannis, L.; Collins, C. Assessment of bunch thinning as a management technique for Semillon and Shiraz in a hot Australian climate. OENO One 2022, 56, 161–174. [Google Scholar] [CrossRef]
- Crandles, M.; Reynolds, A.G.; Khairallah, R.; Bowen, A. The effect of yeast strain on odor active compounds in Riesling and Vidal blanc icewines. LWT-Food Sci. Technol. 2015, 64, 243–258. [Google Scholar] [CrossRef]
Vintage/Crop Load (C, CT) 1 | p Values 2 | Vintage/Fermentation Type | p Values | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2020 | 2021 | 2020 | 2021 | |||||||||
M-C (M-C_iAF) | M-CT | M-C (M-C_iAF) | M-CT | T | V | T × V | M-C_sAF 3 | M-C_sAF | T | V | T × V | |
Methoxypyrazine (ng/L) | ||||||||||||
IBMP (6–15 4) | 2.10 ± 0.10 | 2.47 ± 0.15 | 1.93 ± 0.07 | 1.82 ± 0.08 | ns | *** | ** | 1.97 ± 15 | 1.50 ± 0.35 | ns | ns | ns |
Varietal thiols (ng/L) | ||||||||||||
4MMP (0.8) | 11.56 ± 5.2 | 8.69 ± 3.17 | 3.74 ± 0.81 | 3.93 ± 1.24 | ns | ns | ns | 9.6 ± 3.9 | 6.78 ± 3.38 | ns | * | ns |
3MHA (0.0042) | 24.3 ± 6.1 | 17.0 ± 4.6 | 7.13 ± 0.45 | 7.51 ± 2.01 | ns | ns | ns | 12.7 ± 3.8 | 11.27 ± 3.20 | ns | ** | ** |
3MH (60) | 505.1 ± 39.3 | 498.8 ± 44.5 | 668.7 ± 34.3 | 562.7 ± 63.4 | ns | ** | ns | 313.6 ± 17.7 | 398.3 ± 6.4 | ns | * | ns |
Ethyl esters of strain chain fatty acids (EEFAs) (μg/L) | ||||||||||||
Ethyl butyrate (20) | 120.3 ± 2.5 | 116.0 ± 6.0 | 155.2 ± 2.1 | 125.3 ± 23.4 | ns | ns | ns | 43.7 ± 7.1 | 80.7 ± 14.2 | ns | * | ns |
Ethyl decanoate (200) | 52.0 ± 3.6 | 56.3 ± 4.7 | 29.0 ± 2.0 | 23.7 ± 0.2 | ns | * | ns | 36.3 ± 9.6 b | 13.2 ± 2.5 c | *** | *** | ns |
Ethyl octanoate (2) | 259.0 ± 13.1 | 251.0 ± 2.6 | 181.3 ± 7.3 | 162.4 ± 0.3 | ns | * | ns | 125.7 ± 49.2 | 125.7 ± 49.2 | ns | ns | ns |
Ethyl dodecanoate (640) | 5.67 ± 0.58 | 7.00 ± 1.00 | 5.85 ± 0.72 | 5.29 ± 0.34 | ns | ns | * | 9.67 ± 2.08 | 9.35 ± 2.23 | ns | ns | ns |
Ethyl hexanoate (5) | 269.3 ± 7.4 | 261.0 ± 1.7 | 143.3 ± 2.1 | 142.4 ± 5.3 | ns | *** | ns | 141.3 ± 34.1 | 82.6 ± 4.8 | ns | ** | ns |
Ethyl palmitate (1.5) | 12.7 ± 2.5 | 28.3 ± 3.8 | 27.3 ± 4.2 | 19.0 ± 2.1 | ns | ns | * | 11.3 ± 0.6 | 17.9 ± 8.7 | ns | ns | ns |
SUM EEFAs | 719.0 ± 21.0 | 719.7 ± 9.8 | 541.9 ± 13.6 b | 478.1 ± 28.6 c | * | *** | * | 367.0 ± 99.4 | 329.5 ± 58.9 | ns | * | ns |
Acetates (μg/L) | ||||||||||||
Hexyl acetate (670) | 6.57 ± 2.68 | 5.53 ± 1.16 | 3.86 ± 0.15 | 3.66 ± 0.34 | ns | ns | ns | 10.33 ± 1.40 | 4.17 ± 1.96 | ns | ** | ns |
Isoamyl acetate (30) | 3.80 ± 0.20 b | 4.63 ± 0.21 a | 4.62 ± 0.16 | 4.58 ± 0.34 | * | * | * | 6.30 ± 1.06 | 4.55 ± 1.14 | ns | ns | ns |
2-Phenethyl acetate (250) | 19.7 ± 0.6 c | 27.7 ± 1.5 b | 34.7 ± 0.5 | 33.4 ± 0.8 | *** | *** | *** | 78.7 ± 3.5 a | 62.2 ± 17.5 | * | ns | ns |
SUM acetates | 30.0 ± 3.3 c | 37.8 ± 0.9 b | 43.2 ± 0.6 | 41.6 ± 1.2 | * | *** | ** | 95.3 ± 5.8 a | 70.9 ± 19.9 b | *** | ns | * |
Alcohols (mg/L) | ||||||||||||
1-Hexanol (8) | 2.74 ± 0.02 | 2.60 ± 0.02 | 0.89 ± 0.01 | 1.01 ± 0.06 | ns | *** | * | 2.53 ± 0.10 | 0.79 ± 0.06 | ns | * | ns |
Benzyl alcohol (200) | 0.64 ± 0.01 | 0.66 ± 0.06 | 0.13 ± 0.003 | 0.15 ± 0.01 | ns | * | ns | 0.77 ± 0.19 | 0.25 ± 0.04 | ns | * | ns |
(Z)-3-hexen-1-ol (0.4) | 0.027 ± 0.002 | 0.023 ± 0.001 | 0.014 ± 0.0002 | 0.017 ± 0.001 | ns | *** | ** | 0.023 ± 0.001 b | 0.014 ± 0.002 | * | *** | ns |
1-Propanol (-) | 19.4 ± 1.1 | 18.8 ± 0.8 | 16.6 ± 0.1 | 20.0 ± 2.0 | ns | ns | * | 17.3 ± 0.7 | 18.0 ± 0.7 | ns | * | ** |
2-Methyl-1-propanol (40) | 45.7 ± 0.5 | 51.9 ± 1.6 | 55.9 ± 0.07 | 59.3 ± 1.5 | ns | * | ns | 79.2 ± 3.5 a | 74.4 ± 5.9 | * | ns | ns |
1-Butanol (150) | 0.80 ± 0.08 | 0.78 ± 0.02 | 0.98 ± 0.13 | 0.93 ± 0.06 | ns | ns | ns | nd 5 | 1.10 ± 0.11 | ns | * | ns |
2-Methyl-1-butanol (30) | 62.4 ± 1.2 | 61.9 ± 1.1 | 67.2 ± 0.6 | 68.8 ± 0.6 | ns | *** | ns | 57.6 ± 3.7 | 69.6 ± 7.5 | ns | ns | ns |
3-Methyl-1-butanol (30) | 201.6 ± 4.2 | 204.4 ± 4.3 | 211.9 ± 1.2 | 214.2 ± 1.9 | ns | ns | ns | 186.9 ± 31.4 | 234.4 ± 43.7 | ns | ns | ns |
2-Phenylethanol (14) | 38.9 ± 4.0 | 37.6 ± 0.6 | 46.5 ± 0.8 | 46.8 ± 1.8 | ns | *** | ns | 56.8 ± 5.6 ab | 57.6 ± 8.9 a | ** | ns | ns |
SUM alcohols | 372.2 ± 7.7 | 378.6 ± 8.2 | 400.0 ± 1.1 | 411.2 ± 2.0 | ns | * | ns | 401.2 ± 36.1 | 456.1 ± 65.5 | ns | ns | ns |
Other compounds, pH | ||||||||||||
Benzaldehyde (μg/L) (2000) | 3.07 ± 0.67 | 2.73 ± 0.31 | 5.40 ± 0.89 | 6.32 ± 0.44 | ns | ns | ns | 4.07 ± 2.04 | 7.48 ± 0.80 | ns | ** | ns |
Diethyl succinate (μg/L) (200,000) | 496.7 ± 20.8 | 559.6 ± 99.0 | 392.3 ± 14.2 | 466.3 ± 29.6 | ns | * | ns | 723.3 ± 781.2 | 534.6 ± 160.9 | ns | ns | ns |
γ-Butyrolactone (μg/L) (35,000) | 7083 ± 361.2 b | 7737 ± 358.4 a | 4220 ± 77.4 | 4828 ± 393.2 | ** | *** | ns | 6467 ± 2261 | 6711 ± 764.6 | ns | ns | ns |
Acetaldehyde (mg/L) (0.5) | 7.73 ± 2.83 | 6.26 ± 2.63 | 10.5 ± 0.63 | 8.44 ± 0.58 | ns | ns | ns | 9.12 ± 4.51 | 22.0 ± 6.6 | ns | ns | ns |
Ethyl acetate (μg/L) (7500) | 54.7 ± 2.3 b | 70.4 ± 3.7 a | 33.9 ± 7.7 c | 46.5 ± 4.7 b | ** | *** | ns | 167.7 ± 39.3 | 123.3 ± 7.8 | ns | * | ns |
Ethanol (% vol) | 11.93 ± 0.06 | 11.97 ± 0.13 | 12.82 ± 0.06 | 13.00 ± 0.01 | ns | * | ns | 11.80 ± 0.10 | 12.80 ± 0.30 | ns | *** | ns |
TDM (g/L) | 27.4 ± 0.2 b | 28.1 ± 0.2 a | 27.2 ± 0.4 | 27.3 ± 0.0 | * | ** | ns | nm 6 | 27.6 ± 0.2 | ns | ns | ns |
TAc (g/L tartaric acid) | 5.80 ± 0.00 | 5.77 ± 0.06 | 6.17 ± 0.06 | 6.13 ± 0.06 | ns | ns | ns | 5.50 ± 0.00 | 6.03 ± 0.15 | ns | ns | ns |
VA (g/L acetic acid) | 0.35 ± 0.01 b | 0.40 ± 0.03 a | 0.29 ± 0.02 c | 0.35 ± 0.03 b | ** | ** | ns | 0.53 ± 0.13 | 0.43 ± 0.04 | ns | * | ns |
pH | 3.61 ± 0.01 b | 3.64 ± 0.01 a | 3.60 ± 0.01 b | 3.65 ± 0.01 a | *** | ns | ns | 3.63 ± 0.00 | 3.62 ± 0.03 | ns | ns | ns |
TP (mg/L (+)-Catechin) | 1594 ± 8.9 | 1617 ± 45.8 | 1333 ± 108.8 | 1461 ± 59.9 | ns | *** | ns | 1330 ± 186.9 | 1487 ± 20.4 | ns | ns | ** |
TAns | 709.8 ± 21.3 | 735.5 ± 30.6 | 808.4 ± 54.8 | 728.4 ± 11.6 | ns | * | * | 552.1 ± 108.6 | 639.7 ± 31.1 | ns | ** | ns |
Vintage/Crop Load (C, CT) 1 | p Values 2 | Vintage/Ferm. Type | p Values | ||||||
---|---|---|---|---|---|---|---|---|---|
2020 | 2021 | 2021 | |||||||
B-C | B-CT | B-C (B-C_iAF) | B-CT | T | V | T × V | B-C_sAF 3 | T | |
Methoxypyrazine (ng/L) | |||||||||
IBMP (6–15 4) | 5.86 ± 0.21 | 6.67 ± 1.08 | 0.73 ± 0.06 | 1.13 ± 0.15 | ns | * | ns | 0.89 ± 0.15 | ns |
Varietal thiols (ng/L) | |||||||||
4MMP (0.8) | 7.42 ± 0.97 | 10.9 ± 3.7 | 4.18 ± 1.23 | 3.27 ± 0.68 | ns | * | ns | 5.07 ± 2.05 | ns |
3MHA (0.0042) | 19.3 ± 2.0 | 16.6 ± 1.4 | 8.09 ± 0.50 | 9.04 ± 2.36 | ns | *** | ns | 14.66 ± 3.35 a | * |
3MH (60) | 777.8 ± 26.8 | 688.7 ± 12.7 | 1305.0 ± 343.1 | 1293.0 ± 147.8 | ns | ns | ns | 614 ± 41.8 b | * |
Ethyl esters of strain chain fatty acids (EEFAs) (μg/L) | |||||||||
Ethyl butyrate (20) | 132.3 ± 22.1 | 128.7 ± 28.7 | 178.7 ± 22.5 | 184.3 ± 10.2 | ns | ** | ns | 72.9 ± 10.7 b | ** |
Ethyl decanoate (200) | 71.3 ± 1.5 | 74.0 ± 1.0 | 68.0 ± 8.7 | 78.7 ± 2.1 | ns | ns | ns | 39.9 ± 1.6 | ns |
Ethyl octanoate (2) | 277.7 ± 5.0 | 283.0 ± 1.0 | 232.0 ± 39.0 | 269.7 ± 12.6 | ns | * | ns | 86.6 ± 11.0 b | ** |
Ethyl dodecanoate (640) | 5.00 ± 0.00 | 6.00 ± 1.00 | 17.3 ± 2.5 | 18.6 ± 1.2 | ns | * | ns | 14.4 ± 0.9 | ns |
Ethyl hexanoate (5) | 256.7 ± 7.6 | 254.7 ± 4.2 | 163.3 ± 22.8 | 183.3 ± 4.2 | ns | ns | ns | 89.7 ± 4.7 | ns |
Ethyl palmitate (1.5) | 5.00 ± 3.46 | 4.00 ± 1.00 | 38.0 ± 4.0 b | 52.3 ± 7.6 a | * | *** | * | 30.9 ± 3.1 | ns |
SUM EEFAs | 748.0 ± 26.5 | 750.3 ± 27.3 | 697.3 ± 91.4 | 787.0 ± 16.5 | ns | ns | ns | 334.4 ± 18.8 | ns |
Acetates (μg/L) | |||||||||
Hexyl acetate (670) | 5.63 ± 2.29 | 3.63 ± 1.12 | nd 5 | nd | ns | ns | ns | nd | / |
Isoamyl acetate (30) | 5.70 ± 0.52 | 5.83 ± 0.50 | 3.40 ± 0.61 | 4.30 ± 0.17 | ns | *** | ns | 3.79 ± 0.43 | ns |
2-Phenethyl acetate (250) | 33.7 ± 0.6 | 37.3 ± 1.2 | 34.3 ± 4.0 | 42.3 ± 2.5 | ns | * | ns | 54.3 ± 2.0 a | ** |
SUM acetates | 45.0 ± 3.2 | 46.8 ± 0.3 | 37.7 ± 4.6 b | 46.6 ± 2.7 a | * | ns | ns | 58.1 ± 2.0 a | ** |
Alcohols (mg/L) | |||||||||
1-Hexanol (8) | 1.57 ± 0.02 | 1.64 ± 0.003 | 0.79 ± 0.02 c | 0.87 ± 0.04 b | * | *** | ns | 0.92 ± 0.08 | ns |
Benzyl alcohol (200) | 0.76 ± 0.06 | 0.67 ± 0.006 | 0.56 ± 0.01 | 0.58 ± 0.03 | ns | *** | * | 0.62 ± 0.03 | ns |
(Z)-3-hexen-1-ol (0.4) | 0.018 ± 0.001 a | 0.014 ± 0.001 b | 0.010 ± 0.001 c | 0.011 ± 0.0006 d | * | *** | *** | 0.010 ± 0.0003 | ns |
1-Propanol (-) | 19.0 ± 0.1 | 18.2 ± 0.1 | 16.2 ± 0.9 b | 20.4 ± 0.4 a | * | ns | ns | 12.8 ± 1.6 b | * |
2-Methyl-1-propanol (40) | 48.9 ± 0.2 | 49.0 ± 0.3 | 49.9 ± 3.9 | 54.5 ± 0.2 | ns | ns | ns | 72.4 ± 3.0 a | ** |
1-Butanol (150) | 0.86 ± 0.04 | 0.88 ± 0.01 | 1.55 ± 0.18 | 1.43 ± 0.09 | ns | ns | ns | 1.19 ± 0.18 | ns |
2-Methyl-1-butanol (30) | 71.0 ± 0.3 | 71.1 ± 0.3 | 63.8 ± 3.0 | 69.6 ± 0.8 | ns | ns | ns | 61.9 ± 43.5 | ns |
3-Methyl-1-butanol (30) | 248.2 ± 0.3 | 248.6 ± 1.0 | 206.9 ± 10.0 | 223.8 ± 2.2 | ns | ns | ns | 213.7 ± 15.8 | ns |
2-Phenylethanol (14) | 49.9 ± 4.4 | 51.9 ± 1.0 | 46.4 ± 3.9 | 51.6 ± 2.7 | ns | ns | ns | 57.4 ± 7.3 | ns |
SUM alcohols | 440.2 ± 3.9 | 442.0 ± 1.8 | 386.2 ± 15.4 c | 422.8 ± 5.1 b | ** | *** | ** | 421.0 ± 19.3 | ns |
Other compounds, pH | |||||||||
Benzaldehyde (μg/L) (2000) | 2.17 ± 0.12 | 2.30 ± 0.52 | 6.47 ± 4.71 | 3.17 ± 0.47 | ns | ns | ns | 27.16 ± 14.95 | ns |
Diethyl succinate (μg/L) (200,000) | 516.7 ± 20.8 | 480.0 ± 10.0 | 2220 ± 281.6 | 2667 ± 245.4 | ns | * | ns | 5460 ± 2232 | ns |
γ-Butyrolactone (μg/L) (35,000) | 7903 ± 590.8 | 8466 ± 760.4 | 7703 ± 196.0 | 7690 ± 105.4 | ns | ns | ns | 9569 ± 919.6 | ns |
Acetaldehyde (mg/L) (0.5) | 10.9 ± 1.01 | 5.75 ± 1.93 | 14.4 ± 9.3 | 9.03 ± 2.33 | ns | ns | ns | 18.1 ± 9.4 | ns |
Ethyl acetate (μg/L) (7500) | 42.0 ± 1.7 | 44.8 ± 2.4 | 53.8 ± 6.4 | 73.0 ± 1.8 | ns | * | ns | 78.5 ± 10.7 a | * |
Ethanol (% vol) | 13.46 ± 0.10 d | 14.09 ± 0.13 c | 15.38 ± 0.02 b | 15.81 ± 0.12 a | *** | *** | ns | 14.72 ± 0.26 b | * |
TDM (g/L) | 29.2 ± 0.2 | 30.0 ± 0.3 | 30.8 ± 0.6 | 30.6 ± 0.8 | ns | * | ns | 31.6 ± 1.1 | ns |
TAc (g/L tartaric acid) | 5.90 ± 0.00 | 5.73 ± 0.06 | 5.63 ± 0.12 | 5.63 ± 0.06 | ns | ns | ns | 5.40 ± 0.10 | ns |
VA (g/L acetic acid) | 0.32 ± 0.02 | 0.33 ± 0.02 | 0.56 ± 0.02 b | 0.66 ± 0.02 a | *** | *** | ** | 0.94 ± 0.04 a | *** |
pH | 3.48 ± 0.02 d | 3.56 ± 0.02 c | 3.65 ± 0.02 b | 3.70 ± 0.01 a | *** | *** | ns | 3.78 ± 0.02 a | ** |
TP (mg/L (+)-Catechin) | 2270 ± 177.0 ab | 2089 ± 54.5 b | 2363 ± 127.5 a | 2171 ± 164.9 ab | * | ns | ns | 2446 ± 194.0 | ns |
TAns | 991.5 ± 2.0 | 1053 ± 22.5 | 832.5 ± 73.2 | 846.7 ± 101.2 | ns | ns | ns | 801.0 ± 20.3 | ns |
Crop Load | Significant Differences Between Locations B and M | |
---|---|---|
Control (C) | Parameters with significantly higher values/concentrations at p ≤ 0.05 1 | Parameters with significantly lower values/concentrations at p ≤ 0.05 |
(1) Location B vs. Location M (2020) | Ethanol, 2,4 TAc, IBMP, 3MH, Ethyl decanoate, SUM acetates, Benzyl alcohol, 2-Methyl-1-propanol, 2-Methyl-1-butanol, 3-Methyl-1-butanol, 2-Phenylethanol, SUM alcohols | pH, Ethyl dodecanoate, 1-Hexanol, Ethyl acetate |
(2) Location B vs. Location M (2021) | Ethanol, VS, 3 pH, TP, 3MH, Ethyl dodecanoate, Ethyl palmitate, 1-Butanol, γ-Butyrolactone, Ethyl acetate | Hexyl acetate, Isoamyl acetate, (Z)-3-hexen-1-ol |
Significant Differences Between Locations B and M | ||
Cluster thinning (CT) | Parameters with significantly higher values/concentrations at p ≤ 0.05 | Parameters with significantly lower values/concentrations at p ≤ 0.05 |
(3) Location B vs. Location M (2020) | Ethanol, TDM, TP, IBMP, 3MH, Ethyl decanoate, Ethyl octanoate, SUM acetates, Isoamyl acetate, 1-Butanol, 2-Methyl-1-butanol, 3-Methyl-1-butanol, 2-Phenylethanol, SUM alcohols | TAc, Ethyl palmitate, 1-Hexanol, 2-Methyl-1-propanol, Ethyl acetate |
(4) Location B vs. Location M (2021) | VA, TP, 3MH, Ethyl butyrate, Ethyl octanoate, Ethyl hexanoate, Ethyl palmitate, SUM EEFAs, 2-Phenethyl acetate, SUM acetates, Benzyl alcohol, 3-Methyl-1-butanol, SUM alcohols, Diethyl succinate, γ-Butyrolactone, Ethyl acetate | IBMP, Hexyl acetate, 1-Hexanol |
LOCATION M | Comparisons of Two Yields and Two Alcoholic Fermentations | |||
---|---|---|---|---|
M-CT vs. M-C | M-C_iAF (M-C) vs. M-C_sAF | |||
Vintage | 2020 | 2021 | 2020 | 2021 |
Triangle test | ns 1 | ns | Significant at a < 0.01 | Significant at a < 0.001 |
LOCATION B | Comparisons of Two Yields and Two Alcoholic Fermentations | |||
B-CT vs. B-C | B-C_iAF (B-C) vs. B-C_sAF | |||
Vintage | 2020 | 2021 | 2020 | 2021 |
Triangle test | ns | ns | / 2 | Significant at a < 0.01 |
LOCATIONS | Comparisons of Two Locations | |||
LOCATION B vs. LOCATION M (C) | LOCATION B vs. LOCATION M (CT) | |||
Vintage | 2020 | 2021 | 2020 | 2021 |
Triangle test | Significant at a < 0.001 | Significant at a < 0.001 | Significant at a < 0.01 | Significant at a < 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Čuš, F.; Krebelj, A.J.; Potisek, M. Influence of Vineyard Location, Cluster Thinning and Spontaneous Alcoholic Fermentation on Wine Composition. Foods 2025, 14, 1101. https://doi.org/10.3390/foods14071101
Čuš F, Krebelj AJ, Potisek M. Influence of Vineyard Location, Cluster Thinning and Spontaneous Alcoholic Fermentation on Wine Composition. Foods. 2025; 14(7):1101. https://doi.org/10.3390/foods14071101
Chicago/Turabian StyleČuš, Franc, Anastazija Jež Krebelj, and Mateja Potisek. 2025. "Influence of Vineyard Location, Cluster Thinning and Spontaneous Alcoholic Fermentation on Wine Composition" Foods 14, no. 7: 1101. https://doi.org/10.3390/foods14071101
APA StyleČuš, F., Krebelj, A. J., & Potisek, M. (2025). Influence of Vineyard Location, Cluster Thinning and Spontaneous Alcoholic Fermentation on Wine Composition. Foods, 14(7), 1101. https://doi.org/10.3390/foods14071101