Network Pharmacology and Experimental Validation Reveal Therapeutic Potential of Propolis in UV-Induced Allergic Dermatitis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Retrieve the Targets of UV Allergic Dermatitis and the Main Components of Propolis
2.2. Retrieve Overlapping Targets and Perform Bioinformatics Analysis
2.3. Experimental Verification
2.3.1. Extraction and Preparation of Propolis Sample
2.3.2. Model of HSF Cells Treated with UVB Light
2.3.3. Effect of Propolis on TNF-α, NF-κB, MMP-9, and IL-2 Contents in Culture Medium of UVB-Irradiated HSF Cells
2.3.4. The Effect of Propolis on the Proliferation of UVB-Irradiated HSF Cells
2.4. Data Analysis
3. Results
3.1. Overlapping Targets of Propolis Components and UV Allergic Dermatitis
3.2. GO Function Enrichment, KEGG Signaling Pathway Enrichment, and PPI Analysis Results
3.3. The TNF-α, NF-κB, MMP-9, and IL-2 Contents in Culture Medium of UVB-Irradiated HSF Cells
3.4. Propolis Affects the Proliferation of UVB-Irradiated HSF Cells
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Merin, K.A.; Shaji, M.; Kameswaran, R. A review on sun exposure and skin diseases. Indian J. Dermatol. 2022, 67, 625. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Yang, T.; Yu, D.; Xiong, H.; Zhang, S. Current insights and future perspectives of ultraviolet radiation (UV) exposure: Friends and foes to the skin and beyond the skin. Environ. Int. 2024, 185, 108535. [Google Scholar] [CrossRef] [PubMed]
- Modenese, A.; Bisegna, F.; Borra, M.; Grandi, C.; Gugliermetti, F.; Militello, A.; Gobba, F. Outdoor work and solar radiation exposure: Evaluation method for epidemiological studies. Med. Pr. 2016, 67, 577–587. [Google Scholar] [CrossRef]
- Verma, A.; Zanoletti, A.; Kareem, K.Y.; Adelodun, B.; Kumar, P.; Ajibade, F.O.; Silva, L.F.O.; Phillips, A.J.; Kartheeswaran, T.; Bontempi, E.; et al. Skin protection from solar ultraviolet radiation using natural compounds: A review. Environ. Chem. Lett. 2024, 22, 273–295. [Google Scholar] [CrossRef]
- Li, Y.; Li, L. Contact dermatitis: Classifications and management. Clin. Rev. Allergy Immunol. 2021, 61, 245–281. [Google Scholar] [CrossRef]
- Harwansh, R.K.; Deshmukh, R. Recent insight into UV-induced oxidative stress and role of herbal bioactives in the management of skin aging. Curr. Pharm. Biotechnol. 2024, 25, 16–41. [Google Scholar] [CrossRef]
- Rutter, K.J.; Ashraf, I.; Cordingley, L.; Rhodes, L.E. Quality of life and psychological impact in the photodermatoses: A systematic review. Br. J. Dermatol. 2020, 182, 1092–1102. [Google Scholar] [CrossRef]
- Andersen, R.M.; Thyssen, J.P.; Maibach, H.I. The role of wet wrap therapy in skin disorders—A literature review. Acta Derm. Venereol. 2015, 95, 933–939. [Google Scholar] [CrossRef]
- Lim, H.W.; Buchness, M.R.; Ashinoff, R.; Soter, N.A. Chronic actinic dermatitis: Study of the spectrum of chronic photosensitivity in 12 patients. Arch. Dermatol. 1990, 126, 317–323. [Google Scholar] [CrossRef]
- Dupont, E.; Gomez, J.; Bilodeau, D. Beyond UV radiation: A skin under challenge. Int. J. Cosmet. Sci. 2013, 35, 224–232. [Google Scholar] [CrossRef]
- Stefanovic, N.; Irvine, A.D.; Flohr, C. The role of the environment and exposome in atopic dermatitis. Curr. Treat. Options Allergy 2021, 8, 222–241. [Google Scholar] [CrossRef] [PubMed]
- Grant-Kels, J.M. JAAD game changers: Treatment of recalcitrant atopic dermatitis with the oral Janus kinase inhibitor tofacitinib citrate. J. Am. Acad. Dermatol. 2024, 91, 1028. [Google Scholar] [CrossRef] [PubMed]
- Craiglow, B.G.; King, B.A. Killing two birds with one stone: Oral tofacitinib reverses alopecia universalis in a patient with plaque psoriasis. J. Investig. Dermatol. 2014, 134, 2988–2990. [Google Scholar] [CrossRef]
- Gorman, S.; McGlade, J.P.; Lambert, M.J.; Strickland, D.H.; Thomas, J.A.; Hart, P.H. UV exposure and protection against allergic airways disease. Photochem. Photobiol. Sci. 2010, 9, 571–577. [Google Scholar] [CrossRef]
- Wang, D.; Zhou, Y.; Zhao, J.; Ren, C.; Yan, W. Oral Yak whey protein can alleviate UV-induced skin photoaging and modulate gut microbiota composition. Foods 2024, 13, 2621. [Google Scholar] [CrossRef]
- Kujumgiev, A.; Tsvetkova, I.; Serkedjieva, Y.; Bankova, V.; Christov, R.; Popov, S. Antibacterial, antifungal and antiviral activity of propolis of different geographic origin. J. Ethnopharmacol. 1999, 64, 235–240. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, C.P.; Wang, K.; Li, G.Q.; Hu, F.L. Recent advances in the chemical composition of propolis. Molecules 2014, 19, 19610–19632. [Google Scholar] [CrossRef]
- Shahbaz, M.; Zahoor, T.; Arshad, R.; Rafiq, S.; Qaisrani, T.B.; Liaqat, A.; Javed, M.S.; Akbar, Z.; Raza, N.; Murtaza, S.; et al. Chemical profiling, HPLC characterization and in-vitro antioxidant potential of Pakistani propolis collected from peripheral region of Faisalabad. Cell. Mol. Biol. 2021, 67, 40–44. [Google Scholar] [CrossRef]
- Freitas, A.S.; Oliveira, R.; Almeida-Aguiar, C. Further insights on honey and propolis from geres (Portugal) and their bioactivities: Unraveling the impact of beehive relocation. Life 2024, 14, 506. [Google Scholar] [CrossRef]
- Acito, M.; Varfaj, I.; Brighenti, V.; Cengiz, E.C.; Rondini, T.; Fatigoni, C.; Russo, C.; Pietrella, D.; Pellati, F.; Bartolini, D.; et al. A novel black poplar propolis extract with promising health-promoting properties: Focus on its chemical composition, antioxidant, anti-inflammatory, and anti-genotoxic activities. Food Funct. 2024, 15, 4983–4999. [Google Scholar] [CrossRef]
- Ito, J.; Chang, F.R.; Wang, H.K.; Park, Y.K.; Ikegaki, M.; Kilgore, N.; Lee, K.H. Anti-AIDS agents. 48. Anti-HIV activity of moronic acid derivatives and the new melliferone-related triterpenoid isolated from Brazilian propolis. J. Nat. Prod. 2001, 64, 1278–1281. [Google Scholar] [CrossRef] [PubMed]
- Veiga, R.S.; De Mendonça, S.; Mendes, P.B.; Paulino, N.; Mimica, M.J.; Lagareiro Netto, A.A.; Lira, I.S.; López, B.G.; Negrão, V.; Marcucci, M.C. Artepillin C and phenolic compounds responsible for antimicrobial and antioxidant activity of green propolis and Baccharis dracunculifolia DC. J. Appl. Microbiol. 2017, 122, 911–920. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Zhu, J.; Yu, Q.; Zhu, Y.; Wu, C.; Zheng, X.; Chen, N.; Pei, P.; Yang, K.; Wang, K.; et al. Dietary flavonoid quercetin supplement promotes antiviral innate responses against vesicular stomatitis virus infection by reshaping the bacteriome and host metabolome in mice. Mol. Nutr. Food Res. 2024, 68, e2300898. [Google Scholar] [CrossRef]
- Wang, D.; Chen, J.; Pu, L.; Yu, L.; Xiong, F.; Sun, L.; Yu, Q.; Cao, X.; Chen, Y.; Peng, F.; et al. Galangin: A food-derived flavonoid with therapeutic potential against a wide spectrum of diseases. Phytother. Res. 2023, 37, 5700–5723. [Google Scholar] [CrossRef]
- Kitamura, H.; Saito, N.; Fujimoto, J.; Nakashima, K.I.; Fujikura, D. Brazilian propolis ethanol extract and its component kaempferol induce myeloid-derived suppressor cells from macrophages of mice in vivo and in vitro. BMC Complement. Altern. Med. 2018, 18, 138. [Google Scholar] [CrossRef]
- Bueno-Silva, B.; Kawamoto, D.; Ando-Suguimoto, E.S.; Casarin, R.C.V.; Alencar, S.M.; Rosalen, P.L.; Mayer, M.P.A. Brazilian red propolis effects on peritoneal macrophage activity: Nitric oxide, cell viability, pro-inflammatory cytokines and gene expression. J. Ethnopharmacol. 2017, 207, 100–107. [Google Scholar] [CrossRef]
- Hallajzadeh, J.; Milajerdi, A.; Amirani, E.; Attari, V.E.; Maghsoudi, H.; Mirhashemi, S.M. Effects of propolis supplementation on glycemic status, lipid profiles, inflammation and oxidative stress, liver enzymes, and body weight: A systematic review and meta-analysis of randomized controlled clinical trials. J. Diabetes Metab. Disord. 2021, 20, 831–843. [Google Scholar] [CrossRef]
- Borrelli, F.; Maffia, P.; Pinto, L.; Ianaro, A.; Russo, A.; Capasso, F.; Ialenti, A. Phytochemical compounds involved in the anti-inflammatory effect of propolis extract. Fitoterapia 2002, 73, 53–63. [Google Scholar] [CrossRef]
- Natarajan, K.; Singh, S.; Burke, T.R.; Grunberger, D.; Aggarwal, B.B. Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-κB. Proc.Natl. Acad. Sci. USA 1996, 93, 9090–9095. [Google Scholar] [CrossRef]
- Yang, W.S.; Jeong, D.; Yi, Y.-S.; Park, J.G.; Seo, H.; Moh, S.H.; Hong, S.; Cho, J.Y. IRAK1/4-targeted anti-inflammatory action of caffeic acid. Mediat. Inflamm. 2013, 2013, 518183. [Google Scholar] [CrossRef]
- de Groot, A.C. Propolis: A review of properties, applications, chemical composition, contact allergy, and other adverse effects. Dermatitis 2013, 24, 263–282. [Google Scholar] [CrossRef] [PubMed]
- Buitrago, D.M.; Perdomo, S.J.; Silva, F.A.; Cely-Veloza, W.; Lafaurie, G.I. Physicochemical characterization, Antioxidant, and Proliferative activity of colombian propolis extracts: A comparative study. Molecules 2024, 29, 1643. [Google Scholar] [CrossRef] [PubMed]
- Song, M.Y.; Lee, D.Y.; Kim, E.H. Anti-inflammatory and anti-oxidative effect of Korean propolis on Helicobacter pylori-induced gastric damage in vitro. J. Microbiol. 2020, 58, 878–885. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.; Wang, Y.; Yin, X.; Liu, X.; Xuan, H. Ethanol extract of propolis and its constituent caffeic acid phenethyl ester inhibit breast cancer cells proliferation in inflammatory microenvironment by inhibiting TLR4 signal pathway and inducing apoptosis and autophagy. BMC Complement. Altern. Med. 2017, 17, 471. [Google Scholar] [CrossRef]
- Xu, X.; Yang, B.; Wang, D.; Zhu, Y.; Miao, X.; Yang, W. The chemical composition of Brazilian green propolis and its protective effects on mouse Aortic Endothelial Cells against inflammatory injury. Molecules 2020, 25, 4612. [Google Scholar] [CrossRef]
- Hopkins, A.L. Network pharmacology: The next paradigm in drug discovery. Nat. Chem. Biol. 2008, 4, 682–690. [Google Scholar] [CrossRef]
- Shi, P.; Du, T.; Meng, F.; Xie, S.; Han, S.; Yang, J.; Zhang, Y.; Sun, Y.; Gong, J.; Yao, H. Ethanol extract of propolis alleviates diabetic cardiomyopathy via JAK2/STAT3 signaling pathway. J. Funct. Foods 2023, 107, 105688. [Google Scholar] [CrossRef]
- Wang, J.; Cheng, L.; Li, J.; Wang, Y.; Chen, S.; Wang, Z.; Yang, W. Potential antitumor cechanism of propolis against Skin Squamous Cell Carcinoma A431 Cells based on untargeted metabolomics. Int. J. Mol. Sci. 2024, 25, 11265. [Google Scholar] [CrossRef]
- Han, S.; Li, H.; Luo, F.; Chen, X.; Cen, Y.; Liu, P.; Chen, Z.; Lan, T.; Lin, J. Inhibitory effect of seawater pearl hydrolysate on UVA-induced photoaging of human skin fibroblasts. Evid. Based Complement. Altern. Med. 2022, 2022, 1558288. [Google Scholar] [CrossRef]
- Cao, L.; Yue, X.; Zhao, Y.; Du, L.; Xie, Z.; Yuan, Y.; Zhang, S.; Li, F.; Feng, J.; Hu, H. Mechanisms of broad-band UVB irradiation-induced itch in mice. J. Investig. Dermatol. 2021, 141, 2499–2508. [Google Scholar] [CrossRef]
- Tabatabaei, M.S.; Ahmed, M. Enzyme-linked immunosorbent assay (ELISA). Methods Mol. Biol. 2022, 2508, 115–134. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.J.; Bak, S.B.; Bae, S.J.; Jin, H.J.; Park, S.M.; Kim, Y.R.; Jung, D.H.; Song, C.H.; Kim, Y.W.; Kim, S.C.; et al. Protective effects of red ginseng against tacrine-induced hepatotoxicity: An integrated approach with network pharmacology and experimental validation. Drug Des. Dev. Ther. 2024, 18, 549–566. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, X.; Yu, Q.; Lv, X.; Li, C.; Wang, L.; Wang, Q.; Yang, Z.; Xiao, R. Using network pharmacology to discover potential drugs for hypertrophic scars. Br. J. Dermatol. 2024, 191, 592–604. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.C.; Chang, H.H.; Chou, S.C.; Chu, T.W.; Hsu, Y.J.; Hsiao, C.Y.; Lo, Y.H.; Wu, N.L.; Chang, D.C.; Hung, C.F. Evaluation of the anti-atopic dermatitis effects of α-boswellic acid on Tnf-α/Ifn-γ-stimulated HaCat cells and DNCB-Induced BALB/c mice. Int. J. Mol. Sci. 2022, 23, 9863. [Google Scholar] [CrossRef]
- Cho, Y.R.; Han, E.J.; Heo, E.; Jayasinghe, A.M.K.; Won, J.; Lee, S.; Kim, T.; Kim, S.K.; Lim, S.; Woo, S.O.; et al. Propolis suppresses atopic dermatitis through targeting the MKK4 pathway. Biofactors 2025, 51, e2119. [Google Scholar] [CrossRef]
- Oršolić, N.; Jazvinšćak, J.M. Molecular and cellular mechanisms of propolis and its polyphenolic compounds against cancer. Int. J. Mol. Sci. 2022, 23, 10479. [Google Scholar] [CrossRef]
- Tang, C.; Makusheva, Y.; Sun, H.; Han, W.; Iwakura, Y. Myeloid C-type lectin receptors in skin/mucoepithelial diseases and tumors. J. Leukoc. Biol. 2019, 106, 903–917. [Google Scholar] [CrossRef]
- Ramot, Y.; Böhm, M.; Paus, R. Translational neuroendocrinology of human skin: Concepts and perspectives. Trends Mol. Med. 2021, 27, 60–74. [Google Scholar] [CrossRef]
- Caselli, L.; Du, G.; Micciulla, S.; Traini, T.; Sebastiani, F.; Diedrichsen, R.G.; Köhler, S.; Skoda, M.W.A.; van der Plas, M.J.A.; Malmsten, M. Photocatalytic degradation of bacterial lipopolysaccharides by Peptide-Coated TiO2 nanoparticles. ACS Appl. Mater. Interfaces 2024, 16, 60056–60069. [Google Scholar] [CrossRef]
- Koc, F.; Tekeli, M.Y.; Kanbur, M.; Karayigit, M.Ö.; Liman, B.C. The effects of chrysin on lipopolysaccharide-induced sepsis in rats. J. Food Biochem. 2020, 44, e13359. [Google Scholar] [CrossRef]
- Zulhendri, F.; Lesmana, R.; Tandean, S.; Christoper, A.; Chandrasekaran, K.; Irsyam, I.; Suwantika, A.A.; Abdulah, R.; Wathoni, N. Recent update on the Anti-Inflammatory activities of propolis. Molecules 2022, 27, 8473. [Google Scholar] [CrossRef] [PubMed]
- Yoshino, Y.; Marunaka, K.; Kobayashi, M.; Matsunaga, H.; Shu, S.; Matsunaga, T.; Ikari, A. Protective effects of ethanol extract of Brazilian green propolis and apigenin against weak ultraviolet Ray-B-Induced barrier dysfunction via suppressing nitric oxide production and mislocalization of Claudin-1 in HaCaT cells. Int. J. Mol. Sci. 2021, 22, 10326. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.B.; Yoo, B.S. Propolis Inhibits UVA-Induced apoptosis of human keratinocyte HaCaT cells by scavenging ROS. Toxicol. Res. 2016, 32, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.F.; Zhang, H. NFKB and NFKBI polymorphisms in relation to susceptibility of tumour and other diseases. Histol. Histopathol. 2007, 22, 1387–1398. [Google Scholar] [CrossRef]
- Corrêa, F.R.; Schanuel, F.S.; Moura-Nunes, N.; Monte-Alto-Costa, A.; Daleprane, J.B. Brazilian red propolis improves cutaneous wound healing suppressing inflammation-associated transcription factor NFκB. Biomed. Pharmacother. 2017, 86, 162–171. [Google Scholar] [CrossRef]
- Augoff, K.; Hryniewicz-Jankowska, A.; Tabola, R.; Stach, K. MMP9: A tough target for targeted therapy for cancer. Cancers 2022, 14, 1847. [Google Scholar] [CrossRef]
- Zhou, P. Emerging mechanisms and applications of low-dose IL-2 therapy in autoimmunity. Cytokine Growth Factor Rev. 2022, 67, 80–88. [Google Scholar] [CrossRef]
- Shin, S.H.; Koh, Y.G.; Lee, W.G.; Seok, J.; Park, K.Y. The use of epidermal growth factor in dermatological practice. Int. Wound J. 2023, 20, 2414–2423. [Google Scholar] [CrossRef]
- Geueke, A.; Mantellato, G.; Kuester, F.; Schettina, P.; Nelles, M.; Seeger, J.M.; Kashkar, H.; Niemann, C. The anti-apoptotic Bcl-2 protein regulates hair follicle stem cell function. EMBO Rep. 2021, 22, e52301. [Google Scholar] [CrossRef]
- Tang, Z.; Tong, X.; Huang, J.; Liu, L.; Wang, D.; Yang, S. Research progress of keratinocyte-programmed cell death in UV-induced Skin photodamage. Photodermatol. Photoimmunol. Photomed. 2021, 37, 442–448. [Google Scholar] [CrossRef]
- da Rosa, C.; Bueno, I.L.; Quaresma, A.C.M.; Longato, G.B. Healing potential of propolis in skin wounds evidenced by clinical studies. Pharmaceuticals 2022, 15, 1143. [Google Scholar] [CrossRef] [PubMed]
- Jo, K.A.; Park, S.; Choi, K.; Lee, D.; Kim, J.Y. Comparing the effects of Korean and Brazilian propolis on Anti-Atopic dermatitis and the related mechanisms through In Silico and In Vitro analyses. J. Food Biochem. 2024, 100, 123–135. [Google Scholar] [CrossRef]
- Boufadi, M.Y.; Soubhye, J.; Van, A.P. Anti-inflammatory, antioxidant effects, and bioaccessibility of Tigzirt propolis. J. Food Biochem. 2021, 45, e13663. [Google Scholar] [CrossRef] [PubMed]
- Ansary, T.M.; Hossain, M.R.; Kamiya, K.; Komine, M.; Ohtsuki, M. Inflammatory molecules associated with ultraviolet radiation-mediated skin aging. Int. J. Mol. Sci. 2021, 22, 3974. [Google Scholar] [CrossRef]
- Al-Roub, A.; Akhter, N.; Al-Rashed, F.; Wilson, A.; Alzaid, F.; Al-Mulla, F.; Sindhu, S.; Ahmad, R. TNF-α induces matrix metalloproteinase-9 expression in monocytic cells through ACSL1/JNK/ERK/NF-κB signaling pathways. Sci. Rep. 2023, 13, 14351. [Google Scholar] [CrossRef]
- Oršolić, N.; Jembrek, M.J. Potential strategies for overcoming drug resistance pathways using propolis and its polyphenolic/flavonoid compounds in combination with chemotherapy and radiotherapy. Nutrients 2024, 16, 3741. [Google Scholar] [CrossRef]
- Gjertsen, A.W.; Stothz, K.A.; Neiva, K.G.; Pileggi, R. Effect of propolis on proliferation and apoptosis of periodontal ligament fibroblasts. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2011, 112, 843–848. [Google Scholar] [CrossRef]
- Hashemi, S.S.; Mohammadi, A.A.; Rajabi, S.S.; Sanati, P.; Rafati, A.; Kian, M.; Zarei, Z. Preparation and evaluation of a polycaprolactone/chitosan/propolis fibrous nanocomposite scaffold as a tissue engineering skin substitute. Bioimpacts 2023, 13, 275–287. [Google Scholar] [CrossRef]
- de Funari, C.S.; de Oliveira Ferro, V.; Mathor, M.B. Analysis of propolis from Baccharis dracunculifolia DC. (Compositae) and its effects on mouse fibroblasts. J. Ethnopharmacol. 2007, 111, 206–212. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, L.; Wang, J.; Wang, Y.; Li, J.; Yang, W. Network Pharmacology and Experimental Validation Reveal Therapeutic Potential of Propolis in UV-Induced Allergic Dermatitis. Foods 2025, 14, 996. https://doi.org/10.3390/foods14060996
Cheng L, Wang J, Wang Y, Li J, Yang W. Network Pharmacology and Experimental Validation Reveal Therapeutic Potential of Propolis in UV-Induced Allergic Dermatitis. Foods. 2025; 14(6):996. https://doi.org/10.3390/foods14060996
Chicago/Turabian StyleCheng, Liyuan, Jie Wang, Yicong Wang, Jingjing Li, and Wenchao Yang. 2025. "Network Pharmacology and Experimental Validation Reveal Therapeutic Potential of Propolis in UV-Induced Allergic Dermatitis" Foods 14, no. 6: 996. https://doi.org/10.3390/foods14060996
APA StyleCheng, L., Wang, J., Wang, Y., Li, J., & Yang, W. (2025). Network Pharmacology and Experimental Validation Reveal Therapeutic Potential of Propolis in UV-Induced Allergic Dermatitis. Foods, 14(6), 996. https://doi.org/10.3390/foods14060996