Research Progress in Current and Emerging Issues of PFASs’ Global Impact: Long-Term Health Effects and Governance of Food Systems
Abstract
:1. Introduction
1.1. PFASs’ Origins and Complacency
1.2. The Nexus Between PFASs and Microplastics: An Emerging Threat to Public Health and the Environment
1.3. The Human Cost of Decades of Delay, Cover-Ups, and Mismanagement of PFASs and Plastic Waste
2. PFASs and Long-Term Health Effects
2.1. PFASs Around the Globe and Risk Assessment
2.2. The Scientific Research and Health Impacts in the United States of America
3. PFAS Impact, Activities, and Dietary Intake Studies Around the World
3.1. China
3.2. European Countries
3.3. USA and Australia
3.4. PFASs in Drinking Water and Food: Risks, Mitigation, and Regulatory Needs
3.5. Chemical Contaminants in Food and Their Impact on Health and Safety
4. Regional PFAS Impact and Activities Briefings
4.1. Australia Briefing: PFAS Impact and Activities
4.2. Vietnam Briefing: PFAS Impact and Activities
4.3. Canada Briefing: PFAS Impact and Activities
4.4. Europe Briefing: PFAS Impact and Activities
4.5. USA: PFAS Impact and Activities
4.6. South America: PFAS Impact and Activities
4.7. Africa: PFAS Impact and Activities
5. Discussion
- Define the Problem: Clearly state the issue.
- Brainstorm Solutions: Create a list of probable solutions.
- Evaluate Solutions: Evaluate the feasibility and impact of each solution.
- Implement the Solution: Put the selected solution into effect.
- Monitor and Review: Evaluate the solution’s efficacy and make any necessary adjustments [313].
5.1. Domino Effect Model of Accident Causation
5.2. Swiss Cheese Model
5.3. Ishikawa Fish Bone Root Cause Analyses
5.4. The Impact of PFASs on the Sustainable Development Goals (SDGs) of 2030
6. PFASs, Medical Devices, and Other Industries
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Glossary of Acronyms
ABM | Agent-Based Model; |
ASEAN | Association of Southeast Asian Nations; |
ATSDR | Agency for Toxic Substances and Disease Registry; |
AU | African Union; |
BAFs | Bioaccumulation efficiencies; |
BPA | Bisphenol-A; |
CDC | Center for Disease Control; |
CEPA | Canadian Environmental Protection Act; |
CFCIP | Changshu fluorine-chemical industrial park; |
CIHR | Canadian Institutes of Health Research; |
ECCC | Environment and Climate Change Canada; |
ECHA | European Chemicals Agency; |
EDCs | Endocrine-disrupting chemicals; |
EFSA | European Food Safety Authority; |
EPA | Environmental Protection Agency; |
EPR | Extended Producer Responsibility; |
EQS | Environmental Quality Standard; |
FSANZ | Food Standards Australia New Zealand; |
GEF | Global Environment Facility; |
HFPO-DA | Hexafluoropropylene oxide-dimer acid; |
HPLC-MS/MS | High-performance liquid chromatography–tandem mass spectrometry; |
HR | Hazard ratio; |
HRMS | High-resolution mass spectrometry; |
IDB | Inter-American Development Bank; |
IPEN | International Pollutants Elimination Network; |
iPSC | Induced pluripotent stem cell; |
LC-HRMS | Liquid chromatography coupled with high-resolution mass spectrometry; |
LC-Q-Orbitrap | LC coupled to a hybrid high-resolution mass analyzer; |
LC–MS/MS | Liquid chromatography–tandem mass spectrometry; |
MALDI-MS | Matrix-assisted laser desorption/ionization mass spectrometry; |
Mercosur | Mercado Común del Sur; |
MOIT | Ministry of Industry and Trade; |
MONRE | Ministry of Natural Resources and Environment; |
NGO | Non-governmental organization; |
NHANES | National Health and Nutrition Examination Survey; |
NCP | Northern Contaminants Program; |
NRCan | Natural Resources Canada; |
OECD | Organization for Economic Co-operation and Development; |
PBK | Physiologically Based Kinetic; |
PFDoDA | Perfluoro-n-dodecanoic acid; |
PFPeA | Perfluorinated acid; |
PFAS | Polyfluoroalkyl substance; |
PFBA | Alternative perfluorobutanoic acid; |
PFBS | Perfluorobutane sulfonate; |
PFCA | Perfluoroalkyl carboxylic acid; |
PFHxS | Perfluorohexane sulfonate; |
PFHpA | Perfluoroheptanoic acid; |
PFHxA | Perfluorohexanoic acid; |
PFNA | Perfluorononanoic acid; |
PFOA | Perfluorooctanoic acid; |
PFOS | Perfluorooctane sulfonic acid; |
PET | Polyethylene terephthalate; |
PFTrDA | Perfluorotridecanoic acid; |
PFUnDA | Perfluoropentanoic acid; |
PMRA | Pest Management Regulatory Agency; |
POP | Persistent organic pollutant; |
RAPIMER | Renewable Artificial Plant for In Situ Microbial Environmental Remediation; |
TDI | Tolerable daily intake; |
TDS | Total Diet Study; |
UHPLC-MS/MS | Ultra-high performance liquid chromatography–tandem mass spectrometry; |
UNEP | United Nations Environment Programme; |
UPLC-TQS | Ultraperformance liquid chromatography–triple-quadrupole mass spectrometry; |
WSER | Wastewater systems effluent regulation; |
WWTP | Wastewater treatment plant. |
References
- Interstate Technology Regulatory Council (ITRC). PFAS History and Use. 2020. Available online: https://pfas-1.itrcweb.org/wp-content/uploads/2020/10/history_and_use_508_2020Aug_Final.pdf (accessed on 27 September 2024).
- Environmental Working Group (EWG). Timeline: The PFOA Saga. 2021. Available online: https://www.ewg.org/research/timeline-forever-chemicals-and-firefighters (accessed on 27 September 2024).
- Union of Concerned Scientists UCSUSA. Dark Waters—The Lawyer Who Became DuPont’s Worst Nightmare. 2019. Available online: https://blog.ucsusa.org/genna-reed/dark-waters-speaks-the-truth-about-pfas/ (accessed on 27 September 2024).
- NIH US National Library of Medicine. PFAS and Health Effects. 2021. Available online: https://www.ncbi.nlm.nih.gov/books/NBK584690/ (accessed on 27 September 2024).
- Lerner, S. How 3M Executives Convinced a Scientist the Forever Chemicals She Found in Human Blood Were Safe. 20 May 2024. Available online: https://www.propublica.org/article/3m-forever-chemicals-pfas-pfos-inside-story (accessed on 27 September 2024).
- Pruitt, S. The Post World War II Boom: How America Got into Gear. 2020. Available online: https://www.history.com/news/post-world-war-ii-boom-economy (accessed on 27 September 2024).
- Agency for Toxic Substances and Disease Registry ATSDR. PFAS Exposure Assessments. 2022. Available online: https://www.atsdr.cdc.gov/pfas/exposure-assessments/index.html (accessed on 27 September 2024).
- Interstate Technology Regulatory Council ITRC. 9 Site Risk Assessment—PFAS—Per- and Polyfluoroalkyl Substances. 2023. Available online: https://pfas-1.itrcweb.org/9-site-risk-assessment/ (accessed on 27 September 2024).
- Balbuena, N.; DiFelice, M. How Chemical Makers Hid the Truth About PFAS. 2023. Available online: https://www.foodandwaterwatch.org/2023/11/08/pfas-coverups/ (accessed on 27 September 2024).
- Tullo, A. C&EN’s Top 50 US Chemical Producers for 2021. 2021. Available online: https://cen.acs.org/business/finance/CENs-top-50-US-chemical-producers-for-2020/99/i17 (accessed on 27 September 2024).
- Reed, G. DuPont’s Worst Nightmare. 2019. Available online: https://www.theguardian.com/commentisfree/2019/dec/27/chemicals-dupont-rob-bilott-toxic-america (accessed on 27 September 2024).
- Smith, J.; Doe, A.; White, R. Interactions between PFAS and Microplastics in the Environment. Environ. Sci. Technol. 2020, 54, 12345–12350. [Google Scholar]
- Jones, L.; Brown, M. The PFAS and Microplastics Nexus: Implications for Public Health and Environmental Policy. J. Environ. Manag. 2021, 278, 111–120. [Google Scholar]
- Agency for Toxic Substances and Disease Registry. Per- and Polyfluoroalkyl Substances (PFAS) and Your Health. 18 January 2024. Available online: https://www.atsdr.cdc.gov/pfas/index.html (accessed on 27 September 2024).
- National Oceanic and Atmospheric Administration. Microplastics and the Environment: Research and Guidelines|National Oceanic and Atmospheric Administration. 10 June 2024. Available online: https://marinedebris.noaa.gov/search-md-website?search_api_fulltext=microplastics+and+the+environment+research+and+guidelines (accessed on 27 September 2024).
- Bakir, A.; Rowland, S.J.; Thompson, R.C. Competitive sorption of persistent organic pollutants onto microplastics in the marine environment. Mar. Pollut. Bull. 2012, 64, 2782–2789. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, Y.; Li, J.; Liu, J.; Zhao, Y.; Wu, Y. Occurrence and dietary intake of Perfluoroalkyl substances in foods of the residents in Beijing, China. Food Addit. Contam. Part B 2021, 14, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Rochman, C.M.; Tahir, A.; Williams, S.L.; Baxa, D.V.; Lam, R.; Miller, J.T.; Teh, F.C.; Werorilangi, S.; Teh, S.J. Anthropogenic debris in seafood: Plastic debris and fibers from textiles in fish and bivalves sold for human consumption. Sci. Rep. 2015, 5, 14340. [Google Scholar] [CrossRef]
- Fossi, M.C.; Marsili, L.; Baini, M.; Giannetti, M.; Coppola, D.; Guerranti, C.; Caliani, I.; Minutoli, R.; Lauriano, G.; Finoia, M.G.; et al. Fin whales and microplastics: The Mediterranean Sea and the Sea of Cortez scenarios. Environ. Pollut. 2016, 209, 68–78. [Google Scholar] [CrossRef]
- Toms, L.M.L.; Calafat, A.M.; Kato, K.; Thompson, J.; Harden, F.; Hobson, P.; Sjodin, A.; Mueller, J.F. Polyfluoroalkyl chemicals in pooled human serum from Australia in 2002, 2004, 2006, and 2008. Environ. Sci. Technol. 2009, 43, 4194–4199. [Google Scholar] [CrossRef]
- Teuten, E.L.; Saquing, J.M.; Knappe, D.R.; Barlaz, M.A.; Jonsson, S.; Björn, A.; Rowland, S.J.; Thompson, R.C.; Galloway, T.S.; Yamashita, R.; et al. Transport and release of chemicals from plastics to the environment and to wildlife. Philosophical Transactions of the Royal Society. Biol. Sci. 2009, 364, 2027–2045. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration NOAA. Addressing the Challenges of Plastics and PFAS. Environmental Defense Fund; 26 January 2024. Available online: https://marinedebris.noaa.gov/research/influence-environmental-conditions-contaminants-leaching-and-sorbing-marine-microplastic (accessed on 27 September 2024).
- Merkl, A.; Charles, D. The Price of Plastic Pollution: Social Costs and Corporate Liabilities. Minderoo Foundation: Nedlands, Australia, 2022; Available online: https://www.beyondplastics.org/reports/the-price-of-plastic-pollution (accessed on 27 September 2024).
- Minnesota Pollution Control Agency. Groundbreaking Study Shows Unaffordable Costs of PFAS Cleanup from Wastewater. 6 June 2023. Available online: https://www.pca.state.mn.us/news-and-stories/groundbreaking-study-shows-unaffordable-costs-of-pfas-cleanup-from-wastewater (accessed on 27 September 2024).
- EPA US Environmental Protection Agency. PFAS Explained|US EPA. 2024. Available online: https://www.epa.gov/pfas/pfas-explained (accessed on 17 October 2024).
- Ao, J.; Yuan, T.; Xia, H.; Ma, Y.; Shen, Z.; Shi, R. Characteristic and human exposure risk assessment of per- and polyfluoroalkyl substances: A study based on indoor dust and drinking water in China. Environ. Pollut. 2019, 254 Pt A, 112873. [Google Scholar] [CrossRef]
- Cao, H.; Zhou, Z.; Hu, Z.; Wei, C.; Li, J.; Wang, L. Effect of Enterohepatic Circulation on the Accumulation of Per- and Polyfluoroalkyl Substances: Evidence from Experimental and Computational Studies. Environ. Sci Technol. 2022, 56, 3214–3224. [Google Scholar] [CrossRef]
- Jane, L.; Espartero, L.; Yamada, M.; Ford, J.; Owens, G.; Prow, T.; Juhasz, A. Health-related toxicity of emerging per- and polyfluoroalkyl substances: Comparison to legacy PFOS and PFOA. Environ. Res. 2022, 212 Pt C, 113431. [Google Scholar] [CrossRef]
- Amstutz, V.H.; Cengo, A.; Gehres, F.; Sijm, D.T.H.M.; Vrolijk, M.F. Investigating the cytotoxicity of per- and polyfluoroalkyl substances in HepG2 cells: A structure-activity relationship approach. Toxicology 2022, 480, 153312. [Google Scholar] [CrossRef] [PubMed]
- Ojo, A.F.; Xia, Q.; Peng, C.; Ng, J.C. Evaluation of the individual and combined toxicity of perfluoroalkyl substances to human liver cells using biomarkers of oxidative stress. Chemosphere 2021, 281, 130808. [Google Scholar] [CrossRef] [PubMed]
- Solan, M.E.; Senthilkumar, S.; Aquino, G.V.; Bruce, E.D.; Lavado, R. Comparative cytotoxicity of seven per- and polyfluoroalkyl substances (PFAS) in six human cell lines. Toxicology 2022, 477, 153281. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Wan, J.; Niu, Q.; Liu, R. PFOA and PFOS interact with superoxide dismutase and induce cytotoxicity in mouse primary hepatocytes: A combined cellular and molecular methods. Environ. Res. 2019, 175, 63–70. [Google Scholar] [CrossRef]
- Xu, M.; Liu, G.; Li, M.; Huo, M.; Zong, W.; Liu, R. Probing the cell apoptosis pathway induced by perfluorooctanoic acid and perfluorooctane sulfonate at the subcellular and molecular levels. J. Agric. Food Chem. 2020, 68, 633–641. [Google Scholar] [CrossRef]
- Donat-Vargas, C.; Bergdahl, I.A.; Tornevi, A.; Wennberg, M.; Sommar, J.; Koponen, J. Associations between repeated measure of plasma perfluoroalkyl substances and cardiometabolic risk factors. Environ. Int. 2019, 124, 58–65. [Google Scholar] [CrossRef]
- Huang, M.; Jiao, J.; Zhuang, P.; Chen, X.; Wang, J.; Zhang, Y. Serum polyfluoroalkyl chemicals are associated with risk of cardiovascular diseases in national US population. Environ. Int. 2018, 119, 37–46. [Google Scholar] [CrossRef]
- Conley, J.M.; Lambright, C.S.; Evans, N.; McCord, J.; Strynar, M.J.; Hill, D. Hexafluoropropylene oxide-dimer acid (HFPO-DA or GenX) alters maternal and fetal glucose and lipid metabolism and produces neonatal mortality, low birthweight, and hepatomegaly in the Sprague-Dawley rat. Environ. Int. 2021, 146, 106204. [Google Scholar] [CrossRef]
- Moro, G.; Liberi, S.; Vascon, F.; Linciano, S.; De Felice, S.; Fasolato, S. Investigation of the interaction between human serum albumin and branched short-chain perfluoroalkyl compounds. Chem. Res. Toxicol. 2022, 35, 2049–2058. [Google Scholar] [CrossRef]
- Solan, M.E.; Koperski, C.P.; Senthilkumar, S.; Lavado, R. Short-chain per- and polyfluoralkyl substances (PFAS) effects on oxidative stress biomarkers in human liver, kidney, muscle, and microglia cell lines. Environ. Res. 2023, 223, 115424. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Mirji, N.; Irudayaraj, J. Epigenetic toxicity of PFOA and GenX in HepG2 cells and their role in lipid metabolism. Toxicol. In Vitro 2020, 65, 104797. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.D.; Li, J.X.; Lu, N.; Tian, R. Serum albumin mitigated perfluorooctane sulfonate-induced cytotoxicity by affecting the cellular responses. Biophys. Chem. 2023, 302, 107110. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.D.; Tian, R.; Lu, N. Binding of serum albumin to perfluorooctanoic acid reduced cytotoxicity. Sci. Total Environ. 2023, 876, 162738. [Google Scholar] [CrossRef]
- Alesio, J.L.; Slitt, A.; Bothun, G.D. Critical new insights into the binding of poly- and perfluoroalkyl substances (PFAS) to albumin protein. Chemosphere 2022, 287 Pt 1, 131979. [Google Scholar] [CrossRef]
- Bangma, J.; Szilagyi, J.; Blake, B.E.; Plazas, C.; Kepper, S.; Fenton, S.E. An assessment of serum-dependent impacts on intracellular accumulation and genomic response of per- and polyfluoroalkyl substances in a placental trophoblast model. Environ. Toxicol. 2020, 35, 1395–1405. [Google Scholar] [CrossRef]
- Beesoon, S.; Martin, J.W. Isomer-specific binding affinity of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) to serum proteins. Environ. Sci. Technol. 2015, 49, 5722–5731. [Google Scholar] [CrossRef]
- Forsthuber, M.; Kaiser, A.M.; Granitzer, S.; Hassl, I.; Hengstschläger, M.; Stangl, H.; Gundacker, C. Albumin is the major carrier protein for PFOS, PFOA, PFHxS, PFNA and PFDA in human plasma. Environ. Int. 2020, 137, 105324. [Google Scholar] [CrossRef]
- Chi, Q.; Li, Z.; Huang, J.; Ma, J.; Wang, X. Interactions of perfluorooctanoic acid and perfluorooctanesulfonic acid with serum albumins by native mass spectrometry, fluorescence and molecular docking. Chemosphere 2018, 198, 442–449. [Google Scholar] [CrossRef]
- Crisalli, A.M.; Cai, A.; Cho, B.P. Probing the Interactions of Perfluorocarboxylic Acids of Various Chain Lengths with Human Serum Albumin: Calorimetric and Spectroscopic Investigations. Chem. Res. Toxicol. 2023, 36, 703–713. [Google Scholar] [CrossRef]
- Jackson, T.W.; Scheibly, C.M.; Polera, M.E.; Belcher, S.M. Rapid characterization of human serum albumin binding for per- and polyfluoroalkyl substances using differential scanning fluorimetry. Environ. Sci. Technol. 2021, 55, 12291–12301. [Google Scholar] [CrossRef] [PubMed]
- Qin, P.; Liu, R.; Pan, X.; Fang, X.; Mou, Y. Impact of carbon chain length on binding of perfluoroalkyl acids to bovine serum albumin determined by spectroscopic methods. J. Agric. Food Chem. 2010, 58, 5561–5567. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Zhang, H.; Chen, B.; Luan, T. Fetal bovine serum attenuating perfluorooctanoic acid-inducing toxicity to multiple human cell lines via albumin binding. J. Hazard. Mater. 2020, 389, 122109. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.-Y.; Yang, Y.-D.; Tian, R.; Lu, N. Critical new insights into the interactions of hexafluoropropylene oxide-dimer acid (GenX or HFPO-DA) with albumin at molecular and cellular levels. J. Environ. Sci. 2025, 149, 88–98. [Google Scholar] [CrossRef]
- Rafiee, A.; Faridi, S.; Sly, P.D.; Stone, L.; Kennedy, L.P.; Mahabee-Gittens, E.M. Asthma and decreased lung function in children exposed to perfluoroalkyl and polyfluoroalkyl substances (PFAS): An updated meta-analysis unveiling research gaps. Environ. Res. 2024, 262, 119827. [Google Scholar] [CrossRef]
- Starnes, H.M.; Rock, K.D.; Jackson, T.W.; Belcher, S.M. A critical review and meta- analysis of impacts of per- and polyfluorinated substances on the brain and behavior. Front. Toxicol 2022, 4, 881584. [Google Scholar] [CrossRef]
- Haug, L.S.; Huber, S.; Becher, G.; Thomsen, C. Characterisation of human exposure pathways to perfluorinated compounds—Comparing exposure estimates with biomarkers of exposure. Environ. Int. 2011, 37, 687–693. [Google Scholar] [CrossRef]
- Daly, E.R.; Chan, B.P.; Talbot, E.A.; Nassif, J.; Bean, C.; Cavallo, S.J.; Metcalf, E.; Simone, K.; Woolf, A.D. Per- and polyfluoroalkyl substance (PFAS) exposure assessment in a community exposed to contaminated drinking water, New Hampshire, 2015. Int. J. Hyg. Environ. Health 2018, 221, 569–577. [Google Scholar] [CrossRef]
- Graber, J.M.; Alexander, C.; Laumbach, R.J.; Black, K.; Strickland, P.O.; Georgopoulos, P.G.; Marshall, E.G.; Shendell, D.G.; Alderson, D.; Mi, Z.; et al. Per and polyfluoroalkyl substances (PFAS) blood levels after contamination of a community water supply and comparison with 2013–2014 NHANES. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 172–182. [Google Scholar] [CrossRef]
- Rocabois, A.; Sanchez, M.; Philippat, C.; Crépet, A.; Wies, B.; Vrijheid, M.; Nieuwenhuijsen, M.; Slama, R. Chemical exposome and children health: Identification of dose-response relationships from meta-analyses and epidemiological studies. Environ. Res. 2024, 262, 119811. [Google Scholar] [CrossRef]
- Schillemans, T.; Donat-Vargas, C.; Akesson, A. Per- and polyfluoroalkyl sub¬stances and cardiometabolic diseases: A review. Basic Clin. Pharmacol. Toxicol. 2024, 134, 141–152. [Google Scholar] [CrossRef] [PubMed]
- Ford, L.C.; Lin, H.-C.; Zhou, Y.-H.; Wright, F.A.; Gombar, V.K.; Sedykh, A.; Shah, R.R.; Chiu, W.A.; Rusyn, I. Characterizing PFAS hazards and risks: A human population-based in vitro cardiotoxicity assessment strategy. Hum. Genom. 2024, 18, 92. [Google Scholar] [CrossRef] [PubMed]
- Cornelis, C.; D’Hollander, W.; Roosens, L.; Covaci, A.; Smolders, R.; Van Den Heuvel, R.; Govarts, E.; Van Campenhout, K.; Reynders, H.; Bervoets, L. First assessment of population exposure to perfluorinated compounds in Flanders, Belgium. Chemosphere 2012, 86, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Stubleski, J.; Salihovic, S.; Lind, L.; Lind, P.M.; van Bavel, B.; Kärrman, A. Changes in serum levels of perfluoroalkyl substances during a 10-year follow-up period in a large population-based cohort. Environ. Int. 2016, 95, 86–92. [Google Scholar] [CrossRef]
- Sifakis, S.; Androutsopoulos, V.P.; Tsatsakis, A.M.; Spandidos, D.A. Human exposure to endocrine disrupting chemicals: Effects on the male and female reproductive systems. Environ. Toxicol. Pharmacol. 2017, 51, 56–70. [Google Scholar] [CrossRef]
- Smarr, M.M.; Kannan, K.; Buck Louis, G.M. Endocrine disrupting chemicals and endometriosis. Fertil. Steril. 2016, 106, 959–966. [Google Scholar] [CrossRef]
- Cousins, F.L.; McKinnon, B.D.; Mortlock, S.; Fitzgerald, H.C.; Zhang, C.; Montgomery, G.W.; Gargett, C.E. New concepts on the etiology of endometriosis. J. Obstet. Gynaecol. Res. 2023, 49, 1090–1105. [Google Scholar] [CrossRef]
- de Haro-Romero, T.; Peinado, F.M.; Vela-Soria, F.; Lara-Ramos, A.; Fernández-Parra, J.; Molina-Lopez, A.; Ubiña, A.; Ocón, O.; Artacho-Cordón, F.; Freire, C. Association between exposure to perfluoroalkyl substances (PFAS) and endometriosis in the ENDEA case-control study. Sci. Total Environ. 2024, 951, 175593. [Google Scholar] [CrossRef]
- Giesy, J.P.; Kannan, K.; Jones, P.D.; Hilscherova, K. Perfluorinated chemicals in the environment: A review. Rev. Environ. Contam. Toxicol. 2004, 179, 1–110. [Google Scholar] [CrossRef]
- Hammarstrand, S.; Jakobsson, K.; Andersson, E.; Xu, Y.; Li, Y.; Olovsson, M.; Andersson, E.M. Perfluoroalkyl substances (PFAS) in drinking water and risk for polycystic ovarian syndrome, uterine leiomyoma, and endometriosis: A Swedish cohort study. Environ. Int. 2021, 157, 106819. [Google Scholar] [CrossRef]
- Li, Y.; Fletcher, T.; Mucs, D.; Scott, K.; Lindh, C.H.; Tallving, P.; Jakobsson, K. Half-lives of PFOS, PFHxS and PFOA after end of exposure to contaminated drinking water. Occup. Environ. Med. 2018, 75, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Rickard, B.P.; Rizvi, I.; Fenton, S.E. Per- and poly-fluoroalkyl substances (PFAS) and female reproductive outcomes: PFAS elimination, endocrine-mediated effects, and disease. Toxicology 2022, 465, 153031. [Google Scholar] [CrossRef] [PubMed]
- Bjerve, K.; Småstuen, L.; Thomsen, C.; Sabaredzovic, A.; Becher, G.; Brunborg, G. Placental transfer of perfluorinated compounds is selective—A Norwegian Mother and Child sub-cohort study. Int. J. Hyg. Environ. Health 2012, 215, 216–219. [Google Scholar] [CrossRef]
- Domínguez-Liste, A.; de Haro-Romero, T.; Quesada-Jim’enez, R.; P’erez-Cantero, A.; Peinado, F.M.; Ballesteros, Ó.; Vela-Soria, F. Multiclass determination of endocrine-disrupting chemicals in meconium: First evidence of Perfluoroalkyl substances in this biological compartment. Toxics 2024, 12, 75. [Google Scholar] [CrossRef]
- Kim, Y.R.; White, N.; Bräunig, J.; Vijayasarathy, S.; Mueller, J.F.; Knox, C.L.; Harden, F.A.; Pacella, R.; Toms, L.M.L. Per- and poly-fluoroalkyl substances (PFASs) in follicular fluid from women experiencing infertility in Australia. Environ. Res. 2020, 190, 109963. [Google Scholar] [CrossRef]
- Vela-Soria, F.; Serrano-L’opez, L.; García-Villanova, J.; de Haro, T.; Olea, N.; Freire, C. HPLC-MS/MS method for the determination of perfluoroalkyl substances in breast milk by combining salt-assisted and dispersive liquid-liquid microextraction. Anal. Bioanal. Chem. 2020, 412, 7913–7923. [Google Scholar] [CrossRef]
- Zheng, P.; Liu, Y.; An, Q.; Yang, X.; Yin, S.; Ma, L.Q.; Liu, W. Prenatal and postnatal exposure to emerging and legacy per-/poly fluoroalkyl substances: Levels and transfer in maternal serum, cord serum, and breast milk. Sci. Total Environ. 2022, 812, 152446. [Google Scholar] [CrossRef]
- Fabelova, L.; Beneito, A.; Casas, M.; Colles, A.; Dalsager, L.; Den Hond, E.; Dereumeaux, C.; Ferguson, K.; Gilles, L.; Govarts, E.; et al. PFAS levels and exposure determinants in sensitive population groups. Chemosphere 2023, 313, 1–29. [Google Scholar] [CrossRef]
- Freire, C.; Vela-Soria, F.; Castiello, F.; Salamanca-Fernández, E.; Quesada-Jiménez, R.; López-Alados, M.C.; Fernandez, M.F.; Olea, N. Exposure to perfluoroalkyl substances (PFAS) and association with thyroid hormones in adolescent males. Int. J. Hyg. Environ. Health 2023, 252, 114219. [Google Scholar] [CrossRef]
- McAdam, J.; Bell, E.M. Determinants of maternal and neonatal PFAS concentrations: A review. Environ. Health 2023, 22, 41. [Google Scholar] [CrossRef]
- Richterova, D.; Govartsb, E.; Fabelova, L.; Rausova, K.; Martin, L.R.; Gilles, L.; Remy, S.; Colles, A.; Rambaudc, L.; Riouc, M.; et al. PFAS levels and determinants of variability in exposure in European teenagers—Results from the HBM4EU aligned studies (2014–2021). Int. J. Hyg. Environ. Health 2023, 247, 114057. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Mustieles, V.; Wang, Y.; Sun, Y.; Agudelo, J.; Bibi, Z.; Torres, N.; Oulhote, Y.; Slitt, A.; Messerlian, C. Folate concentrations and serum perfluoroalkyl and polyfluoroalkyl substance concentrations in adolescents and adults in the USA (National Health and Nutrition Examination Study 2003–2016): An observational study. Lancet Planet. Health 2023, 7, e449–e458. [Google Scholar] [CrossRef]
- Wu, Y.; Qiu, Y.; Wu, Y.; Li, H.; Yang, H.; Deng, Q.; He, B.; Yan, F.; Li, Y.; Chen, F. Association of per- and polyfluoroalkyl substances (PFAS) with periodontitis: The mediating role of sex hormones. BMC Oral Health 2024, 24, 243. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Wang, X.; Ou, T.; Huang, L.; He, B. Association between family economic situation and serum PFAS concentration in American adults with hypertension and hyperlipemia. Sci. Rep. 2024, 14, 20799. [Google Scholar] [CrossRef] [PubMed]
- Koulini, G.V.; Nambi, I.M. Occurrence of forever chemicals in Chennai waters, India. Environ. Sci. Eur. 2024, 36, 60. [Google Scholar] [CrossRef]
- Belmaker, I.; Anca, E.D.; Rubin, L.P.; Magen-Molho, H.; Miodovnik, A.; van der Hal, N. Adverse health effects of exposure to plastic, microplastics and their additives: Environmental, legal and policy implications for Israel. Isr. J. Health Policy Res. 2024, 13, 44. [Google Scholar] [CrossRef]
- Biggeri, A.; Stoppa, G.; Facciolo, L.; Fin, G.; Mancini, S.; Manno, V.; Minelli, G.; Zamagni, F.; Zamboni, M.; Catelan, D.; et al. All-cause, cardiovascular disease and cancer mortality in the population of a large Italian area contaminated by perfluoroalkyl and polyfluoroalkyl substances (1980–2018). Environ. Health 2024, 23, 42. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (EFSA CONTAM Panel); Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; del Mazo, J.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L.; Leblanc, J.C.; et al. Risk to human health related to the presence of perfluoroalkyl substances in food. EFSA J. 2020, 18, e06223. [Google Scholar] [CrossRef]
- Iulini, M.; Russo, G.; Crispino, E.; Paini, A.; Fragki, S.; Corsini, E.; Pappalardo, F. Advancing PFAS risk assessment: Integrative approaches using agent-based modeling and physiologically based kinetic for environmental and health safety. Comput. Struct. Biotechnol. J. 2024, 23, 2763–2778. [Google Scholar] [CrossRef]
- Pappalardo, F.; Russo, G.; Corsini, E.; Paini, A.; Worth, A. Translatability and transferability of in silico models: Context of use switching to predict the effects of environmental chemicals on the immune system. Comput. Struct. Biotechnol. J. 2022, 20, 1764–1777. [Google Scholar] [CrossRef]
- Ehrlich, V.; Bil, W.; Vandebriel, R.; Granum, B.; Luijten, M.; Lindeman, B.; Grandjean, P.; Kaiser, A.M.; Hauzenberger, I.; Hartmann, C.; et al. Consideration of pathways for immunotoxicity of per-and polyfluoroalkyl substances (PFAS). Environ. Health 2023, 22, 19. [Google Scholar] [CrossRef]
- Perera, D.C.; Meegoda, J.N. PFAS: The Journey from Wonder. Chemicals to Environmental Nightmares and the Search for Solutions. Appl. Sci. 2024, 14, 8611. [Google Scholar] [CrossRef]
- Zhang, Y.; Beesoon, S.; Zhu, L.; Martin, J.W. Biomonitoring of perfluoroalkyl acids in human urine and estimates of biological half-life. Environ. Sci. Technol. 2013, 47, 10619–10627. [Google Scholar] [CrossRef]
- Langenbach, B.; Wilson, M. Per- and polyfluoroalkyl substances (PFAS): Significance and considerations within the regulatory framework of the USA. Int. J. Environ. Res. Public Health 2021, 18, 11142. [Google Scholar] [CrossRef]
- Safta, D. Per- and Polyfluorinated Substances (PFAS); a Literature Review. Undergrad. J. Public Health 2024, 8, 6064. [Google Scholar] [CrossRef]
- ATSDR. Community Health Assessments, 18 October|Agency for Toxic Substances and Disease Registry. 2016. Available online: https://www.atsdr.cdc.gov/hac/index.html (accessed on 27 September 2024).
- CDC. PFAS Information for Clinicians. 2024. Available online: https://www.atsdr.cdc.gov/pfas/hcp/clinical-overview/human-exposure.html (accessed on 27 September 2024).
- EPA. Key EPA Actions to Address PFAS 1 September. U.S. Environmental Protection Agency; 2024. Available online: https://www.epa.gov/pfas/key-epa-actions-address-pfas (accessed on 27 September 2024).
- EPA. Fact Sheet Treatment Options from Drinking Water. U.S. Environmental Protection Agency; 1 April 2024. Available online: https://www.epa.gov/system/files/documents/2024-04/pfas-npdwr_fact-sheet_treatment_4.8.24.pdf (accessed on 27 September 2024).
- ATSDR, Agency for Toxic Substances and Disease Registry. PFAS in the U.S. Population. 18 January 2024. Available online: https://www.atsdr.cdc.gov/pfas/data-research/facts-stats/index.html (accessed on 17 October 2024).
- Starling, M.C.V.; Rodrigues, D.A.; Miranda, G.A.; Jo, S.; Amorim, C.C.; Ankley, G.T.; Simcik, M. Occurrence and potential ecological risks of PFAS in Pampulha Lake, Brazil, a UNESCO world heritage site. Sci. Total Environ. 2024, 948, 174586. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, X.; Liu, J.; Lyu, B.; Li, J.; Zhao, Y.; Wu, Y. Exposure to Emerging and Legacy Polyfluoroalkyl Substances in the Sixth Total Diet Study—China, 2016–2019. China CDC Wkly. 2022, 4, 168–171. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bao, J.; Yu, W.J.; Liu, Y.; Wang, X.; Jin, Y.H.; Dong, G.H. Perfluoroalkyl substances in groundwater and home-produced vegetables and eggs around a fluorochemical industrial park in China. Ecotoxicol. Environ. Saf. 2019, 171, 199–205. [Google Scholar] [CrossRef]
- Scher, D.P.; Kelly, J.E.; Huset, C.A.; Barry, K.M.; Hoffbeck, R.W.; Yingling, V.L.; Messing, R.B. Occurrence of perfluoroalkyl substances (PFAS) in garden produce at homes with a history of PFAS-contaminated drinking water. Chemosphere 2018, 196, 548–555. [Google Scholar] [CrossRef]
- Bao, J.; Li, C.-L.; Liu, Y.; Wang, X.; Yu, W.-J.; Liu, Z.-Q.; Shao, L.-X.; Jin, Y.-H. Bioaccumulation of perfluoroalkyl substances in greenhouse vegetables with long-term groundwater irrigation near fluorochemical plants in Fuxin, China. Environ. Res. 2020, 188, 109751. [Google Scholar] [CrossRef]
- Bao, J.; Liu, W.; Liu, L.; Jin, Y.; Dai, J.; Ran, X.; Zhang, Z.; Tsuda, S. Perfluorinated compounds in the environment and the blood of residents living near fluorochemical plants in Fuxin, China. Environ. Sci. Technol. 2011, 45, 8075–8080. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Liu, Z.; Song, X.; Ding, X.; Ding, D. Legacy and emerging per-and polyfluoroalkyl substances (PFASs) in multi-media around a landfill in China: Implications for the usage of PFASs alternatives. Sci. Total Environ. 2021, 751, 141767. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wang, T.; Jiang, Z.; Kong, X.; Li, Q.; Sun, Y.; Wang, P.; Liu, Z. Ecological effect and risk towards aquatic plants induced by perfluoroalkyl substances: Bridging natural to culturing flora. Chemosphere 2017, 167, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.-Y.; Lu, G.-H.; Yuan, X.; Zheng, Y.; Shao, P.-W.; Cai, J.-Y.; Zhao, Y.-R.; Zhu, X.-H.; Yang, Y.-L. Perfluoroalkyl substances in water from the Yangtze River and its tributaries at the dividing point between the middle and lower reaches. Bull. Environ. Contam. Toxicol. 2018, 101, 598–603. [Google Scholar] [CrossRef]
- Yan, H.; Zhang, C.; Zhou, Q.; Yang, S. Occurrence of perfluorinated alkyl substances in sediment from estuarine and coastal areas of the East China Sea. Environ. Sci. Pollut. Res. 2015, 22, 1662–1669. [Google Scholar] [CrossRef]
- Yao, Y.; Zhu, H.; Li, B.; Hu, H.; Zhang, T.; Yamazaki, E.; Taniyasu, S.; Yamashita, N.; Sun, H. Distribution and primary source analysis of per-and poly-fluoroalkyl substances with different chain lengths in surface and groundwater in two cities, North China. Ecotoxicol. Environ. Saf. 2014, 108, 318–328. [Google Scholar] [CrossRef]
- Kwok, K.Y.; Wang, X.H.; Ya, M.; Li, Y.; Zhang, X.H.; Yamashita, N.; Lam, J.C.; Lam, P.K. Occurrence and distribution of conventional and new classes of per-and polyfluoroalkyl substances (PFASs) in the South China Sea. J. Hazard. Mater. 2015, 285, 389–397. [Google Scholar] [CrossRef]
- Chen, H.; Wang, X.; Zhang, C.; Sun, R.; Han, J.; Han, G.; Yang, W.; He, X. Occurrence and inputs of perfluoroalkyl substances (PFASs) from rivers and drain outlets to the Bohai Sea, China. Environ. Pollut. 2017, 221, 234–243. [Google Scholar] [CrossRef]
- Dai, Z.; Zeng, F. Distribution and bioaccumulation of perfluoroalkyl acids in Xiamen coastal waters. J. Chem. 2019, 2019, 2612853. [Google Scholar] [CrossRef]
- Lee, Y.-M.; Lee, J.-Y.; Kim, M.-K.; Yang, H.; Lee, J.-E.; Son, Y.; Kho, Y.; Choi, K.; Zoh, K.-D. Concentration and distribution of per-and polyfluoroalkyl substances (PFAS) in the Asan Lake area of South Korea. J. Hazard. Mater. 2020, 381, 120909. [Google Scholar] [CrossRef]
- Cui, W.J.; Peng, J.X.; Tan, Z.J.; Zhai, Y.X.; Guo, M.M.; Li, Z.X.; Mou, H.J. Pollution Characteristics of Perfluorinated Alkyl Substances (PFASs) in Seawater, Sediments, and Biological Samples from Jiaozhou Bay, China. Huan Jing Ke Xue 2019, 40, 3990–3999. [Google Scholar] [PubMed]
- Shi, Y.; Pan, Y.; Wang, J.; Cai, Y. Distribution of perfluorinated compounds in water, sediment, biota and floating plants in Baiyangdian Lake, China. J. Environ. Monit. 2012, 14, 636–642. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Zheng, G.; Peng, J.; Meng, D.; Wu, H.; Tan, Z.; Li, F.; Zhai, Y. Distribution of perfluorinated alkyl substances in marine shellfish along the Chinese Bohai Sea coast. J. Environ. Sci. Health 2019, 54 Pt B, 271–280. [Google Scholar] [CrossRef]
- Li, P.; Oyang, X.; Zhao, Y.; Tu, T.; Tian, X.; Li, L.; Zhao, Y.; Li, J.; Xiao, Z. Occurrence of perfluorinated compounds in agricultural environment, vegetables, and fruits in regions influenced by a fluorine-chemical industrial park in China. Chemosphere 2019, 225, 659–667. [Google Scholar] [CrossRef] [PubMed]
- Jin, Q.; Zhang, Y.; Gu, Y.; Shi, Y.; Cai, Y. Bioaccumulation of legacy and emerging per-and polyfluoroalkyl substances in hydroponic lettuce and risk assessment for human exposure. J. Environ. Sci. 2024, 154, 378–389. [Google Scholar] [CrossRef]
- Qian, S.; Lu, H.; Xiong, T.; Zhi, Y.; Munoz, G.; Zhang, C.; Li, Z.; Liu, C.; Li, W.; Wang, X.; et al. Bioaccumulation of per-and polyfluoroalkyl substances (PFAS) in ferns: Effect of PFAS molecular structure and plant root characteristics. Environ. Sci. Technol. 2023, 57, 4443–4453. [Google Scholar] [CrossRef]
- Liu, Z.; Lu, Y.; Shi, Y.; Wang, P.; Jones, K.; Sweetman, A.J.; Johnson, A.C.; Zhang, M.; Zhou, Y.; Lu, X.; et al. Crop bioaccumulation and human exposure of perfluoroalkyl acids through multi-media transport from a mega fluorochemical industrial park, China. Environ. Int. 2017, 106, 37–47. [Google Scholar] [CrossRef]
- Liu, Z.; Lu, Y.; Song, X.; Jones, K.; Sweetman, A.J.; Johnson, A.C.; Zhang, M.; Lu, X.; Su, C. Multiple crop bioaccumulation and human exposure of perfluoroalkyl substances around a mega fluorochemical industrial park, China: Implication for planting optimization and food safety. Environ. Int. 2019, 127, 671–684. [Google Scholar] [CrossRef]
- Zafeiraki, E.; Costopoulou, D.; Vassiliadou, I.; Leondiadis, L.; Dassenakis, E.; Hoogenboom, R.L.; van Leeuwen, S.P. Perfluoroalkylated substances (PFASs) in home and commercially produced chicken eggs from the Netherlands and Greece. Chemosphere 2016, 144, 2106–2112. [Google Scholar] [CrossRef]
- Zafeiraki, E.; Gebbink, W.A.; Hoogenboom, R.L.; Kotterman, M.; Kwadijk, C.; Dassenakis, E.; van Leeuwen, S.P. Occurrence of perfluoroalkyl substances (PFASs) in a large number of wild and farmed aquatic animals collected in the Netherlands. Chemosphere 2019, 232, 415–423. [Google Scholar] [CrossRef]
- Kwadijk, C.J.A.F.; Korytar, P.; Koelmans, A.A. Distribution of perfluorinated compounds in aquatic systems in the Netherlands. Environ. Sci. Technol. 2010, 44, 3746–3751. [Google Scholar] [CrossRef] [PubMed]
- Hölzer, J.; Göen, T.; Just, P.; Reupert, R.; Rauchfuss, K.; Kraft, M.; Müller, J.; Wilhelm, M. Perfluorinated compounds in fish and blood of anglers at Lake Mohne, Sauerland area, Germany. Environ. Sci. Technol. 2011, 45, 8046–8052. [Google Scholar] [CrossRef] [PubMed]
- Couderc, M.; Poirier, L.; Zalouk-Vergnoux, A.; Kamari, A.; Blanchet-Letrouvé, I.; Marchand, P.; Vénisseau, A.; Veyrand, B.; Mouneyrac, C.; Le Bizec, B. Occurrence of POPs and other persistent organic contaminants in the European eel (Anguilla anguilla) from the Loire estuary, France. Sci. Total Environ. 2015, 505, 199–215. [Google Scholar] [CrossRef] [PubMed]
- Giari, L.; Guerranti, C.; Perra, G.; Lanzoni, M.; Fano, E.A.; Castaldelli, G. Occurrence of perfluorooctanesulfonate and perfluorooctanoic acid and histopathology in eels from north Italian waters. Chemosphere 2015, 118, 117–123. [Google Scholar] [CrossRef]
- Pignotti, E.; Casas, G.; Llorca, M.; Tellbüscher, A.; Almeida, D.; Dinelli, E.; Farré, M.; Barceló, D. Seasonal variations in the occurrence of perfluoroalkyl substances in water, sediment and fish samples from Ebro Delta (Catalonia, Spain). Sci. Total Environ. 2017, 607, 933–943. [Google Scholar] [CrossRef]
- Zabaleta, I.; Bizkarguenaga, E.; Prieto, A.; Ortiz-Zarragoitia, M.; Fernández, L.A.; Zuloaga, O. Simultaneous determination of perfluorinated compounds and their potential precursors in mussel tissue and fish muscle tissue and liver samples by liquid chromatography–electrospray-tandem mass spectrometry. J. Chromatogr. A 2015, 1387, 13–23. [Google Scholar] [CrossRef]
- Munschy, C.; Olivier, N.; Veyrand, B.; Marchand, P. Occurrence of legacy and emerging halogenated organic contaminants in marine shellfish along French coasts. Chemosphere 2015, 118, 329–335. [Google Scholar] [CrossRef]
- Vassiliadou, I.; Costopoulou, D.; Kalogeropoulos, N.; Karavoltsos, S.; Sakellari, A.; Zafeiraki, E.; Dassenakis, M.; Leondiadis, L. Levels of perfluorinated compounds in raw and cooked Mediterranean finfish and shellfish. Chemosphere 2015, 127, 117–126. [Google Scholar] [CrossRef]
- Bossi, R.; Strand, J.; Sortkjær, O.; Larsen, M.M. Perfluoroalkyl compounds in Danish wastewater treatment plants and aquatic environments. Environ. Int. 2008, 34, 443–450. [Google Scholar] [CrossRef]
- Nania, V.; Pellegrini, G.E.; Fabrizi, L.; Sesta, G.; De Sanctis, P.; Lucchetti, D.; Di Pasquale, M.; Coni, E. Monitoring of perfluorinated compounds in edible fish from the Mediterranean Sea. Food Chem. 2009, 115, 951–957. [Google Scholar] [CrossRef]
- Schmidt, N.; Fauvelle, V.; Castro-Jiménez, J.; Lajaunie-Salla, K.; Pinazo, C.; Yohia, C.; Sempere, R. Occurrence of perfluoroalkyl substances in the Bay of Marseille (NW Mediterranean Sea) and the Rhône River. Mar. Pollut. Bull. 2019, 149, 110491. [Google Scholar] [CrossRef] [PubMed]
- Squadrone, S.; Ciccotelli, V.; Prearo, M.; Favaro, L.; Scanzio, T.; Foglini, C.; Abete, M.C. Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA): Emerging contaminants of increasing concern in fish from Lake Varese, Italy. Environ. Monit. Assess. 2015, 187, 438. [Google Scholar] [CrossRef] [PubMed]
- Houtz, E.F.; Higgins, C.P.; Field, J.A.; Sedlak, D.L. Persistence of perfluoroalkyl acid precursors in AFFF-impacted groundwater and soil. Environ. Sci. Technol. 2013, 47, 8187–8195. [Google Scholar] [CrossRef] [PubMed]
- Bräunig, J.; Baduel, C.; Heffernan, A.; Rotander, A.; Donaldson, E.; Mueller, J.F. Fate and redistribution of perfluoroalkyl acids through AFFF-impacted groundwater. Sci. Total Environ. 2017, 596, 360–368. [Google Scholar] [CrossRef]
- Allinson, M.; Yamashita, N.; Taniyasu, S.; Yamazaki, E.; Allinson, G. Occurrence of perfluoroalkyl substances in selected Victorian rivers and estuaries: An historical snapshot. Heliyon 2019, 5, e02472. [Google Scholar] [CrossRef]
- Schrenk, D.; Cartus, A. Chemical Contaminants and Residues in Food, 2nd ed.; A volume in Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Cambridge, UK, 2017. [Google Scholar]
- Valsecchi, S.; Babut, M.; Mazzoni, M.; Pascariello, S.; Ferrario, C.; De Felice, B.; Bettinetti, R.; Veyrand, B.; Marchand, P.; Polesello, S. Per-and polyfluoroalkyl substances (PFAS) in fish from European lakes: Current contamination status, sources, and perspectives for monitoring. Environ. Toxicol. Chem. 2021, 40, 658–676. [Google Scholar] [CrossRef]
- Arioli, F.; Ceriani, F.; Nobile, M.; Vigano’, R.; Besozzi, M.; Panseri, S.; Chiesa, L.M. Presence of organic halogenated compounds, organophosphorus insecticides and polycyclic aromatic hydrocarbons in meat of different game animal species from an Italian subalpine area. Food Addit. Contam. Part A 2019, 36, 1244–1252. [Google Scholar] [CrossRef]
- Barola, C.; Moretti, S.; Giusepponi, D.; Paoletti, F.; Saluti, G.; Cruciani, G.; Brambilla, G.; Galarini, R. A liquid chromatography-high resolution mass spectrometry method for the determination of thirty-three per-and polyfluoroalkyl substances in animal liver. J. Chromatogr. A 2020, 1628, 461442. [Google Scholar] [CrossRef]
- Fair, P.A.; Wolf, B.; White, N.D.; Arnott, S.A.; Kannan, K.; Karthikraj, R.; Vena, J.E. Perfluoroalkyl substances (PFASs) in edible fish species from Charleston Harbor and tributaries, South Carolina, United States: Exposure and risk assessment. Environ. Res. 2019, 171, 266–277. [Google Scholar] [CrossRef]
- Spaan, K.M.; van Noordenburg, C.; Plassmann, M.M.; Schultes, L.; Shaw, S.; Berger, M.L.; Heide-Jørgensen, M.P.; Rosing-Asvid, A.; Granquist, S.M.; Dietz, R.; et al. Fluorine mass balance and suspect screening in marine mammals from the northern hemisphere. Environ. Sci. Technol. 2020, 54, 4046–4058. [Google Scholar] [CrossRef]
- Gao, Y.; Li, X.; Li, X.; Zhang, Q.; Li, H. Simultaneous determination of 21 trace perfluoroalkyl substances in fish by isotope dilution ultrahigh performance liquid chromatography tandem mass spectrometry. J. Chromatogr. B 2018, 1084, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Schultes, L.; Sandblom, O.; Broeg, K.; Bignert, A.; Benskin, J.P. Temporal trends (1981–2013) of per-and polyfluoroalkyl substances and total fluorine in Baltic cod (Gadus morhua). Environ. Toxicol. Chem. 2020, 39, 300–309. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Dai, K.; Li, A.; Chen, H. Occurrence and assessment of perfluorinated compounds in fish from the Danjiangkou reservoir and Hanjiang river in China. Food Chem. 2015, 174, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Lian, Y.; Sun, X.; Fu, L.; Duan, S.; Shang, C.; Jia, X.; Wu, Y.; Wang, M. Determination of 20 perfluoroalkyl substances in greenhouse vegetables with a modified one-step pretreatment approach coupled with ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS-MS). Chemosphere 2019, 227, 470–479. [Google Scholar] [CrossRef]
- Jianchao, L.; Yinuo, X.; Jinghua, R.; Lei, H.; Chenyang, J.; Guanghua, L.; Jun, H.; Wenliang, J. Occurrence characteristics, source analysis and ecological risk of PFASs in different cultivated soil at an urban scale in Yangtze River Basin. Emerg. Contam. 2025, 11, 100413. [Google Scholar] [CrossRef]
- Dalahmeh, S.; Tirgani, S.; Komakech, A.J.; Niwagaba, C.B.; Ahrens, L. Per-and polyfluoroalkyl substances (PFASs) in water, soil and plants in wetlands and agricultural areas in Kampala, Uganda. Sci. Total Environ. 2018, 631, 660–667. [Google Scholar] [CrossRef]
- Vaccher, V.; Ingenbleek, L.; Adegboye, A.; Hossou, S.E.; Koné, A.Z.; Oyedele, A.D.; Kisito, C.S.K.; Dembélé, Y.K.; Hu, R.; Malak, I.A.; et al. Levels of persistent organic pollutants (POPs) in foods from the first regional Sub-Saharan Africa Total Diet Study. Environ. Int. 2020, 135, 105413. [Google Scholar] [CrossRef]
- Kedikoglou, K.; Costopoulou, D.; Vassiliadou, I.; Leondiadis, L. Preliminary assessment of general population exposure to perfluoroalkyl substances through diet in Greece. Environ. Res. 2019, 177, 108617. [Google Scholar] [CrossRef]
- Sonne, C.; Vorkamp, K.; Galatius, A.; Kyhn, L.; Teilmann, J.; Bossi, R.; Søndergaard, J.; Eulaers, I.; Desforges, J.-P.; Siebert, U.; et al. Human exposure to PFOS and mercury through meat from baltic harbour seals (Phoca vitulina). Environ. Res. 2019, 175, 376–383. [Google Scholar] [CrossRef]
- U.S Environmental Protection Agency (EPA). Per- and Polyfluoroalkyl Substances (PFAS)|Final PFAS National Primary Drinking Water Regulation. 2024. Available online: https://www.epa.gov/sdwa/and-polyfluoroalkyl-substances-pfas (accessed on 17 October 2024).
- Where Do PFAS Come From? Available online: https://www.inogenalliance.com/blog-post/faq-pfas-definition-sources-benefits-and-risks (accessed on 17 October 2024).
- U.S. Food and Drug Administration (FDA). Per- and Polyfluoroalkyl Substances (PFAS). 2024. Available online: https://www.fda.gov/food/environmental-contaminants-food/and-polyfluoroalkyl-substances-pfas (accessed on 17 October 2024).
- CDC. PFAS and Worker Health. 2024. Available online: https://www.cdc.gov/niosh/pfas/about/index.html (accessed on 17 October 2024).
- Folorunsho, O.; Kizhakkethil, J.P.; Bogush, A.; Kourtchev, I. Effect of short-term sample storage and preparatory conditions on losses of 18 per- and polyfluoroalkyl substances (PFAS) to container materials. Chemosphere 2024, 363, 142814. [Google Scholar] [CrossRef]
- Lee, J.C.; Neonaki, M.; Alexopoulos, A.; Varzakas, T. Case Studies of Small-Medium Food Enterprises around the World: Major Constraints and Benefits from the Implementation of Food Safety Management Systems. Foods 2023, 12, 3218. [Google Scholar] [CrossRef] [PubMed]
- Marandi, B. Impacts of Food Contact Chemicals on Human Health. 2021. Available online: https://www.linkedin.com/posts/ben-marandi_impact-of-migration-of-food-contact-components-activity-7231717007576948737-8SIV?utm_source=share&utm_medium=member_desktop (accessed on 15 November 2024).
- Matamoros, V.; Díez, S.; Cañameras, N.; Comas, J.; Bayona, J.M. Occurrence and human health implications of chemical contaminants in vegetables grown in peri-urban agriculture. Environ. Int. 2019, 124, 49–57. [Google Scholar] [CrossRef]
- Minet, L.; Wang, Z.; Shalin, A.; Bruton, T.A.; Blum, A.; Peaslee, G.F.; Schwartz-Narbonne, H.; Whitehead, H.; Wu, Y.; Diamond, M.L. Use and release of per- and polyfluoroalkyl substances (PFASs) in consumer food packaging the in U.S. and Canada. Environ. Sci. Process. Impacts 2022, 24, 2032–2042. [Google Scholar] [CrossRef] [PubMed]
- Phelps, D.; Geueke, B.; Venier, M.; Scheringer, M.; Diamond, M.L. Overview of use, migration, and hazards of PFAS in food contact materials. Environ. Sci. Technol. 2024, 58, 1234–1245. [Google Scholar]
- Onyeaka, H.; Ghosh, S.; Obileke, K.; Miri, T.; Odeyemi, O.A.; Nwaiwu, O.; Tamasiga, P. Preventing chemical contaminants in food: Challenges and prospects for safe and sustainable food production. Food Control. 2024, 155, 110040. [Google Scholar] [CrossRef]
- Ottaway, B.; Jennings, S. Chemical Contaminants of Food; Council for Responsible Nutrition: London, UK, 2021; Available online: https://crnuk.org/wp-content/uploads/2021/11/Contaminants-NEW-FINAL-151121-mm.pdf?form=MG0AV3 (accessed on 7 November 2024).
- Seltenrich, N. PFAS in food packaging: A hot, greasy exposure. Environ. Health Perspect. 2020, 128, 054002-1–054002-6. [Google Scholar] [CrossRef]
- Noons, N. Analyzing PFAS Concentrations Along the Blackstone River Watershed. Ph.D. Dissertation, Worcester Polytechnic Institute, Worcester, MA, USA, 2024. [Google Scholar]
- Food and Drug Administration (FDA). Environmental Contaminants in Food. 2024. Available online: https://www.fda.gov/food/chemical-contaminants-pesticides/environmental-contaminants-food (accessed on 17 October 2024).
- Environmental Health News (EHN). IN-DEPTH: What We Know About PFAS in Our Food. 2022. Available online: https://www.ehn.org/pfas-in-food-2657507160.html (accessed on 17 October 2024).
- European Food Safety Authority (EFSA). Endocrine Active Substances. 2024. Available online: https://www.efsa.europa.eu/en/topics/topic/endocrine-active-substances (accessed on 17 October 2024).
- World Health Organization (WHO). WHO Global Strategy for Food Safety 2022–2030. 2022. Available online: https://www.who.int/publications/b/64838 (accessed on 17 October 2024).
- Food and Drug Administration (FDA). Food Chemical Safety. 2024. Available online: https://www.fda.gov/food/food-ingredients-packaging/food-chemical-safety (accessed on 17 October 2024).
- NIFA, USDA National Institute of Food and Agriculture. Sustainable Agriculture. 2024. Available online: https://www.nifa.usda.gov/topics/sustainable-agriculture (accessed on 17 October 2024).
- Britannica. Sustainable Agriculture. Encyclopedia Britannica. 2024. Available online: https://www.britannica.com/technology/sustainable-agriculture (accessed on 17 October 2024).
- Forbes. How Technology Is Working to Improve Food Safety and Combat Food Insecurity. 2023. Available online: https://www.fsis.usda.gov/science-data/research-priorities (accessed on 17 October 2024).
- Li, X.; Shen, X.; Jiang, W.; Xi, Y.; Li, S. Comprehensive review of emerging contaminants: Detection technologies, environmental impact, and management strategies. Ecotoxicol. Environ. Saf. 2024, 278, 116420. [Google Scholar] [CrossRef]
- FAO. New FAO Report Highlights Possible Benefits and Risks. 2022. Available online: https://www.fao.org/newsroom/detail/fao-report-future-food-foresight/en (accessed on 17 October 2024).
- World Health Organization (WHO). Food Safety. 2024. Available online: https://www.rand.org/content/dam/rand/pubs/research_reports/RR2500/RR2519/RAND_RR2519.pdf (accessed on 17 October 2024).
- Global Harmonization Initiative (GHI). Welcome to GHI! 2025. Available online: https://www.globalharmonization.net/ (accessed on 17 October 2024).
- Food Safety and Inspection Service (FSIS). Food Safety Research Priorities & Studies. 2024. Available online: https://www.usda.gov/sites/default/files/documents/25-2024-FSIS.pdf (accessed on 17 October 2024).
- World Health Organization (WHO). World Food Safety Day. 2024. Available online: https://www.who.int/campaigns/world-food-safety-day (accessed on 17 October 2024).
- Harvard, T.H.; Chan School of Public Health. Protecting Against ‘Forever Chemicals’. 2023. Available online: https://www.hsph.harvard.edu/news/hsph-in-the-news/protecting-against-forever-chemicals/ (accessed on 20 October 2024).
- Food and Agriculture Organization (FAO). Globalization Increases Risk of Multi-Country Food Safety Issues. 2019. Available online: https://www.foodsafetynews.com/2019/07/globalization-increases-risk-of-multi-country-food-safety-issues-fao/ (accessed on 17 October 2024).
- European Food Safety Authority (EFSA). Chemical Contaminants in Food and Feed. 2024. Available online: https://www.efsa.europa.eu/en/topics/topic/chemical-contaminants-food-feed (accessed on 17 October 2024).
- Food and Drug Administration (FDA). Bisphenol, A(BPA): Use in Food Contact Application. 2024. Available online: https://www.fda.gov/food/food-packaging-other-substances-come-contact-food-information-consumers/bisphenol-bpa-use-food-contact-application (accessed on 17 October 2024).
- Ramírez Carnero, A.; Lestido-Cardama, A.; Vazquez Loureiro, P.; Barbosa-Pereira, L.; Rodríguez Bernaldo de Quirós, A.; Sendón, R. Presence of Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) in Food Contact Materials (FCM) and Its Migration to Food. Foods 2021, 10, 1443. [Google Scholar] [CrossRef]
- Brennan, N.M.; Evans, A.T.; Fritz, M.K.; Peak, S.A.; von Holst, H.E. Trends in the regulation of per- and polyfluoroalkyl substances (PFAS): A scoping review. Int. J. Environ. Res. Public Health 2021, 18, 10900. [Google Scholar] [CrossRef]
- U.S Environmental Protection Agency (EPA). PFAS Alternatives PFAS Strategic Roadmap: EPA’s Commitments to Action 2021–2024|US EPA. 2024. Available online: https://www.epa.gov/pfas/pfas-strategic-roadmap-epas-commitments-action-2021-2024 (accessed on 20 February 2025).
- Food Packaging Forum. Alternatives to PFAS Are Available for Many Applications Alternatives to PFAS Are Available for Many Applications|Food Packaging Forum. 2025. Available online: https://foodpackagingforum.org/news/alternatives-to-pfas-are-available-for-many-applications (accessed on 20 February 2025).
- Battelle. Phasing Out “Forever Chemicals Phasing Out “Forever Chemicals”: Finding Alternatives for PFAS. 2024. Available online: https://inside.battelle.org/blog-details/phasing-out-forever-chemicals-finding-alternatives-for-pfas (accessed on 20 February 2025).
- Ackerman Grunfeld, D.; Gilbert, D.; Hou, J.; Jones, A.M.; Lee, M.J.; Kibbey, T.C.; O’Carroll, D.M. Underestimated burden of per- and polyfluoroalkyl substances in global surface waters and groundwaters. Nat. Geosci. 2024, 17, 340–346. [Google Scholar] [CrossRef]
- Australian Government. PFAS in Australia. 2024. Available online: https://www.australia.gov.au/pfas (accessed on 15 November 2024).
- National Chemicals Working Group of the Heads of EPAs Australia and New Zealand. PFAS National Environmental Management Plan. 2020. Available online: https://www.pfas.gov.au/news/national-environmental-management-plan-pfas (accessed on 15 November 2024).
- Toxics Free Australia. Available online: https://www.toxicsfreeaustralia.org.au/tfa-calls-for-urgent-action-on-pfas-contamination-in-australia/ (accessed on 15 November 2024).
- Shah, A.J.; Olotu, O.O. The Impact of PFAS in Australia (Review) (Letter of Authorization on File). 2024. Available online: https://www.linkedin.com/posts/activity-7263501278813536256-DZDW?utm_source=share&utm_medium=member_desktop (accessed on 15 November 2024).
- Kirk, M.; Smurthwaite, K.; Bräunig, J.; Trevenar, S.; D’Este, C.; Lucas, R.; Lal, A.; Korda, R.; Clements, A.; Muellerm, J.; et al. 3,4 The PFAS Health Study: Systematic Literature Review. The Australian National University: Canberra, Australia, 2018. Available online: https://nceph.anu.edu.au/files/PFAS%20Health%20Study%20Systematic%20Review_1.pdf (accessed on 15 November 2024).
- Ayodele, A.; Obeng-Gyasi, E. Exploring the Potential Link between PFAS Exposure and Endometrial Cancer: A Review of Environmental and Sociodemographic Factors. Cancers 2024, 16, 983. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Warwick, N.; Johnson, R.; Jones, P.D. PFOS Concentrations in Platypus Livers. J. Environ. Sci. 2024. [Google Scholar]
- Gregory, J.; PFAS Contamination in New South Wales. Environmental Science & Technology. 2024. Available online: https://www.sciencedirect.com/science/article/pii/S0048969724005103 (accessed on 15 November 2024).
- NHMRC. Australian Drinking Water Guidelines. 2022. Available online: https://www.nhmrc.gov.au/about-us/publications/australian-drinking-water-guidelines (accessed on 15 November 2024).
- Food Standards Australia New Zealand (FSANZ). PFAS in Food. 2022. Available online: https://www.foodstandards.gov.au (accessed on 15 November 2024).
- Thompson, J.; Eaglesham, G.; Mueller, J. Concentrations of PFOS, PFOA and other perfluorinated alkyl acids in Australian drinking water. Chemosphere 2011, 83, 1320–1325. [Google Scholar] [CrossRef] [PubMed]
- Sciancalepore, G.; Pietroluongo, G.; Centelleghe, C.; Milan, M.; Bonato, M.; Corazzola, G.; Mazzariol, S. Evaluation of per- and poly-fluorinated alkyl substances (PFAS) in livers of bottlenose dolphins (Tursiops truncatus) found stranded along the northern Adriatic Sea. Environ. Pollut. 2021, 291, 118186. [Google Scholar] [CrossRef]
- Hayman, N.T.; Rosen, G.; Colvin, M.A.; Conder, J.; Jennifer, A. Aquatic toxicity evaluations of PFOS and PFOA for five standard marine endpoints. Arblaster Chemosphere 2021, 273, 129699. [Google Scholar] [CrossRef]
- Taylor, C.; Kannan, K.; French, S.S. PFAS Levels in Australian Marine Mammals. Mar. Pollut. Bull. 2021. [Google Scholar] [CrossRef]
- Wang, Q.; Ruan, Y.; Jin, L.; Tao, L.S.R.; Lai, H.; Li, G.; Yeung, L.W.Y.; Leung, K.M.Y.; Lam, P.K.S. Legacy and Emerging Per- and Polyfluoroalkyl Substances in a Subtropical Marine Food Web: Suspect Screening, Isomer Profile, and Identification of Analytical Interference. Environ. Sci. Technol. 2023, 57, 8355–8364. [Google Scholar] [CrossRef]
- Mikkonen, H.; Kukkonen, J.V.K.; Leppänen, M.T. Seasonal Trends in PFAS Burden in Livestock. Environ. Sci. Technol. 2023. [Google Scholar] [CrossRef]
- Coggan, T.L.; Neale, P.A.; Müller, J.F. Guidelines for PFAS Disposal in Australia. Environ. Sci. Technol. 2019. Available online: https://theconversation.com/draft-guidelines-for-forever-chemicals-have-been-released-heres-what-it-means-for-drinking-water-safety-in-australia-241773 (accessed on 15 November 2024).
- Hepburn, E.; Madden, A.; Szabo, D.T. PFAS Handling and Disposal Practices. Sci. Total Environ. 2019, 248, 101–113. [Google Scholar] [CrossRef]
- Khair Biek, S.; Khudur, L.S.; Ball, A.S. Challenges and Remediation, Strategies for Per- and Polyfluoroalkyl, Substances (PFAS) Contamination in Composting. Sustainability 2024, 16, 4745. [Google Scholar] [CrossRef]
- EPA South Australia. PFAS Contamination and Management Guidelines. Available online: https://www.epa.sa.gov.au/community/stay-informed/guidance-for-managing-pfas-in-sa (accessed on 15 November 2024).
- Sustainability Matters. Call for Ban on Persistent Organic Pollutants. Available online: https://www.sustainabilitymatters.net.au/content/environment/article/call-for-ban-on-persistent-organic-pollutants-133876 (accessed on 15 November 2024).
- The Ocean Cleanup. Available online: https://theoceancleanup.com/great-pacific-garbage-patch/ (accessed on 15 December 2024).
- Hobman, E.V.; Mankad, A.; Carter, D.J. Public Support for Synthetic Biology Solutions in Australia. J. Environ. Policy 2022, 293, 118508. [Google Scholar] [CrossRef]
- Hassan, S.; Akinwumi, I.; Li, L.Y. Electrokinetic Bioremediation of Polluted Soils. J. Environ. Manag. 2016, 16, 556–566. [Google Scholar] [CrossRef]
- Liu, X.; Zubair, M.; Kong, L.; Shi, Y.; Zhou, H.; Tong, L.; Zhu, R.; Lv, Y.; Li, Z. Shifts in bacterial diversity characteristics during the primary and secondary fermentation stages of bio-compost inoculated with effective microorganisms agent. Bioresour. Technol. 2023, 382, 129163. [Google Scholar] [CrossRef] [PubMed]
- Marchetto, F.; Roverso, M.; Righetti, D.; Bogialli, S.; Filippini, F.; Bergantino, E.; Sforza, E. Bioremediation of Per- and Poly-Fluoroalkyl Substances (PFAS) by Synechocystis sp. PCC 6803: A Chassis for a Synthetic Biology Approach. Life 2021, 11, 1300. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jafarinejad, S. A Mini-Review of Full-Scale Drinking Water Treatment Plants for Per-and Polyfluoroalkyl Substances (PFAS) Removal: Possible Solutions and Future Directions. Sustainability 2025, 17, 451. [Google Scholar] [CrossRef]
- Department of Defence. PFAS Investigation Program. Available online: https://www.defence.gov.au/environment/pfas (accessed on 15 November 2024).
- Maruzzo, A.J.; Hernandez, A.B.; Swartz, C.H.; Liddie, J.M.; Schaider, L.A. Socioeconomic Disparities in Exposures to PFAS and Other Unregulated Industrial Drinking Water Contaminants in US Public Water Systems. Environ. Health Perspect. 2025, 133, 017002. [Google Scholar] [CrossRef]
- Mueller, R.; Salvatore, D.; Brown, P.; Cordner, A. Quantifying disparities in per-and polyfluoroalkyl substances (PFAS) levels in drinking water from overburdened communities in New Jersey, 2019–2021. Environ. Health Perspect. 2024, 132, 047011. [Google Scholar] [CrossRef]
- Contact. Senate Investigation into PFAS Contamination. 2018. Available online: https://www.congress.gov/115/chrg/CHRG-115shrg33955/CHRG-115shrg33955.pdf (accessed on 15 November 2024).
- Ng, C.; Cousins, I.T.; DeWitt, J.C.; Glüge, J.; Goldenman, G.; Herzke, D.; Lohmann, R.; Miller, M.; Patton, S.; Scheringer, M.; et al. Addressing Urgent Questions for PFAS in the 21st Century. Environ. Sci. Tech. 2021, 55, 12755–12765. [Google Scholar] [CrossRef]
- World Bank. Vietnam Overview. 2024. Available online: https://www.worldbank.org/en/country/vietnam/overview (accessed on 12 November 2024).
- United Nations Development Programme. Report 10 Years of Implementing Stockholm Convention on Persistent Organic Pollutants in Viet Nam 2005–2015. 2016. Available online: https://www.undp.org/vietnam/publications/report-10-years-implementing-stockholm-convention-persistent-organic-pollutants-viet-nam-2005-2015 (accessed on 6 November 2024).
- Enviliance Asia. Vietnam enacts Decree on POPs Control under the Environmental Protection Law 2020. 2022. Available online: https://enviliance.com/regions/southeast-asia/vn/report_5390 (accessed on 6 November 2024).
- PanNature. Vietnam’s PFAS Situation Report. 2019. Available online: https://www.nature.org.vn/en/2019/05/vietnams-pfas-situation-report/ (accessed on 6 November 2024).
- Vietnam National Assembly. National Plan for the Implementation of the Stockholm Convention on Persistent Organic Pollutants by 2025 with a Vision to 2030. 2017. Available online: https://en.qdnd.vn/politics/news/national-plan-for-stockholm-convention-implementation-issued-485908 (accessed on 6 November 2024).
- EPA, U.; Persistent Organic Pollutants: A Global Issue. A Global Response. 2014. Available online: https://www.who.int/news-room/questions-and-answers/item/food-safety-persistent-organic-pollutants-(pops) (accessed on 6 November 2024).
- IPEN. Global Action to Eliminate Toxic Pollutants. 2020. Available online: https://ipen.org (accessed on 12 November 2024).
- Sun, Q.; Bi, R.; Wang, T.; Su, C.; Chen, Z.; Diao, J.; Zheng, Z.; Liu, W. Are there risks induced by novel and legacy poly- and perfluoroalkyl substances in coastal aquaculture base in South China? Sci. Total Environ. 2021, 779, 146539. [Google Scholar] [CrossRef]
- USEPA. Health Effects Support Document for Perfluorooctanoic Acid (PFOA). U.S. Environmental Protection Agency; 2016. Available online: https://www.epa.gov/sites/default/files/2016-05/documents/pfoa_hesd_final-plain.pdf (accessed on 12 November 2024).
- Zhao, S.; Xia, X.; Yang, J. Bioaccumulation and biomagnification of poly- and perfluoroalkyl substances in marine food webs from Bohai Sea, China. Environ. Pollut. 2011, 159, 1571–1578. [Google Scholar]
- Xie, S.; Zhao, J.; Zhang, J.; Hou, X.; Cai, Z. PFASs in aquatic species from an urbanized river in the Pearl River Delta, South China. Environ. Pollut. 2019, 250, 39–48. [Google Scholar]
- Fiedler, H.; Kallenborn, R.; De Boer, J.; Sydnes, L.K. The Stockholm convention: A tool for the global regulation of persistent organic pollutants. Chem. Int. 2019, 41, 4–11. [Google Scholar] [CrossRef]
- ASEAN. ASEAN POPs Protocol. 2018. Available online: https://asean.org/pops-protocol (accessed on 12 November 2024).
- World Bank. Funding for PFAS-Related Projects. 2020. Available online: https://www.worldbank.org (accessed on 12 November 2024).
- Government of Canada. Chemicals Management Plan. 2023. Available online: https://www.canada.ca/en/health-canada/services/chemical-substances/chemicals-management-plan.html (accessed on 20 September 2024).
- Environment and Climate Change Canada ECCC. Risk Management Scope for Per- and Polyfluoroalkyl Substances (PFAS). 2023. Available online: https://www.canada.ca/en/services/environment/climatechange.html (accessed on 20 September 2024).
- University of Toronto. Four Ontario Universities Funded to Research Impacts of PFAS, 6PPD in Great Lakes. 2024. Available online: http://esemag.com (accessed on 20 September 2024).
- Health Canada. Objective for Canadian Drinking Water Quality Per- and Polyfluoroalkyl Substances. 2024. Available online: https://www.canada.ca/en/health-canada/services/publications/healthy-living/objective-drinking-water-quality-per-polyfluoroalkyl-substances.html (accessed on 20 September 2024).
- Canadian Institute of Food Safety CIFS. Innovations in Food Safety Technology to Watch for in 2022. Available online: https://blog.foodsafety.ca/innovations-food-safety-technology-2022 (accessed on 17 October 2024).
- Government of Canada. Persistent Organic Pollutants: Stockholm Convention. 2024. Available online: https://www.canada.ca/en/environment-climate-change/services/canadian-environmental-protection-act-registry/publications/update-canada-national-implementation-plan-stockholm-convention-persistent-organic-pollutants.html (accessed on 20 September 2024).
- Health Canada. Pest Control Products Act. 2024. Available online: https://www.canada.ca/en/health-canada/services/consumer-product-safety/pesticides-pest-management/public/protecting-your-health-environment/pest-control-products-acts-and-regulations-en.html (accessed on 20 September 2024).
- Government of Canada. Prohibition of Certain Toxic Substances Regulations, 2012. 2024. Available online: https://www.canada.ca/en/environment-climate-change/services/management-toxic-substances/prohibition-regulations.html (accessed on 20 September 2024).
- Environment and Climate Change Canada (ECCC). Wastewater Systems Effluent Regulations. 2024. Available online: https://www.canada.ca/en/environment-climate-change/services/wastewater/system-effluent-regulations-reporting.html (accessed on 20 September 2024).
- Government of Canada. Updated Draft State of Per- and Polyfluoroalkyl Substances (PFAS) Report. 2024. Available online: https://www.canada.ca/en/environment-climate-change/services/evaluating-existing-substances/updated-draft-state-per-polyfluoroalkyl-substances-report.html (accessed on 20 September 2024).
- OECD. Global Forum on the Environment Dedicated to Per- and Polyfluoroalkyl Substances (PFAS). 2024. Available online: https://www.oecd.org/en/events/2024/02/global-forum-environment-per-and-polyfluoroalkyl-substances.html (accessed on 20 September 2024).
- Government of Canada. Draft State of per- and Polyfluoroalkyl Substances (PFAS) Report. Report. 2023. Available online: https://www.canada.ca/en/environment-climate-change/services/evaluating-existing-substances/draft-state-per-polyfluoroalkyl-substances-report.html (accessed on 20 September 2024).
- Health Canada. Risk Management Scope for Per- and Polyfluoroalkyl Substances (PFAS). 2023. Available online: https://www.canada.ca/en/environment-climate-change/services/evaluating-existing-substances/risk-management-scope-per-polyfluoroalkyl-substances.html (accessed on 20 September 2024).
- CIHR Canadian Institutes of Health Research. Research on PFAS. 2024. Available online: https://cihr-irsc.gc.ca (accessed on 20 September 2024).
- NCP Northern Contaminants Program. Northern Contaminants Program 2024 Call for Proposals. 2024. Available online: https://science.gc.ca (accessed on 20 September 2024).
- Government of Canada. Government of Canada Taking Next Step in Addressing “Forever Chemicals” PFAS. 2023. Available online: https://www.canada.ca/en/environment-climate-change/news/2023/05/government-of-canada-taking-next-step-in-addressing-forever-chemicals-pfas.html (accessed on 20 September 2024).
- List of Bases Contaminated with PFAS Chemicals Expected to Grow, Pentagon Says. 2019. Available online: https://military.com (accessed on 20 September 2024).
- Forever Pollution Project. The Forever Pollution Project. 2023. Available online: https://foreverpollution.eu/ (accessed on 17 October 2024).
- University of Birmingham. Researchers Discover 10 PFAS Chemicals in Drinking Water Across UK and China. 2024. Available online: https://www.birmingham.ac.uk/news/2024/forever-chemicals-found-in-bottled-and-tap-water-from-around-the-world (accessed on 17 October 2024).
- European Chemical Agency ECHA. Per- and Polyfluoroalkyl Substances (PFAS). 2023. Available online: https://echa.europa.eu/hot-topics/perfluoroalkyl-chemicals-pfas (accessed on 17 October 2024).
- European Commission (EC). Research and Innovation—Per- and Polyfluorinated Substances (PFAS). 2024. Available online: https://ec.europa.eu/newsroom/rtd/items/821889/ (accessed on 17 October 2024).
- Das, R.; Ananthanarasimhan, J.; Rao, L. “PFAS” Exploring the Origins, Impact, Regulations and Remediation Technologies—An Overview. Available online: https://link.springer.com/article/10.1007/s41745-024-00442-8 (accessed on 17 October 2024).
- European Environment Agency (EEA). Emerging Chemical Risks in Europe PFAS. 2023. Available online: https://www.eea.europa.eu/en/analysis/publications/emerging-chemical-risks-in-europe (accessed on 17 October 2024).
- ChemSec. The Top 12 PFAS Producers in the World and the Staggering Societal Costs of PFAS Pollution. 2023. Available online: https://chemsec.org/reports/the-top-12-pfas-producers-in-the-world-and-the-staggering-societal-costs-of-pfas-pollution/ (accessed on 17 October 2024).
- European Parliament. Growing Number of Illegal Landfills Across the EU. 2020. Available online: https://www.europarl.europa.eu/portal/en (accessed on 17 October 2024).
- Plastics Waste Challenge (PWC). The Road to Circularity. 2019. Available online: https://www.pwc.at/de/publikationen/klimawandel-nachhaltigkeit/pwc-circular-economy-study-2019.pdf (accessed on 17 October 2024).
- PlasticsEurope. Plastics—The Facts 2019. 2019. Available online: https://plasticseurope.org/knowledge-hub/plastics-the-facts-2019/ (accessed on 17 October 2024).
- The World Economic Forum. The New Plastics Economy: Rethinking the Future of Plastics. 2016. Available online: https://www.weforum.org/publications/the-new-plastics-economy-rethinking-the-future-of-plastics/ (accessed on 17 October 2024).
- European Commission (EC). A European Strategy for Plastics in a Circular Economy. 2024. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM:2018:28:FIN (accessed on 17 October 2024).
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [PubMed]
- EU Science Hub. Less Than One-Fifth of EU Plastic Was Recycled in 2019, but 2025 Targets Can Be Still Reached. 2024. Available online: https://joint-research-centre.ec.europa.eu/jrc-news-and-updates/less-one-fifth-eu-plastic-was-recycled-2019-2025-targets-can-be-still-reached-2024-01-25_en (accessed on 17 October 2024).
- EC Europa. Food Contact Materials. 2024. Available online: https://food.ec.europa.eu/food-safety/chemical-safety/food-contact-materials_en (accessed on 17 October 2024).
- Bluefield Research. US$6.15 Billion PFAS Remediation Forecast Underpinned by Changing Regulatory Environment. 2022. Available online: https://www.bluefieldresearch.com/ns/us6-15-billion-pfas-remediation-forecast-underpinned-by-changing-regulatory-environment/ (accessed on 17 October 2024).
- Source Intelligence U.S. PFAS Regulations by State. 2024. Available online: https://blog.sourceintelligence.com/pfas-regulations-how-to-remain-compliant (accessed on 27 October 2024).
- NIEHS (National Institute of Environmental Health Sciences). Plant-Based Material Can Remediate PFAS, New Research Suggests. 2022. Available online: https://factor.niehs.nih.gov/2022/9/science-highlights/pfas-remediation (accessed on 27 October 2024).
- H.R.2467—PFAS Action Act of 2021. 2021. Available online: https://www.congress.gov/bill/117th-congress/house-bill/2467 (accessed on 27 October 2024).
- Lee, J.C.; Agriopoulou, S.; Varzakas, T. Pathways to Implementing Food Systems-Capacity Building Programs for Smallholder Farmers: Major Constraints and Benefits. 2024. Available online: https://digitaledition.food-safety.com/june-july-2024/column-management/ (accessed on 27 October 2024).
- U.S. Department of Agriculture (USDA). USDA Developing a Roadmap to Tackle PFAS on Farmland. 2024. Available online: https://www.agriculturedive.com/news/usda-roadmap-pfas-farmland-forever-chemicals/730770/ (accessed on 27 October 2024).
- The Natural Resources Defense Council (NRDC). Toxic Drinking Water: Addressing the PFAS Contamination Crisis. 2024. Available online: https://www.nrdc.org/sites/default/files/2024-10/PFAS_Toxic_Drinking_Water_FS_24-09-B_07.pdf (accessed on 20 October 2024).
- Huang, X.; Wei, X.; Liu, H.; Li, W.; Shi, D.; Qian, S.; Sun, W.; Yue, D.; Wang, X. Occurrence of per-and polyfluoroalkyl substances (PFAS) in municipal solid waste landfill leachates from western China. Environmental Science and Pollution Research 2022, 29, 69588–69598. [Google Scholar] [CrossRef]
- American Chemical Society (ACS). Some Landfill ’Burps’ Contain Airborne PFAS, Study Finds. 2024. Available online: https://www.acs.org/pressroom/presspacs/2024/june/some-landfill-burps-contain-airborne-pfas-study-finds.html (accessed on 27 October 2024).
- Hagarty, A. United States Analysis of the Regulatory Inception of Per-and Polyfluoroalkyl Substances (PFAS) in Drinking Water Policy Among States and Review of Regulatory Efforts Made by the Federal Environmental Protection Agency. Southern Illinois University at Edwardsville: Edwardsville, IL, USA, 2023. [Google Scholar]
- Ehsan, M.N.; Riza, M.; Pervez, M.N.; Li, C.-W.; Zorpas, A.A.; Naddeo, V. PFAS contamination in soil and sediment: Contribution of sources and environmental impacts on soil biota. Case Stud. Chem. Environ. Eng. 2024, 9, 100643. [Google Scholar] [CrossRef]
- Jensen, C.R.; Genereux, D.P.; Solomon, D.K.; Knappe, D.R.U.; Gilmore, T.E. Forecasting and Hindcasting PFAS Concentrations in Groundwater Discharging to Streams near a PFAS Production Facility. Environ. Sci. Technol. 2024, 58, 17926–17936. [Google Scholar] [CrossRef]
- College of Sciences Research and Innovation COSRI. It Could Take Over 40 Years for PFAS to Leave Groundwater. 2024. Available online: https://sciences.ncsu.edu/news/it-could-take-over-40-years-for-pfas-to-leave-groundwater/ (accessed on 27 October 2024).
- Study Finds It Could Take Over 40 Years to Flush PFAS Out of Groundwater. 2024. Available online: https://phys.org/news/2024-10-years-flush-pfas-groundwater.pdf (accessed on 27 October 2024).
- Lee, J.C.; Daraba, A.; Voidarou, C.; Rozos, G.; Enshasy, H.A.E.; Varzakas, T. Implementation of Food Safety Management Systems along with Other Management Tools (HAZOP, FMEA, Ishikawa, Pareto). The Case Study of Listeria monocytogenes and Correlation with Microbiological Criteria. Foods 2021, 10, 2169. [Google Scholar] [CrossRef]
- Governing. Legislative Efforts Against Forever Chemicals Grow Across Nation. 2024. Available online: https://www.governing.com/policy/legislative-efforts-against-forever-chemicals-grow-across-nation (accessed on 20 December 2024).
- Manojkumar, Y.; Pilli, S.; Rao, P.V.; Tyagi, R.D. Sources, occurrence and toxic effects of emerging per- and polyfluoroalkyl substances (PFAS). Neurotoxicol. Teratol. 2023, 97, 107174. [Google Scholar] [CrossRef]
- MERCOSUR (Mercado Común del Sur). Available online: https://www.mercosur.int/en/ (accessed on 19 February 2025).
- Inter-American Development Bank (IDB). Available online: https://www.iadb.org/en (accessed on 19 February 2025).
- United Nations Environment Programme (UNEP). Per- and Polyfluoroalkyl Substances (PFASs)|UNEP—UN Environment Programme Five African Countries Unite to Reduce Release of Hazardous Chemicals from Plastics. Available online: https://www.unep.org/ (accessed on 19 February 2025).
- Stockholm Convention on Persistent Organic Pollutants (POPs). What Are POPs. Available online: https://www.pops.int/TheConvention/ThePOPs/tabid/673/Default.aspx (accessed on 19 February 2025).
- Li, X.; Wang, Y.; Cui, J.; Shi Yali, Y.C. Occurrence and fate of per- and polyfluoroalkyl substances (PFAS) in atmosphere: Size-dependent gas-particle partitioning, precipitation scavenging, and amplification. Environ. Sci. Technol. 2024, 58, 9283–9291. [Google Scholar] [CrossRef]
- National Institute of Environmental Health Sciences. Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS). Available online: https://www.niehs.nih.gov/health/topics/agents/pfc (accessed on 19 February 2025).
- Our Current Understanding of the Human Health and Environmental Risks of PFAS. Available online: https://www.epa.gov/pfas/our-current-understanding-human-health-and-environmental-risks-pfas (accessed on 1 February 2025).
- What to Know About ‘Forever Chemicals,’ Artificial Turf, Phillies Cancer Deaths, and Our Story. Available online: https://www.inquirer.com/news/pfas-forever-chemicals-drinking-water-vet-astroturfphiladelphia-20230307.html (accessed on 19 February 2025).
- Earth Island Journal. Life Along the Banks of One of Latin America’s Most Polluted Waterways. Available online: https://www.earthisland.org/journal/index.php/articles/entry/banks-latin-america-most-polluted-waterways (accessed on 19 February 2025).
- Associated Press. It looks Like a Stream of Blood. A River Near Buenos Aires Turns Red, Sparking Fears of Toxic Leak. Available online: https://apnews.com/article/argentina-buenos-“aires-river-red-industrial-leak-41a713c0ecdadadf204c330465a3f7e9 (accessed on 19 February 2025).
- Global Environment Facility (GEF). Available online: https://www.thegef.org/ (accessed on 19 February 2025).
- Global Recycling. Available online: https://global-recycling.info/archives/8156 (accessed on 19 February 2025).
- Ssebugere, P.; Sillanpää, M.; Matovu, H.; Wang, Z.; Schramm, K.-W.; Omwoma, S.; Wanasolo, W.; Ngeno, E.C.; Odongo, S. Environmental levels and human body burdens of per- and poly-fluoroalkyl substances in Africa: A critical review. Sci. Total Environ. 2020, 717, 137002. [Google Scholar] [CrossRef]
- Stockholm Convention on Persistent Organic Pollutants (POPs). Available online: https://chm.pops.int/Implementation/IndustrialPOPs/PFAS/Overview/tabid/5221/Default.aspx (accessed on 19 February 2025).
- Chokwe, T.B.; Themba, N.; Mahlambi, P.N.; Mngadi, S.V.; Sibali, L.L. Poly- and per-fluoroalkyl substances (PFAS) in the African environments: Progress, challenges, and future perspectives. Environ. Sci. Pollut. Res. 2024, 31, 65993–66008. [Google Scholar] [CrossRef] [PubMed]
- Akinrinade, O.E.; Agunbiade, F.O.; Alani, R.A.; Ayejuyo, O. Implementation of the Stockholm Convention on persistent organic pollutants (POPs) in Africa—Progress, challenges, and recommendations after 20 years. Environ. Sci. Adv. 2024, 3, 623–634. [Google Scholar] [CrossRef]
- Department of Forestry, Fisheries and the Environment (DFFE). National Implementation Plan for the Stockholm Convention on Persistent Organic Pollutants. South Africa. Available online: https://www.thedtic.gov.za/wp-content/uploads/NIP2012.pdf (accessed on 19 February 2025).
- African Union (AU). Available online: https://au.int/ (accessed on 19 February 2025).
- European Environment Agency. What Are PFAS and How Are They Dangerous for My Health? Available online: https://www.eea.europa.eu/en/about/contact-us/faqs/what-are-pfas-and-how-are-they-dangerous-for-my-health (accessed on 19 February 2025).
- Li, J.; Li, X.; Da, Y.; Yu, J.; Long, B.; Zhang, P.; Bakker, C.; McCarl, B.A.; Yuan, J.S.; Dai, S.Y. Sustainable environmental remedi-ation via biomimetic multifunctional lignocellulosic nano-framework. Nat. Commun. 2022, 13, 4368. [Google Scholar] [CrossRef] [PubMed]
- Kelbessa, W. Environmental Injustice and Disposal of Hazardous Waste in Africa. In The Palgrave Handbook of Global Sustainability; Constance, C., Ed.; Palgrave Macmillan: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Heinrich, H.W. Industrial Accident Prevention: A Scientific Approach. McGraw-Hill: New York, NY, USA, 1931. Available online: https://archive.org/details/dli.ernet.14601 (accessed on 20 September 2024).
- Shabani, T.; Jerie, S.; Shabani, T. A Comprehensive Review of the Swiss Cheese Model in Risk Management. Saf. Extrem. Environ. 2023, 6, 43–57. [Google Scholar] [CrossRef]
- Tague, N.R. The Quality Toolbox, Third Edition—ASQ. 2005. Available online: https://asq.org/quality-press/display-item?item=H1592 (accessed on 17 February 2025).
- Leveson, N. Engineering a Safer World: Systems Thinking Applied to Safety. MIT Press: Cambridge, MA, USA, 2011; Available online: https://direct.mit.edu/books/oa-monograph/2908/Engineering-a-Safer-WorldSystems-Thinking-Applied (accessed on 20 September 2024).
- Reason, J. Human Error. Cambridge University Press: Cambridge, UK, 1990. Available online: https://www.cambridge.org/highereducation/books/human-error/281486994DE4704203A514F7B7D826C0 (accessed on 20 September 2024).
- Ishikawa, K.; Asian Productivity Organization. Guide to Quality Control. 1968. Available online: https://books.google.gr/books/about/Guide_to_Quality_Control.html?id=POEeAQAAIAAJ&redir_esc=y: (accessed on 20 September 2024).
- Andersen, B.; Fagerhaug, T. Root Cause Analysis: Simplified Tools and Techniques, 2nd ed.ASQ Quality Press: Milwaukee, WI, USA, 2006. [Google Scholar]
- Grandjean, P. The impact of environmental chemicals on human health: A review of the evidence. Environ. Health Perspect. 2007, 115, 1232–1239. [Google Scholar]
- Post, G. Per- and polyfluoroalkyl substances (PFAS): A review of their environmental and health impacts. Environ. Sci. Technol. 2010, 44, 2525–2534. [Google Scholar]
- Ishikawa, K. Guide to Quality Control. Asian Productivity Organization: Tokyo, Japan, 1976; ISBN 92-833-1036-5. [Google Scholar]
- U.S. Environmental Protection Agency. Per- and Polyfluoroalkyl Substances (PFAS) in Wastewater. 2021. Available online: https://www.epa.gov/pfas (accessed on 7 November 2024).
- Tague, N.R. The Quality Toolbox, 2nd ed.ASQ Quality Press: Milwaukee, WI, USA, 2005; Available online: https://www.amazon.com/Quality-Toolbox-2nd-Nancy-Tague/dp/0873898710 (accessed on 7 November 2024).
- Buck, R.C.; Franklin, J.; Berger, U.; Conder, J.M.; Cousins, I.T.; de Voogt, P.; Jensen, A.A.; Kannan, K.; Mabury, S.A.; van Leeuwen, S.P. Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins. Integr. Environ. Assess. Manag. 2011, 7, 513–541. [Google Scholar] [CrossRef]
- Lindstrom, A.B.; Strynar, M.J.; Libelo, E.L. Polyfluorinated compounds: Past, present, and future. Environ. Sci. Technol. 2011, 45, 7954–7961. [Google Scholar] [CrossRef]
- Lau, C.; Anitole, K.; Hodes, C.; Lai, D.; Pfahles-Hutchens, A.; Seed, J. Perfluoroalkyl acids: A review of monitoring and toxicological findings. Toxicol. Sci. 2007, 99, 366–394. [Google Scholar] [CrossRef]
- Newton, S.; McMahen, R.; Stoeckel, J.; Chislock, M.; Lindstrom, A.; Strynar, M. Novel polyfluorinated compounds identified using high resolution mass spectrometry downstream of manufacturing facilities near Decatur, Alabama. Environ. Sci. Technol. 2020, 51, 1544–1552. [Google Scholar] [CrossRef]
- Orellana, R.; Cumsille, A.; Piña-Gangas, P.; Rojas, C.; Arancibia, A.; Donghi, S.; Stuardo, C.; Cabrera, P.; Arancibia, G.; Cárdenas, F.; et al. Economic Evaluation of Bioremediation of Hydrocarbon-Contaminated Urban Soils in Chile. Sustainability 2022, 14, 11854. [Google Scholar] [CrossRef]
- Bioremediation in Sustainable Wastewater Management. Springer: New York, NY, USA, 2024. Available online: https://link.springer.com/book/10.1007/978-981-99-2560-5 (accessed on 7 November 2024).
- Waterkeeper Alliance. Empowering Communities and Spurring Governmental Action to Stop and Clean Up PFAS Pollution. 2024. Available online: https://sdgs.un.org/partnerships/empowering-communities-and-spurring-governmental-action-stop-and-clean-pfas-pollution (accessed on 7 November 2024).
- Grandjean, P.; Clapp, R. Perfluorinated Alkyl Substances: Emerging Insights into Health Risks. New Solut. 2015, 25, 147–163. [Google Scholar] [CrossRef] [PubMed]
- C8 Science Panel. Probable Link Evaluation of PFOA and Human Health. 2012. Available online: http://www.c8sciencepanel.org/publications.html (accessed on 7 November 2024).
- Li, J.; Sun, J.; Li, P. Exposure routes, bioaccumulation and toxic effects of per- and polyfluoroalkyl substances (PFASs) on plants: A critical review. Environ. Int. 2022, 158, 106891. [Google Scholar] [CrossRef] [PubMed]
- Glüge, J.; Scheringer, M.; Cousins, I.T.; DeWitt, J.C.; Goldenman, G.; Herzke, D.; Lohmann, R.; Ng, C.A.; Trier, X.; Wang, Z. An overview of the uses of per- and polyfluoroalkyl substances (PFAS). Environ. Sci. Process. Impacts 2020, 22, 2345–2373. [Google Scholar] [CrossRef]
- Kang, H.; Choi, K.; Lee, H.S.; Kim, D.H.; Park, N.Y.; Kim, S.; Kho, Y. Elevated levels of short carbon-chain PFCAs in breast milk among Korean women: Current status and potential challenges. Environ. Res. 2016, 148, 351–359. [Google Scholar] [CrossRef]
- Zhou, Y.; Lin, X.; Xing, Y.; Zhang, X.; Lee, H.K.; Huang, Z. Per- and polyfluoroalkyl substances in personal hygiene products: The implications for human exposure and emission to the environment. Environ. Sci. Technol. 2023, 57, 8484–8495. [Google Scholar] [CrossRef]
- Susmann, H.P.; Schaider, L.A.; Rodgers, K.M.; Rudel, R.A. Dietary habits related to food packaging and population exposure to PFASs. Environ. Health Perspect. 2019, 127, 107003. [Google Scholar] [CrossRef]
- Kang, H.; Kim, D.H.; Choi, Y.H. Elevated levels of serum per- and poly-fluoroalkyl substances (PFAS) in contact lens users of U.S. young adults. Chemosphere 2024, 350, 141134. [Google Scholar] [CrossRef]
- Segedie, L. Indications of PFAS “Forever Chemicals” in Contact Lenses—Report. Mamavation. 2023, Volume 2023. Available online: https://www.mamavation.com/health/pfas-contact-lenses.html (accessed on 7 November 2024).
- Spyrakis, F.; Dragani, T.A. The EU’s Per- and Polyfluoroalkyl Substances (PFAS) Ban: A Case of Policy over Science. Toxics 2023, 11, 721. [Google Scholar] [CrossRef]
- Adewuyi, A.; Li, Q. Emergency of per- and polyfluoroalkyl substances in drinking water: Status, regulation, and mitigation strategies in developing countries. Eco-Environ. Health 2024, 3, 355–368. [Google Scholar] [CrossRef]
- Dauchy, X.; Boiteux, V.; Colin, A.; Bach, C.; Rosin, C.; Munoz, J.-F. Poly- and Perfluoroalkyl Substances in Runoff Water and Wastewater Sampled at a Firefighter Training Area. Arch. Environ. Contam. Toxicol. 2018, 76, 206–215. [Google Scholar] [CrossRef]
Recommendations Key Findings: | In Response to the Health Hazards Linked with PFASs, the CDC Provides Various Guidelines: |
---|---|
Health Effects | Preventive Measures |
Research reveals an association between PFAS exposure and a variety of health concerns, including immune system effects, hormonal disruption, and increased cholesterol levels. Studies have also suggested possible links to certain cancers, such as kidney and testicular cancer. | The CDC advises limiting the use of products containing PFASs, especially for everyday items like water-resistant fabrics and non-stick cookware. Consumer education on identifying and avoiding PFAS products is critical |
Biomonitoring | Remediation Strategies |
The CDC’s National Health and Nutrition Examination Survey (NHANES) has studied PFAS levels in the human population, providing essential data on exposure levels across the US population. | For contaminated sites, the CDC recommends various remediation strategies, including the following:
|
Community Studies | |
The CDC’s Agency for Toxic Substances and Disease Registry (ATSDR) has undertaken health assessments in communities with potential PFAS pollution, allowing researchers to better understand the localized health effects. | |
Policy Recommendations | |
The CDC calls for stricter regulations governing PFAS use and disposal, emphasizing the need for states and local entities to create water quality standards that reflect the most recent scientific findings regarding PFAS toxicity (CDC Policy Recommendations for PFAS Regulation, 2020). |
Supplies | Contaminant Sources | Risks, Exposure | Mitigation | Areas of Concerns | Regulatory Needs |
---|---|---|---|---|---|
Water: Drinking/ Potable |
|
|
|
|
|
Food Products |
|
|
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.C.; Smaoui, S.; Duffill, J.; Marandi, B.; Varzakas, T. Research Progress in Current and Emerging Issues of PFASs’ Global Impact: Long-Term Health Effects and Governance of Food Systems. Foods 2025, 14, 958. https://doi.org/10.3390/foods14060958
Lee JC, Smaoui S, Duffill J, Marandi B, Varzakas T. Research Progress in Current and Emerging Issues of PFASs’ Global Impact: Long-Term Health Effects and Governance of Food Systems. Foods. 2025; 14(6):958. https://doi.org/10.3390/foods14060958
Chicago/Turabian StyleLee, Jocelyn C., Slim Smaoui, John Duffill, Ben Marandi, and Theodoros Varzakas. 2025. "Research Progress in Current and Emerging Issues of PFASs’ Global Impact: Long-Term Health Effects and Governance of Food Systems" Foods 14, no. 6: 958. https://doi.org/10.3390/foods14060958
APA StyleLee, J. C., Smaoui, S., Duffill, J., Marandi, B., & Varzakas, T. (2025). Research Progress in Current and Emerging Issues of PFASs’ Global Impact: Long-Term Health Effects and Governance of Food Systems. Foods, 14(6), 958. https://doi.org/10.3390/foods14060958