Magnesium Regulation Increases the Content of Characteristic Volatile Compounds and Enhances the Intensity of Odor Characteristics in Tea Tree Leaves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Reagents and Instruments
2.2. Experimental Design and Sample Collection
2.3. HS-SPME Extraction of Volatile Compounds
2.4. Determination of Volatile Compounds by GC-MS
2.5. Statistical Analysis
3. Results and Discussion
3.1. Effect of Magnesium Regulation on Volatile Compounds of Tea Tree Leaves
3.2. Screening of Characteristic Volatile Compounds of Tea Tree Leaves Under Magnesium Regulation
3.3. Contribution Weighting Analysis of Characteristic Volatile Compounds in Differentiating Between Different Magnesium Concentrations
3.4. Odor Analysis of Characteristic Volatile Compounds of Tea Tree Leaves Under Magnesium Regulation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, L.; Ruan, J.; Shi, X. Local industrial policies and development of agricultural clusters: A case study based on a tea cluster in China. Int. Food Agribus. Manag. Rev. 2021, 24, 267–288. [Google Scholar] [CrossRef]
- Wen, B.; Zhang, X.; Ren, S.; Duan, Y.; Zhang, Y.; Zhu, X.; Wang, Y.; Ma, Y.; Fang, W. Characteristics of soil nutrients, heavy metals and tea quality in different intercropping patterns. Agrofor. Syst. 2020, 94, 963–974. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, Z.; Li, Y.; Ruan, J.; Karak, T.; Yang, T. Mineral nutrients on tea yield and quality formation. Front. Plant Sci. 2023, 14, 1192432. [Google Scholar] [CrossRef] [PubMed]
- Shaul, O. Magnesium transport and function in plants: The tip of the iceberg. Biometals 2002, 15, 307–321. [Google Scholar] [CrossRef]
- Wang, Z.; Hassan, M.U.; Nadeem, F.; Wu, L.; Zhang, F.; Li, X. Magnesium fertilization improves crop yield in most production systems: A meta-analysis. Front. Plant Sci. 2020, 10, 495191. [Google Scholar] [CrossRef] [PubMed]
- He, D.; Chen, X.; Zhang, Y.; Huang, Z.; Yin, J.; Weng, X.; Yang, W.; Wu, H.; Zhang, F.; Wu, L. Magnesium is a nutritional tool for the yield and quality of oolong tea (Camellia sinensis L. ) and reduces reactive nitrogen loss. Sci. Hortic. 2023, 308, 111590. [Google Scholar] [CrossRef]
- Tang, S.; Fu, H.; Pan, W.; Zhou, J.; Xu, M.; Han, K.; Chen, K.; Ma, Q.; Wu, L. Improving tea (Camellia sinensis) quality, economic income, and environmental benefits by optimizing agronomic nitrogen efficiency: A synergistic strategy. Eur. J. Agron. 2023, 142, 126673. [Google Scholar] [CrossRef]
- Li, J.; Li, Q.H.; Zhang, X.Y.; Zhang, L.Y.; Zhao, P.L.; Wen, T.; Zhang, J.; Xu, W.; Guo, F.; Zhao, H.; et al. Exploring the effects of magnesium deficiency on the quality constituents of hydroponic-cultivated tea (Camellia sinensis L.) Leaves. J. Agric. Food Chem. 2021, 69, 14278–14286. [Google Scholar] [CrossRef]
- Chen, L.; Liu, M.; Cai, Y.; Wu, L.; Zhang, Q. Magnesium deficiency differentiated effects on the roots growth and shoot metabolism by regulating the distribution of photosynthetic products in tea plants. Sci. Hortic. 2024, 338, 113748. [Google Scholar] [CrossRef]
- Xu, J.; Wu, L.; Tong, B.; Yin, J.; Huang, Z.; Li, W.; Li, X. Magnesium supplementation alters leaf metabolic pathways for higher flavor quality of oolong tea. Agriculture 2021, 11, 120. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Q.; Wang, Y.; Lin, S.; Chen, M.; Cheng, P.; Wang, Y.; Du, M.; Jia, X.; Wang, H.; et al. Effects of magnesium on transcriptome and physicochemical index of tea leaves. Plants 2023, 12, 1810. [Google Scholar] [CrossRef] [PubMed]
- Zhai, X.; Zhang, L.; Granvogl, M.; Ho, C.T.; Wan, X. Flavor of tea (Camellia sinensis): A review on odorants and analytical techniques. Compr. Rev. Food Sci. F 2022, 21, 3867–3909. [Google Scholar] [CrossRef]
- Zeng, L.; Jin, S.; Xu, Y.Q.; Granato, D.; Fu, Y.Q.; Sun, W.J.; Yin, J.; Xu, Y.Q. Exogenous stimulation-induced biosynthesis of volatile compounds: Aroma formation of oolong tea at postharvest stage. Crit. Rev. Food Sci. 2024, 64, 76–86. [Google Scholar] [CrossRef]
- Hou, Z.; Chen, Z.; Li, L.; Chen, H.; Zhang, H.; Liu, S.; Zhang, R.; Song, Q.; Chen, Y.; Su, Z.; et al. Comparison of volatile compounds in Jingshan green tea scented with different flowers using GC-IMS and GC-MS analyses. Foods 2024, 13, 2653. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Z.; Zhao, Y.; Zhu, M.; Li, J.; Wang, K. A meta-analysis of dynamic changes of key aroma compounds during black tea processing. Food Biosci. 2024, 58, 103784. [Google Scholar] [CrossRef]
- Fu, Z.; Hao, S.; Zhou, J.; Feng, W.; Zhu, M.; Wu, J.; Zhang, Y.; Yu, Y. Profiling volatile compounds in fresh leaves of 22 major oolong tea germplasm cultivated in Fujian of China. Sci. Hortic. 2024, 327, 112849. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, J.; Liu, S.; Li, T.; Wei, Y.; Gu, Z.; Su, Z.; Ning, J.; Wang, Y.; Hou, Z. Characterization of the key volatile compounds in longjing tea (Camellia sinensis) with different aroma types at different steeping temperatures by GC‒MS and GC‒IMS. LWT-Food Sci. Technol. 2024, 200, 116183. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, M.; Liu, X.; Mao, Q.; Shi, C.; Kochian, L.V.; Liao, H. Aluminium is essential for root growth and development of tea plants (Camellia sinensis). J. Integr. Plant Biol. 2020, 62, 984–997. [Google Scholar] [CrossRef]
- Ye, J.; Zhang, Q.; Cheng, P.; Wang, Y.; Zou, J.; Lin, S.; Li, M.; Jia, M.; Chen, Y.; Jia, X.; et al. Aviation mutagenesis alters the content of volatile compounds in Dahongpao (Camellia sinensis) leaves and improves tea quality. Foods 2024, 13, 946. [Google Scholar] [CrossRef]
- Yuan, H.; Cao, G.; Hou, X.; Huang, M.; Du, P.; Tan, T.; Zhang, Y.; Zhou, H.; Liu, X.; Liu, L.; et al. Development of a widely targeted volatilomics method for profiling volatilomes in plants. Mol. Plant 2022, 15, 189–202. [Google Scholar] [CrossRef]
- Ye, J.; Zhang, Q.; Li, M.; Wang, Y.; Jia, M.; Hong, L.; Chen, Y.; Pang, X.; Jia, X.; Wang, H. Tea quality of the mysterious “Dahongpao mother tree” (Camellia sinensis). Foods 2024, 13, 1548. [Google Scholar] [CrossRef] [PubMed]
- Wickham, H. Advanced R, 2nd ed.; Chapman & Hall’s R Series; Taylor and Francis: Abingdon, UK, 2019. [Google Scholar]
- Zhao, S.; Cheng, H.; Xu, P.; Wang, Y. Regulation of biosynthesis of the main flavor-contributing metabolites in tea plant (Camellia sinensis): A review. Crit. Rev. Food Sci. 2023, 63, 10520–10535. [Google Scholar] [CrossRef] [PubMed]
- Ran, W.; Li, Q.; Hu, X.; Zhang, D.; Yu, Z.; Chen, Y.; Wang, M.; Ni, D. Comprehensive analysis of environmental factors on the quality of tea (Camellia sinensis var. sinensis) fresh leaves. Sci. Hortic. 2023, 319, 112177. [Google Scholar] [CrossRef]
- Reyrolle, M.; Bareille, G.; Epova, E.N.; Barre, J.; Bérail, S.; Pigot, T.; Desauziers, V.; Gautier, L.; Le Bechec, M. Authenticating teas using multielement signatures, strontium isotope ratios, and volatile compound profiling. Food Chem. 2023, 423, 136271. [Google Scholar] [CrossRef]
- Samynathan, R.; Shanmugam, K.; Nagarajan, C.; Murugasamy, H.; Ilango, R.V.J.; Shanmugam, A.; Venkidasamy, B.; Thiruvengadam, M. The effect of abiotic and biotic stresses on the production of bioactive compounds in tea (Camellia sinensis (L. ) O. Kuntze). Plant Gene 2021, 27, 100316. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Y.; Zhang, M.; Wei, X.; Zhou, Y. Effects of foliar selenium application on Se accumulation, elements uptake, nutrition quality, sensory quality and antioxidant response in summer-autumn tea. Food Res. Int. 2024, 175, 113618. [Google Scholar] [CrossRef]
- Zohora, K.F.T.; Arefin, M.R. Tea and tea product diversification: A review. Turkish J. Agric. Food Sci. Technol. 2022, 10, 2334–2353. [Google Scholar] [CrossRef]
- Qiu, Z.; Liao, J.; Chen, J.; Li, A.; Lin, M.; Liu, H.; Huang, W.; Sun, B.; Liu, J.; Liu, S.; et al. Comprehensive analysis of fresh tea (Camellia sinensis cv. Lingtou Dancong) leaf quality under different nitrogen fertilization regimes. Food Chem. 2024, 439, 138127. [Google Scholar] [CrossRef]
- Yin, P.; Kong, Y.S.; Liu, P.P.; Wang, J.J.; Zhu, Y.; Wang, G.M.; Sun, M.F.; Chen, Y.; Guo, G.Y.; Liu, Z.H. A critical review of key odorants in green tea: Identification and biochemical formation pathway. Trends Food Sci. Technol. 2022, 129, 221–232. [Google Scholar] [CrossRef]
- Shen, S.; Wu, H.; Li, T.; Sun, H.; Wang, Y.; Ning, J. Formation of aroma characteristics driven by volatile components during long-term storage of An tea. Food Chem. 2023, 411, 135487. [Google Scholar] [CrossRef]
- Liang, Y.; Wang, Z.; Zhang, L.; Dai, H.; Wu, W.; Zheng, Z.; Lin, F.; Xu, J.; Huang, Y.; Sun, W. Characterization of volatile compounds and identification of key aroma compounds in different aroma types of Rougui Wuyi rock tea. Food Chem. 2024, 455, 139931. [Google Scholar] [CrossRef] [PubMed]
- Hadacek, F. Secondary metabolites as plant traits: Current assessment and future perspectives. Crit. Rev. Plant Sci. 2002, 21, 273–322. [Google Scholar] [CrossRef]
- Kessler, A.; Kalske, A. Plant secondary metabolite diversity and species interactions. Annu. Rev. Ecol. Evol. Syst. 2018, 49, 115–138. [Google Scholar] [CrossRef]
- An, H.; Ou, X.; Zhang, Y.; Li, S.; Xiong, Y.; Li, Q.; Huang, J.; Liu, Z. Study on the key volatile compounds and aroma quality of jasmine tea with different scenting technology. Food Chem. 2022, 385, 132718. [Google Scholar] [CrossRef]
- Yang, Y.; Zhu, H.; Chen, J.; Xie, J.; Shen, S.; Deng, Y.; Zhu, J.; Yuan, H.; Jiang, Y. haracterization of the key aroma compounds in black teas with different aroma types by using gas chromatography electronic nose, gas chromatography-ion mobility spectrometry, and odor activity value analysis. LWT-Food Sci. Technol. 2022, 163, 113492. [Google Scholar] [CrossRef]
- Qin, D.; Wang, Q.; Jiang, X.; Ni, E.; Fang, K.; Li, H.; Wang, Q.; Pan, C.; Li, B.; Wu, H. Identification of key volatile and odor-active compounds in 10 main fragrance types of Fenghuang Dancong tea using HS-SPME/GC-MS combined with multivariate analysis. Food Res. Int. 2023, 173, 113356. [Google Scholar] [CrossRef]
- Ma, L.; Sun, Y.; Wang, X.; Zhang, H.; Zhang, L.; Yin, Y.; Wu, Y.; Du, L.; Du, Z. The characteristic of the key aroma-active components in white tea using GC-TOF-MS and GC-olfactometry combined with sensory-directed flavor analysis. J. Sci. Food Agric. 2023, 103, 7136–7152. [Google Scholar] [CrossRef]
- Zeng, Y.; Nong, B.; Xia, X.; Zhang, Z.; Wang, Y.; Xu, Y.; Feng, R.; Guo, H.; Liang, Y.; Chen, C.; et al. Metabolome and transcriptome unveil the correlated metabolites and transcripts with 2-acetyl-1-pyrroline in fragrant rice. Int. J. Mol. Sci. 2024, 25, 8207. [Google Scholar] [CrossRef]
- Chen, Q.; Yu, P.; Li, Z.; Wang, Y.; Liu, Y.; Zhu, Y.; Fu, H. Re-rolling treatment in the fermentation process improves the aroma quality of black tea. Foods 2023, 12, 3702. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhi, H.; Qu, L.; Su, D.; Luo, J. Analysis of flower volatile compounds and odor classification of 17 tree peony cultivars. Sci. Hortic. 2024, 338, 113665. [Google Scholar] [CrossRef]
- Sun, Z.; Lin, Y.; Yang, H.; Zhao, R.; Zhu, J.; Wang, F. Characterization of honey-like characteristic aroma compounds in Zunyi black tea and their molecular mechanisms of interaction with olfactory receptors using molecular docking. LWT-Food Sci. Technol. 2024, 191, 115640. [Google Scholar] [CrossRef]
- Vieira, A.J.; Beserra, F.P.; Souza, M.C.; Totti, B.M.; Rozza, A.L. Limonene: Aroma of innovation in health and disease. Chem. Biol. Interact. 2018, 283, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Arsa, S.; Theerakulkait, C. Preparation, aroma characteristics and volatile compounds of flavorings from enzymatic hydrolyzed rice bran protein concentrate. J. Sci. Food Agric. 2018, 98, 4479–4487. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, J.; Weng, Q.; Wang, Y.; Cheng, W.; Gu, J.; Zhang, Q.; Zhu, B.; Liu, Q.; Jia, X.; Wang, J.; et al. Magnesium Regulation Increases the Content of Characteristic Volatile Compounds and Enhances the Intensity of Odor Characteristics in Tea Tree Leaves. Foods 2025, 14, 1043. https://doi.org/10.3390/foods14061043
Ye J, Weng Q, Wang Y, Cheng W, Gu J, Zhang Q, Zhu B, Liu Q, Jia X, Wang J, et al. Magnesium Regulation Increases the Content of Characteristic Volatile Compounds and Enhances the Intensity of Odor Characteristics in Tea Tree Leaves. Foods. 2025; 14(6):1043. https://doi.org/10.3390/foods14061043
Chicago/Turabian StyleYe, Jianghua, Qiqi Weng, Yulin Wang, Weiting Cheng, Junbin Gu, Qi Zhang, Bitong Zhu, Qiyan Liu, Xiaoli Jia, Juanying Wang, and et al. 2025. "Magnesium Regulation Increases the Content of Characteristic Volatile Compounds and Enhances the Intensity of Odor Characteristics in Tea Tree Leaves" Foods 14, no. 6: 1043. https://doi.org/10.3390/foods14061043
APA StyleYe, J., Weng, Q., Wang, Y., Cheng, W., Gu, J., Zhang, Q., Zhu, B., Liu, Q., Jia, X., Wang, J., & Wang, H. (2025). Magnesium Regulation Increases the Content of Characteristic Volatile Compounds and Enhances the Intensity of Odor Characteristics in Tea Tree Leaves. Foods, 14(6), 1043. https://doi.org/10.3390/foods14061043