Chemical Migration of Polycyclic Aromatic Hydrocarbons and Other Compounds from Plastic Food Packaging: Assessment of Food Safety Risks and Health Impacts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Categorization
2.2. Sample Preparation
2.3. GC-MS Analytical Conditions
2.4. Analytical Procedure
2.4.1. Headspace Sampling
2.4.2. Gas Chromatographic Separation
2.4.3. Mass Spectrometry Detection
2.4.4. Identification and Quantification of Chemical Substances
2.4.5. Identification of Compounds
2.4.6. Quantification Approach
2.5. Statistical Analysis
3. Results
Chemical Compounds | Highest Migration Level (Food Category) | Lowest Migration Level (Food Category) | p-Value | 95% CI (mg/kg) |
---|---|---|---|---|
Alanine | Cheese (65.95 ± 0.6384) | Frozen seafood (51.86 ± 7.103) | <0.05 | [63.2–67.1] |
Acetic Acid | Candies (57.80 ± 0.6383) | Frozen raw meat (52.67 ± 4.303) | <0.05 | [55.4–59.5] |
Cyano Derivatives | Cheese (68.63 ± 1.343) | Frozen raw chicken (62.31 ± 1.090) | <0.05 | [65.1–70.2] |
Urea | Cheese (63.67 ± 0.6252) | Frozen raw meat (53.96 ± 4.225) | <0.05 | [60.3–65.1] |
Benzene Derivatives | Chips (59.96 ± 1.844) | Frozen seafood (34.08 ± 26.72) | <0.05 | [52.1–62.5] |
Amines | Candies (59.49 ± 0.8633) | Frozen raw meat (50.36 ± 5.898) | <0.05 | [57.0–61.1] |
Amides | Candies (63.17 ± 0.6704) | Frozen seafood (34.98 ± 27.26) | <0.05 | [59.3–65.4] |
Nitrites | Chocolates (59.78 ± 8.537) | Frozen raw meat (46.70 ± 3.144) | <0.05 | [56.2–62.8] |
Non-Specified Compounds | Noodles (63.21 ± 4.308) | Frozen raw chicken (45.75 ± 3.889) | <0.05 | [60.8–66.4] |
3.1. Migration of Chemical Compounds in Food Categories
3.1.1. Alanine Migration
3.1.2. Acetic Acid Migration
3.1.3. Cyano Derivatives Migration
3.1.4. Urea Migration
3.1.5. Benzene Derivatives Migration
3.1.6. Amine Migration
3.1.7. Amide Migration
3.1.8. Nitrite Migration
3.1.9. Non-Specified Compounds Migration
4. Discussion
Evaluation of Food Safety Risks and Potential Health Impacts
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vasile, C.; Baican, M. Progresses in Food Packaging, Food Quality, and Safety-Controlled-Release Antioxidant and/or Antimicrobial Packaging. Molecules 2021, 26, 1263. [Google Scholar] [CrossRef] [PubMed]
- Muzeza, C.; Ngole-Jeme, V.; Msagati, T.A.M. The Mechanisms of Plastic Food-Packaging Monomers’ Migration into Food Matrix and the Implications on Human Health. Foods 2023, 12, 3364. [Google Scholar] [CrossRef]
- Haq, F.; Kiran, M.; Khan, I.A.; Mehmood, S.; Aziz, T.; Haroon, M. Exploring the pathways to sustainability: A comprehensive review of biodegradable plastics in the circular economy. Mater. Today Sustain. 2025, 29, 101067. [Google Scholar] [CrossRef]
- Flint Group. Food Packaging: A Guide to Best Practice for Sheetfed Offset Print. Available online: http://www.dolev-gc.co.il/image/users/326155/ftp/my_files/Food_Pkg_brochure_version_100917_FINAL.pdf?id=22252820 (accessed on 15 September 2024).
- Liu, P.; Xu, H.; Zhang, X. Metabolic engineering of microorganisms for L-alanine production. J. Ind. Microbiol. Biotechnol. 2022, 49, kuab057. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yan, C.; Qiu, J.; Liu, C.; Yan, Y.; Ji, Y.; Wang, G.; Chen, H.; Li, Y.; Banack, S.; et al. Migration and Transformation Behaviors of Neurotoxin BMAA along Food Chains in a Diatom-dominated Marine Ecosystem in China. Authorea 2020. [Google Scholar] [CrossRef]
- Jayaraj, R.; Megha, P.; Sreedev, P. Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdiscip. Toxicol. 2016, 9, 90–100. [Google Scholar] [CrossRef]
- Stevens, S.; Bartosova, Z.; Völker, J.; Wagner, M. Migration of endocrine and metabolism disrupting chemicals from plastic food packaging. Environ. Int. 2024, 189, 108791. [Google Scholar] [CrossRef]
- Rezagholizade-shirvan, A.; Soltani, M.; Shokri, S.; Radfar, R.; Arab, M.; Shamloo, E. Bioactive compound encapsulation: Characteristics, applications in food systems, and implications for human health. Food Chem. X 2024, 24, 101953. [Google Scholar] [CrossRef]
- Peivasteh-Roudsari, L.; Barzegar-Bafrouei, R.; Sharifi, K.A.; Azimisalim, S.; Karami, M.; Abedinzadeh, S.; Asadinezhad, S.; Tajdar-Oranj, B.; Mahdavi, V.; Alizadeh, A.M.; et al. Origin, dietary exposure, and toxicity of endocrine-disrupting food chemical contaminants: A comprehensive review. Heliyon 2023, 9, e18140. [Google Scholar] [CrossRef]
- Commission Regulation (EU) 2019/37 of 10 January 2019 Amending and Correcting Regulation (EU) No 10/2011 on Plastic Materials and Articles Intended to Come into Contact with Food OJ L 9, 11.1.2019, pp. 88–93. Available online: https://eur-lex.europa.eu/eli/reg/2019/37/oj/eng (accessed on 1 February 2025).
- Institute of Medicine (US) and National Research Council (US) Committee on the Review of the Use of Scientific Criteria and Performance Standards for Safe Food. Scientific Criteria to Ensure Safe Food. In Food Safety Tools; National Academies Press (US): Washington, DC, USA, 2003. Available online: https://www.ncbi.nlm.nih.gov/books/NBK221552/ (accessed on 22 January 2025).
- Baj, J.; Dring, J.C.; Czeczelewski, M.; Kozyra, P.; Forma, A.; Flieger, J.; Kowalska, B.; Buszewicz, G.; Teresiński, G. Derivatives of Plastics as Potential Carcinogenic Factors: The Current State of Knowledge. Cancers 2022, 14, 4637. [Google Scholar] [CrossRef]
- Campanale, C.; Massarelli, C.; Savino, I.; Locaputo, V.; Uricchio, V.F. A Detailed Review Study on Potential Effects of Microplastics and Additives of Concern on Human Health. Int. J. Environ. Res. Public Health 2020, 17, 1212. [Google Scholar] [CrossRef] [PubMed]
- Allameh, A.; Niayesh-Mehr, R.; Aliarab, A.; Sebastiani, G.; Pantopoulos, K. Oxidative Stress in Liver Pathophysiology and Disease. Antioxidants 2023, 12, 1653. [Google Scholar] [CrossRef] [PubMed]
- Onyeaka, H.; Ghosh, S.; Obileke, K.; Miri, T.; Odeyemi, O.A.; Nwaiwu, O.; Tamasiga, P. Preventing chemical contaminants in food: Challenges and prospects for safe and sustainable food production. Food Control 2024, 155, 110040. [Google Scholar] [CrossRef]
- Krewski, D.; Saunders-Hastings, P.; Baan, R.A.; Barton-Maclaren, T.S.; Browne, P.; Chiu, W.A.; Gwinn, M.; Hartung, T.; Kraft, A.D.; Lam, J.; et al. Development of an Evidence-Based Risk Assessment Framework. Altex 2022, 39, 667–693. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Guidance for Industry: Preparation of Premarket Submissions for Food Contact Substances: Chemistry Recommendations. 2007. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-preparation-premarket-submissions-food-contact-substances-chemistry (accessed on 25 January 2025).
- Paseiro-Losada, P.; Noonan, G. Compilation of Analytical Methods for Model Migrants in Foodstuffs. Joint Research Centre, European Commission. 2006. Available online: https://commission.europa.eu/about/departments-and-executive-agencies/joint-research-centre_en (accessed on 26 January 2025).
- National Institute of Standards and Technology (NIST). Mass Spectral Library; U.S. Department of Commerce: Gaithersburg, MD, USA, 2024. Available online: https://www.nist.gov (accessed on 26 January 2025).
- European Food Safety Authority (EFSA). Scientific Opinion on the Safety Evaluation of Substances Used in Food Contact Materials. EFSA J. 2024, 12, 1–35. Available online: https://www.efsa.europa.eu (accessed on 26 January 2025).
- U.S. Food and Drug Administration (FDA). Code of Federal Regulations Title 21—Food and Drugs, Part 175—Indirect Food Additives: Adhesives and Components of Coatings; U.S. Government Publishing Office: Washington, DC, USA, 2024. Available online: https://www.ecfr.gov (accessed on 11 March 2024).
- ISO 17034:2016; General Requirements for the Competence of Reference Material Producers. ISO: Geneva, Switzerland, 2016. Available online: https://www.iso.org/standard/29357.html (accessed on 1 February 2025).
- ISO 11885:2007; Water Quality—Determination of Selected Elements by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). ISO: Geneva, Switzerland, 2007. Available online: https://www.iso.org/standard/36250.html (accessed on 1 February 2025).
- Santonicola, S.; Albrizio, S.; Murru, N.; Ferrante, M.C.; Mercogliano, R. Study on the occurrence of polycyclic aromatic hydrocarbons in milk and Meat/Fish based baby food available in italy. Chemosphere 2017, 184, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Coroian, C.O.; Coroian, A.; Becze, A.; Longodor, A.; Mastan, O.; Radu-Rusu, R.-M. Polycyclic Aromatic Hydrocarbons (PAHs) Occurrence in Traditionally Smoked Chicken, Turkey and Duck Meat. Agriculture 2023, 13, 57. [Google Scholar] [CrossRef]
- Graham, J.; Poole, N.D.; Traylor, J. Cyanide Toxicity. [Updated 13 February 2023]. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK507796/ (accessed on 1 February 2025).
- Sampaio, G.R.; Guizellini, G.M.; da Silva, S.A.; de Almeida, A.P.; Pinaffi-Langley, A.C.C.; Rogero, M.M.; de Camargo, A.C.; Torres, E.A.F.S. Polycyclic Aromatic Hydrocarbons in Foods: Biological Effects, Legislation, Occurrence, Analytical Methods, and Strategies to Reduce Their Formation. Int. J. Mol. Sci. 2021, 22, 6010. [Google Scholar] [CrossRef] [PubMed]
- Huppertz, T.; Shkembi, B.; Brader, L.; Geurts, J. Dairy Matrix Effects: Physicochemical Properties Underlying a Multifaceted Paradigm. Nutrients 2024, 16, 943. [Google Scholar] [CrossRef]
- Karwowska, M.; Kononiuk, A. Nitrates/Nitrites in Food-Risk for Nitrosative Stress and Benefits. Antioxidants 2020, 9, 241. [Google Scholar] [CrossRef]
- Codex Alimentarius. Food and Agriculture Organization of the United Nations. World Health Organization. The Procedural Manual (PM) of the Codex Alimentarius Commission Sets out the Basic Rules of Procedure, Procedures for the Elaboration of Codex Standards and Related Texts, and Basic Definitions and Guidelines for the Operation of Codex Committees. 2025. Available online: https://www.fao.org/fao-who-codexalimentarius/en/ (accessed on 2 February 2025).
- Yokota, Y.; Suzuki, S.; Gi, M.; Yanagiba, Y.; Yoneda, N.; Fujioka, M.; Kakehashi, A.; Koda, S.; Suemizu, H.; Wanibuchi, H. o-Toluidine metabolism and effects in the urinary bladder of humanized-liver mice. Toxicology 2023, 488, 153483. [Google Scholar] [CrossRef] [PubMed]
- Campanella, G.; Ghaani, M.; Quetti, G.; Farris, S. On the origin of primary aromatic amines in food packaging materials. Trends Food Sci. Technol. 2015, 46, 137–143. [Google Scholar] [CrossRef]
- Wu, X.; Yan, H.; Cao, Y.; Yuan, Y. Prediction acrylamide contents in fried dough twist based on the application of artificial neural network. Food Chem. X 2024, 24, 102007. [Google Scholar] [CrossRef] [PubMed]
- Agency for Toxic Substances and Diseases Registry. Centers for Disease Control and Prevention. Toxicological Profile for Benzene. 2024. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp3.pdf (accessed on 4 March 2025).
- Pelegrín, C.J.; Flores, Y.; Jiménez, A.; Garrigós, M.C. Recent Trends in the Analysis of Chemical Contaminants in Beverages. Beverages 2020, 6, 32. [Google Scholar] [CrossRef]
- Han, J.-H.; Kim, M.-J. Evaluation of Polycyclic Aromatic Hydrocarbon Contents and Risk Assessment for Infant Formula in Korea. J. Korean Soc. Appl. Biol. Chem. 2014, 57, 173–179. [Google Scholar] [CrossRef]
- Fadiji, T.; Rashvand, M.; Daramola, M.O.; Iwarere, S.A. A Review on Antimicrobial Packaging for Extending the Shelf Life of Food. Processes 2023, 11, 590. [Google Scholar] [CrossRef]
- Geueke, B.; Parkinson, L.V.; Groh, K.J.; Kassotis, C.D.; Maffini, M.V.; Martin, O.V.; Zimmermann, L.; Scheringer, M.; Muncke, J. Evidence for widespread human exposure to food contact chemicals. J Expo. Sci. Environ. Epidemiol. 2024. [Google Scholar] [CrossRef]
- Ephraim-Emmanuel, B.C.; Ordinioha, B. Exposure and Public Health Effects of Polycyclic Aromatic Hydrocarbon Compounds in Sub-Saharan Africa: A Systematic Review. Int. J. Toxicol. 2021, 40, 250–269. [Google Scholar] [CrossRef]
- Douziech, M.; Benítez-López, A.; Ernstoff, A.; Askham, C.; Hendriks, A.J.; King, H.; Huijbregts, M.A.J. A regression-based model to predict chemical migration from packaging to food. J. Expo. Sci. Environ. Epidemiol. 2020, 30, 469–477. [Google Scholar] [CrossRef]
- Gupta, R.K.; Pipliya, S.; Karunanithi, S.; Eswaran, U.G.M.; Kumar, S.; Mandliya, S.; Srivastav, P.P.; Suthar, T.; Shaikh, A.M.; Harsányi, E.; et al. Migration of Chemical Compounds from Packaging Materials into Packaged Foods: Interaction, Mechanism, Assessment, and Regulations. Foods 2024, 13, 3125. [Google Scholar] [CrossRef]
- Sadighara, P.; Pirhadi, M.; Sadighara, M.; Shavali, P.; Zirak, M.R.; Zeinali, T. Benzene food exposure and their prevent methods: A review. Nutr. Food Sci. 2022. ahead-of-print. [Google Scholar] [CrossRef]
- Toxicological Profile for Benzene. Atlanta (GA): Agency for Toxic Substances and Disease Registry (US); 2007 Aug. 3, HEALTH EFFECTS. Available online: https://www.ncbi.nlm.nih.gov/books/NBK591289/ (accessed on 12 December 2024).
- Lilian, K.; Carlos, C.J. Safety of Plastic Food Packaging: The Challenges about Non-Intentionally Added Substances (NIAS) Discovery, Identification and Risk Assessment. Polymers 2021, 13, 2077. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (EFSA CONTAM Panel); Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; Del Mazo, J.; Hogstrand, C.; Ron Hoogenboom, L.; Leblanc, J.C.; Nebbia, C.S.; et al. Risk assessment of N-nitrosamines in food. EFSA J. 2023, 21, e07884. [Google Scholar] [CrossRef]
- Versino, F.; Ortega, F.; Monroy, Y.; Rivero, S.; López, O.V.; García, M.A. Sustainable and Bio-Based Food Packaging: A Review on Past and Current Design Innovations. Foods 2023, 12, 1057. [Google Scholar] [CrossRef] [PubMed]
- Alibekov, R.S.; Urazbayeva, K.U.; Azimov, A.M.; Rozman, A.S.; Hashim, N.; Maringgal, B. Advances in Biodegradable Food Packaging Using Wheat-Based Materials: Fabrications and Innovations, Applications, Potentials, and Challenges. Foods 2024, 13, 2964. [Google Scholar] [CrossRef] [PubMed]
- Anagaw, Y.K.; Ayenew, W.; Limenh, L.W.; Geremew, D.T.; Worku, M.C.; Tessema, T.A.; Simegn, W.; Mitku, M.L. Food adulteration: Causes, risks, and detection techniques-review. SAGE Open Med. 2024, 12, 20503121241250184. [Google Scholar] [CrossRef]
- Geueke, B.; Groh, K.; Muncke, J. Food packaging in the circular economy: Overview of chemical safety aspects for commonly used materials. J. Clean. Prod. 2018, 193, 491–505. [Google Scholar] [CrossRef]
- Jahangiri, F.; Mohanty, A.K.; Misra, M. Sustainable biodegradable coatings for food packaging: Challenges and opportunities. Green Chem. 2024, 26, 4934–4974. [Google Scholar] [CrossRef]
Sample Type | No. of Samples | Storage Temperature °C | Storage Period |
---|---|---|---|
Frozen raw meat | 16 | −18 °C | 48 h |
Frozen raw chicken | 14 | −18 °C | 48 h |
Frozen Vegetables | 25 | −18 °C | 48 h |
Frozen fruits | 18 | −18 °C | 48 h |
Frozen sea food | 18 | −18 °C | 48 h |
Frozen fast food | 35 | −18 °C | 48 h |
Ice cream | 17 | −18 °C | 48 h |
Noodles | 15 | Room Temperature | 72 h |
Chips | 15 | Room Temperature | 72 h |
Chocolates | 17 | Room Temperature | 72 h |
Cheese Bars | 15 | 5 °C | 72 h |
Total number of samples | 205 | ||
Total number of excluded samples | 10 | ||
Total numbers of analyzed samples | 195 |
Parameters | Specifications | |
---|---|---|
GC Setting | ||
Carrier Gas | Helium | Ultra-high-purity (UHP) helium (99.9999%) |
Injector Temperature | 120 °C | Optimizes sample volatilization |
Oven Program | 35 °C for 2 min, ramp at 10 °C/min to 200 °C, hold for 5 min | |
Column | Capillary Column (30 m × 200 µm × 1.1 µm) | High-resolution separation for volatile compounds |
MS Setting | ||
Ionoization Mode | Electron Impact (EI) at 70 eV | Fragmentation for compound identification |
Mass Range | 30–300 amu | |
Oven Temperature Program | Initial 40 °C (held for 2 min), ramp to 250 °C at 10 °C/min | Optimized for separating compounds with a wide range of volatilities |
Detector Type | Electron Ionization (EI) | Produces consistent fragmentation for accurate identification |
Mass Range (m/z) | 40–400 | Covers the expected range of target compounds |
Source Temperature | 200 °C | |
Full Scan Mode | 0.41 s Scan Time, 0.01 s InterScan Delay | |
PAHs Identification | Comparison with NIST Mass Spectral Library Confirms compound identity using reference spectra | |
Limit of Detection (LOD) | 0.01 mg/kg | Minimum detectable concentration |
Limit of Quantification (LOQ) | 0.05 mg/kg | Minimum concentration for reliable quantification |
Best Sensitivity Achieved | 0.001 mg/kg | For acetic acid and nitrites Indicates highest detection capability |
Chemical Compounds | Regression Coefficient (β) | p-Value | R2 Value | 95% CI for β |
---|---|---|---|---|
Alanine | 0.85 | <0.01 | 0.72 | [0.75–0.95] |
Acetic Acid | 0.78 | <0.01 | 0.68 | [0.70–0.86] |
Cyano Derivatives | 0.92 | <0.001 | 0.81 | [0.84–1.00] |
Benzene Derivatives | 0.88 | <0.001 | 0.75 | [0.78–0.98] |
Amines | 0.76 | <0.01 | 0.65 | [0.66–0.86] |
Amides | 0.84 | <0.01 | 0.71 | [0.74–0.94] |
Nitrites | 0.90 | <0.001 | 0.78 | [0.82–0.98] |
Non-Specified Compounds | 0.79 | <0.01 | 0.69 | [0.69–0.89] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adly, H.M.; Saati, A.A.; Obaid, M.S.; Saleh, S.A.K. Chemical Migration of Polycyclic Aromatic Hydrocarbons and Other Compounds from Plastic Food Packaging: Assessment of Food Safety Risks and Health Impacts. Foods 2025, 14, 1013. https://doi.org/10.3390/foods14061013
Adly HM, Saati AA, Obaid MS, Saleh SAK. Chemical Migration of Polycyclic Aromatic Hydrocarbons and Other Compounds from Plastic Food Packaging: Assessment of Food Safety Risks and Health Impacts. Foods. 2025; 14(6):1013. https://doi.org/10.3390/foods14061013
Chicago/Turabian StyleAdly, Heba M., Abdullah A. Saati, Majed S. Obaid, and Saleh A. K. Saleh. 2025. "Chemical Migration of Polycyclic Aromatic Hydrocarbons and Other Compounds from Plastic Food Packaging: Assessment of Food Safety Risks and Health Impacts" Foods 14, no. 6: 1013. https://doi.org/10.3390/foods14061013
APA StyleAdly, H. M., Saati, A. A., Obaid, M. S., & Saleh, S. A. K. (2025). Chemical Migration of Polycyclic Aromatic Hydrocarbons and Other Compounds from Plastic Food Packaging: Assessment of Food Safety Risks and Health Impacts. Foods, 14(6), 1013. https://doi.org/10.3390/foods14061013