Adapting Sensory Analysis to the Pandemic Era: Exploring “Remote Home Tasting” of Sous-Vide Chicken Breast for Research Continuity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Preparation
2.2. Preliminary Activities for Sensory Evaluation
2.3. Sensory Evaluation Card
2.4. Sensory Evaluation and Home Tasting
2.5. Statistical Analysis
3. Results
3.1. Results of the Survey
3.2. Judges’ Performance
3.3. Sensory Evaluation of Sample
3.4. Linear Correlation Evaluation
3.5. Principal Component Analysis (PCA)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bolisani, E.; Scarso, E.; Ipsen, C.; Kirchner, K.; Hansen, J.P. Working from home during COVID-19 pandemic: Lessons learned and issues. Manag. Mark. 2020, 15, 458–476. [Google Scholar] [CrossRef]
- Di Tecco, C.; Ronchetti, M.; Russo, S.; Ghelli, M.; Rondinone, M.B.; Persechino, B.; Iavicoli, S. Implementing Smart Working in Public Administration: A follow up study. Med. Lav. 2021, 112, 141–152. [Google Scholar] [PubMed]
- Gottlieb, C.; Grobovšek, J.; Poschke, M. Working from home across countries. Cent. Econ. Policy Res. 2020, 1, 71–91. [Google Scholar] [CrossRef]
- Rapisarda, S.; Ghersetti, E.; Girardi, D.; De Carlo, N.A.; Dal Corso, L. Smart working and online psychological support during the covid-19 pandemic: Work-family balance, well-being, and performance. In Proceeding of the Psychological Application Confernce and Trends (InPACT), Virtual, 24–26 April 2021. [Google Scholar] [CrossRef]
- Alizadeh, T. Planning implications of telework: A policy analysis of the Sydney metropolitan strategy. Aust. Plan. 2013, 50, 304–315. [Google Scholar] [CrossRef]
- Marino, L.; Capone, C. Smart working and well-being before and during the COVID-19 pandemic: A scoping review. Eur. J. Investig. Health Psychol. Educ. 2021, 11, 1516–1536. [Google Scholar] [CrossRef]
- Kim, Y.Y.; Oh, S.; Oh, H.M.; Lee, J.E. Factors on successful adoption of smart work: A case study through time geography and communication cube perspectives. Information 2017, 20, 699–712. [Google Scholar]
- Angelici, M.; Profeta, P. Smart working: Work flexibility without constraints. Manag. Sci. 2024, 70, 1680–1705. [Google Scholar] [CrossRef]
- Lia, J.; Pegab, F.; Ujitac, Y.; Brissond, C.; Clayse, E.; Descathaf, A.; Ferrarioi, M.M.; Godderisj, L.; Iavicolil, S.; Landsbergism, P.A.; et al. The effect of exposure to long working hours on ischaemic heart disease: A systematic review and meta-analysis from the WHO/ILO Joint Estimates of the Work-related Burden of Disease and Injury. Environ. Int. 2020, 142, 105739. [Google Scholar] [CrossRef]
- McDermott, M.M.; Newman, A.B. Remote research and clinical trial integrity during and after the coronavirus pandemic. JAMA 2021, 325, 1935–1936. [Google Scholar] [CrossRef]
- Wahab, A. Online and remote learning in higher education institutes: A necessity in light of COVID-19 pandemic. High. Educ. Stud. 2020, 10, 16–25. [Google Scholar] [CrossRef]
- Dinnella, C.; Pierguidi, L.; Spinelli, S.; Borgogno, M.; Gallina Toschi, T.; Predieri, S.; Lavezzi, G.; Trapani, F.; Tura, M.; Magli, M.; et al. Remote testing: Sensory test during Covid-19 pandemic and beyond. Food Qual. Prefer. 2022, 96, 104437. [Google Scholar] [CrossRef] [PubMed]
- Meilgaard, M.; Civille, G.V.; Carr, B.T. Sensory Evaluation Techniques, 3rd ed.; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Lawless, H.; Heymann, H. Descriptive Analysis. In Sensory Evaluation of Food. Principles and Practices; Springer: New York, NY, USA, 2010; pp. 227–257. [Google Scholar]
- Eggert, J.; Zook, K. Specific planner consideration. In Physical Requirement Guidelines for Sensory Evaluation Laboratories, 1st ed.; ASTM International: West Conshohocken, PA, USA, 1986; Chapter 4. [Google Scholar]
- Haghighi, H.; Belmonte, A.M.; Masino, F.; Minelli, G.; Lo Fiego, D.P.; Pulvirenti, A. Evaluation of physicochemical and microbiological, microstructural and sensory properties of sous-vide cooked chicken breast fillets at different temperature and time combinations. Appl. Sci. 2021, 11, 3189. [Google Scholar] [CrossRef]
- ISO 8589:2007; Sensory Analysis—General Guidance for the Design of Test Rooms. International Organization for Standardization: London, UK, 2007. Available online: https://www.iso.org/obp/ui/#iso:std:iso:8589:ed-2:v1:en (accessed on 7 February 2025).
- MEBAK. Basic requirements for sensory analysis and conducting test—Tasting room, preparation area. In Sensory Analysis; MEBAK: Nuremberg, Germany, 2014; ISBN 978-3-9815960-4-5. [Google Scholar]
- ISO 8586:2023; Sensory Analysis—General Guidance for the Selection, Training and Monitoring of Assessors. International Organization for Standardization: London, UK, 2023. Available online: https://www.iso.org/obp/ui/#iso:std:iso:8586:ed-1:v2:en (accessed on 7 February 2025).
- McEwan, J.A.; Lyon, D.H. Sensory evaluation/Sensory Rating and Scoring Methods. In Encyclopedia of Food Sciences and Nutrition, 3rd ed.; Academic Press: Amsterdam, The Netherlands, 2003; pp. 5148–5152. [Google Scholar]
- ISO 4121:2003; Sensory Analysis—Guidelines for the Use of Quantitative Response Scales. International Organization for Standardization: London, UK, 2003. Available online: https://www.iso.org/obp/ui/#iso:std:iso:4121:ed-2:v1:en (accessed on 7 February 2025).
- Masino, F.; Montevecchi, G.; Calvini, R.; Foca, G.; Antonelli, A. Sensory evaluation and mixture design assessment of coffee-flavored liquor obtained from spent coffee grounds. Food Qual. Prefer. 2022, 96, 104427. [Google Scholar] [CrossRef]
- Piggott, J.R.; Simpson, S.J.; Williams, S.A.R. Sensory analysis. Int. J. Food Sci. Technol. 1998, 33, 7–12. [Google Scholar] [CrossRef]
- Park, C.H.; Lee, B.; Oh, E.; Kim, Y.S.; Choi, Y.M. Combined effects of sous-vide cooking conditions on meat and sensory quality characteristics of chicken breast meat. Poult. Sci. 2020, 99, 3286–3291. [Google Scholar] [CrossRef]
- Thathsarani, A.P.K.; Alahakoon, A.U.; Liyanage, R. Current status and future trends of sous-vide processing in meat industry. A review. Trends Food Sci. Technol. 2022, 129, 353–363. [Google Scholar] [CrossRef]
- Gök, V.; Uzun, T.; Tomar, O.; Çaglar, M.Y.; Çaglar, A. The effect of cooking methods on some quality characteristics of gluteus medius. Food Sci. Technol. 2019, 39, 999–1004. [Google Scholar] [CrossRef]
- Głuchowski, A.; Czarniecka-Skubina, E.; Wasiak-Zys, G.; Nowak, D. Effect of Various Cooking Methods on Technological and Sensory Quality of Atlantic Salmon (Salmo salar). Foods 2019, 8, 323. [Google Scholar] [CrossRef]
- Aaslyng, M.D.; Oksama, M.; Olsen, E.V.; Bejerholm, C.; Baltzer, M.; Andersen, G.; Bredie, W.L.P.; Byrne, D.V.; Gabrielsen, G. The impact of sensory quality of pork on consumer preference. Meat Sci. 2007, 76, 61–73. [Google Scholar] [CrossRef]
- Mortensen, L.M.; Frøst, M.B.; Skibsted, L.H.; Risbo, J. Effect of time and temperature on sensory properties in low-temperature long-time sous-vide cooking of beef. J. Culin. Sci. Technol. 2012, 10, 75–90. [Google Scholar] [CrossRef]
- Naveena, B.M.; Khansole, P.S.; Kumar, M.S.; Krishnaiah, N.; Kulkarni, V.V.; Deepak, S.J. Effect of sous vide processing on physicochemical, ultrastructural, microbial and sensory changes in vacuum packaged chicken sausages. Food Sci. Technol. Int. 2016, 23, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Karpinska-Tymoszczyk, M.; Draszanowska, A.; Danowska-Oziewicz, M.; Kurp, L. The effect of low-temperature thermal processing on the quality of chickenbreast fillets. Food Sci. Technol. Int. 2020, 26, 563–573. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Ho, C.T. The flavor of poultry meat. In Flavor of Meat and Meat Products; Shahidi, F., Ed.; Blackie Academic and Professional: Glasgow, UK, 1994; pp. 52–69. [Google Scholar]
- Jayasena, D.D.; Ahn, D.U.; Nam, K.C.; Jo, C. Flavour chemistry of chicken meat: A review. Asian-Australas. J. Anim. Sci. 2013, 5, 732–742. [Google Scholar] [CrossRef]
- Głuchowski, A.; Czarniecka-Skubina, E.; Buła, M. The use of the sous-vide method in the preparation of poultry at home and in catering-protection of nutrition value whether high energy consumption. Sustainability 2020, 12, 7606. [Google Scholar] [CrossRef]
- Calkins, C.R.; Hodgen, J.M. A fresh look at meat flavor. Meat Sci. 2007, 77, 63–80. [Google Scholar] [CrossRef]
- Christensen, L.; Gunvig, A.; Tørngren, M.A.; Aaslyng, M.D.; Knøchel, S.; Christensen, M. Sensory characteristics of meat cooked for prolonged times at low temperature. Meat Sci. 2012, 90, 485–489. [Google Scholar] [CrossRef]
- Keast, R.S.J.; Breslin, P.A.S. An overview of binary taste–taste interactions. Food Qual. Prefer. 2002, 14, 111–124. [Google Scholar] [CrossRef]
- Ji, D.S.; Kim, J.H.; Yoon, D.K.; Kim, J.H.; Lee, H.J.; Cho, W.Y.; Lee, C.H. Effect of different storage-temperature combinations on Longissimus dorsi quality upon sous-vide processing of frozen/thawed pork. Food Sci. Anim. Resour. 2019, 39, 240–254. [Google Scholar] [CrossRef]
- Przybylski, W.; Jaworska, D.; Kajak-Siemaszko, K.; Sałek, P.; Pakuła, K. Effect of Heat Treatment by the Sous-Vide Method on the Quality of Poultry Meat. Foods 2021, 10, 1610. [Google Scholar] [CrossRef]
- Vaskoska, R.; Minh Ha, M.; Ong, L.; Chen, G.; White, J.; Gras, S.; Warner, R. Myosin sensitivity to thermal denaturation explains differences in water loss and shrinkage during cooking in muscles of distinct fibre types. Meat Sci. 2021, 179, 108521. [Google Scholar] [CrossRef]
- Wright, N.T.; Humphrey, J.D. Denaturation of collagen via heating: An irreversible rate process. Annu. Rev. Biomed. Eng. 2002, 4, 109–128. [Google Scholar] [CrossRef] [PubMed]
- Hoeche, U. The sous vide revolution: Coming full circle and beyond. In Proceedings of the Dublin Gastronomy Symposium, Dublin, Ireland, 31 May–1 June 2016; pp. 109–114. Available online: https://arrow.tudublin.ie/cgi/viewcontent.cgi?article=1104&context=dgs (accessed on 7 February 2025).
- Becker, A.; Boulaaba, A.; Pinge, S.; Krischek, C.; Klein, G. Low temperature cooking of pork meat—Physicochemical and sensory aspects. Meat Sci. 2016, 118, 82–88. [Google Scholar] [CrossRef] [PubMed]
SAMPLES | TEMPERATURE (°C) | TIME (min) | NO. TASTING SAMPLES |
---|---|---|---|
C | 100 | 60 | 6 |
LT 1 | 60 | 60 | 6 |
LT 2 | 60 | 90 | 6 |
LT 3 | 60 | 120 | 6 |
LT 4 | 60 | 150 | 6 |
MT 1 | 70 | 60 | 6 |
MT 2 | 70 | 90 | 6 |
MT 3 | 70 | 120 | 6 |
MT 4 | 70 | 150 | 6 |
HT 1 | 80 | 60 | 6 |
HT 2 | 80 | 90 | 6 |
HT 3 | 80 | 120 | 6 |
HT 4 | 80 | 150 | 6 |
Total | - | - | 78 |
Attributes | Definition | Testing Procedure | |
---|---|---|---|
1 | Doneness | Visual sensation of degree of cooking (D). | Evaluate the sample under white light. It goes from pink or light pink (when it is little or no cooked) to white (when it is well cooked). |
2–5 | Meat boiled smell and flavor Meat like-chicken cooked smell and flavor | Olfactory and flavor sensations that remember the smell and flavor of the boiled meat (SBM and FBM), and the meat like-chicken cooked (SMC and FMC) perceived with the nose and in the mouth. | Place the sample under the nose (1 cm) and broken it. Take 2–3 inhalations. Then, bring the sample to the mouth and chew it five times. Rate the intensity in terms of boiled meat smell and flavor and meat like-chicken cooked smell and flavor. |
6 | Other perceptions | Perceptions such as bitter, acidic, metallic, and astringent (OP). | Bring the sample to the mouth, chew 5 times, and rate other perceptions of the cooked chicken meat. |
7 | Tenderness at first bite | Texture sensation at first bite (TEND-FB). | Bring the sample between the teeth and evaluate the stress required to cut the meat. |
8–9 | Tenderness and Juiciness | Texture sensation after 5 chews (TEND and JUIC). | Bring the sample in mouth, chew 5 times, and rate the chewing easiness of the sample and the juice amount perceived. |
10 | Residues of chewing | Meat amount left when it is ready for swallowing (RC). | Bring the sample in mouth and evaluate the meat amount left when it is ready for swallowing. |
11 | Final juiciness | Texture sensation at end of chewing (JUIC-F). | Bring the sample in mouth chewing until is ready for swallowing and evaluate juice amount perceived. It is evaluating after “Rests of chewing”. |
12 | Chewiness | Texture sensation at end of chewing (CHEW). | Bring the sample in mouth and evaluate number of chews to make the sample ready at the swallowing. A low number of chews (1–3) corresponds to a very chewable sample, a middle number of chews (4–6) corresponds to sample mildly chewable, a high number of chews (7–10) corresponds to sample hardly chewable. |
Samples | C 1 | ±SD | LT 1 | ±SD | LT 2 | ±SD | LT 3 | ±SD | LT 4 | ±SD | MT 1 | ±SD | MT 2 | ±SD |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
D | 9.83 | 0.41 | 8.33 | 1.21 | 8.33 | 1.03 | 8.83 | 0.98 | 8.33 | 0.52 | 8.50 | 1.76 | 8.67 | 0.82 |
SBM | 9.17 a | 1.17 | 7.17 b | 0.75 | 7.00 b | 0.63 | 7.83 ab | 0.75 | 7.50 ab | 1.05 | 7.00 b | 0.89 | 7.17 ab | 1.72 |
SMC | 9.50 a | 0.55 | 6.33 b | 1.21 | 6.83 b | 0.98 | 7.50 b | 0.84 | 6.50 b | 1.64 | 8.00 ab | 1.26 | 7.17 ab | 1.94 |
FBM | 8.83 a | 0.98 | 5.83 b | 1.33 | 6.50 ab | 1.64 | 6.67 ab | 1.89 | 7.50 ab | 0.55 | 7.67 ab | 1.21 | 7.33 ab | 1.34 |
FMC | 8.83 a | 0.41 | 5.33 b | 1.97 | 6.33 ab | 1.47 | 6.67 ab | 1.63 | 6.67 ab | 0.82 | 8.17 a | 1.07 | 7.50 ab | 1.49 |
OP | 2.83 | 0.75 | 4.00 | 2.37 | 3.17 | 1.66 | 3.00 | 1.10 | 2.50 | 0.84 | 3.00 | 0.63 | 3.17 | 1.15 |
TEND-FB | 7.50 | 3.15 | 6.33 | 0.82 | 8.33 | 1.51 | 7.17 | 1.72 | 7.17 | 1.75 | 6.17 | 1.33 | 7.33 | 1.51 |
TEND | 8.00 | 2.10 | 6.83 | 1.17 | 8.33 | 1.51 | 8.00 | 1.26 | 7.33 | 1.63 | 6.50 | 0.84 | 7.83 | 1.72 |
JUIC | 5.00 ab | 2.61 | 4.33 ab | 1.37 | 5.67 a | 1.37 | 5.50 ab | 1.64 | 4.67 abc | 1.49 | 5.00 abc | 1.26 | 5.50 ab | 1.67 |
CHEW | 5.67 | 1.03 | 6.17 | 3.06 | 4.67 | 1.39 | 5.67 | 1.66 | 5.83 | 0.75 | 5.67 | 0.72 | 5.83 | 2.14 |
JUIC-F | 4.33 ab | 1.86 | 4.00 ab | 1.21 | 5.00 ab | 1.26 | 5.83 a | 1.72 | 4.00 ab | 1.21 | 4.00 ab | 1.41 | 4.67 ab | 1.21 |
RC | 5.00 | 1.55 | 2.83 | 0.98 | 4.00 | 1.82 | 3.67 | 0.61 | 4.17 | 1.72 | 4.83 | 2.14 | 4.00 | 1.75 |
Sample | MT 3 | ±SD | MT 4 | ±SD | HT 1 | ±SD | HT 2 | ±SD | HT 3 | ±SD | HT 4 | ±SD | F Value | p Value |
D | 9.17 | 0.98 | 9.50 | 0.55 | 8.83 | 1.33 | 9.17 | 0.98 | 8.67 | 1.51 | 8.83 | 0.75 | 1.15 | ns |
SBM | 8.50 ab | 0.55 | 8.67 ab | 1.21 | 8.83 ab | 1.17 | 7.67 ab | 1.99 | 8.17 ab | 2.23 | 8.33 ab | 1.03 | 2.05 | * |
SMC | 7.83 ab | 1.33 | 8.00 ab | 1.10 | 8.00 ab | 1.41 | 7.00 ab | 2.28 | 7.67 ab | 2.50 | 7.50 ab | 1.76 | 1.69 | * |
FBM | 8.67 a | 1.21 | 8.17 ab | 1.83 | 8.33 a | 0.52 | 7.17 ab | 1.33 | 8.50 a | 0.84 | 8.00 ab | 0.63 | 3.15 | *** |
FMC | 7.83 ab | 0.98 | 7.83 ab | 1.72 | 7.83 ab | 1.44 | 7.17 ab | 1.81 | 8.17 b | 0.98 | 6.83 ab | 1.47 | 2.71 | ** |
OP | 3.67 | 0.75 | 3.00 | 1.10 | 2.00 | 0.91 | 2.17 | 1.03 | 2.00 | 1.55 | 2.33 | 1.21 | 1.47 | ns |
TEND-FB | 8.50 | 1.52 | 8.33 | 1.97 | 7.83 | 2.14 | 7.83 | 1.60 | 7.83 | 1.60 | 8.33 | 1.21 | 1.08 | ns |
TEND | 8.00 | 1.55 | 7.83 | 1.83 | 7.17 | 2.48 | 7.00 | 1.79 | 8.17 | 1.60 | 7.50 | 1.38 | 0.71 | ns |
JUIC | 5.53 ab | 1.64 | 5.17 abc | 2.07 | 5.17 abc | 0.98 | 3.17 bc | 1.17 | 6.17 a | 1.83 | 2.83 b | 1.17 | 1.82 | * |
CHEW | 5.17 | 1.478 | 3.83 | 1.14 | 4.83 | 1.45 | 6.00 | 1.77 | 4.83 | 2.14 | 6.67 | 2.02 | 1.16 | ns |
JUIC-F | 4.00 ab | 1.14 | 4.83 ab | 2.23 | 5.00 ab | 1.48 | 2.33 b | 1,51 | 4.17 ab | 1.22 | 3.17 ab | 0.75 | 2.25 | * |
RC | 5.17 | 2.32 | 4.50 | 2.17 | 3.50 | 1.10 | 5.33 | 2.58 | 4.50 | 1.86 | 3.83 | 0.60 | 1.05 | ns |
L* | a* | MOI | SF | Tbars | pH | CL | D | SBM | SMC | FBM | FMC | OP | TEND-FB | TEND | JUIC | CHEW | JUIC-F | RC | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L* | |||||||||||||||||||
a* | |||||||||||||||||||
MOI | 0.83 | ||||||||||||||||||
SF | −0.70 | ||||||||||||||||||
Tbars | −0.96 | −0.88 | 0.60 | ||||||||||||||||
pH | −0.65 | −0.62 | 0.60 | ||||||||||||||||
CL | −0.92 | −0.96 | 0.65 | 0.95 | 0.59 | ||||||||||||||
D | −0.62 | −0.71 | 0.65 | 0.75 | |||||||||||||||
SBM | −0.71 | −0.73 | 0.70 | 0.73 | 0.80 | ||||||||||||||
SMC | −0.58 | −0.63 | 0.56 | 0.68 | 0.69 | 0.78 | 0.74 | ||||||||||||
FBM | −0.73 | −0.67 | 0.79 | 0.76 | 0.63 | 0.78 | 0.76 | ||||||||||||
FMC | −0.63 | 0.74 | 0.68 | 0.64 | 0.59 | 0.86 | 0.88 | ||||||||||||
OP | 0.76 | −0.69 | −0.57 | ||||||||||||||||
TEND-FB | 0.58 | ||||||||||||||||||
TEND | 0.64 | ||||||||||||||||||
JUIC | |||||||||||||||||||
CHEW | −0.63 | ||||||||||||||||||
JUIC-F | −0.55 | 0.70 | |||||||||||||||||
RC | 0.57 | 0.57 | 0.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masino, F.; Montevecchi, G.; Antonelli, A.; Fiego, D.P.L.; Fava, P.; Foligni, R.; Pulvirenti, A. Adapting Sensory Analysis to the Pandemic Era: Exploring “Remote Home Tasting” of Sous-Vide Chicken Breast for Research Continuity. Foods 2025, 14, 647. https://doi.org/10.3390/foods14040647
Masino F, Montevecchi G, Antonelli A, Fiego DPL, Fava P, Foligni R, Pulvirenti A. Adapting Sensory Analysis to the Pandemic Era: Exploring “Remote Home Tasting” of Sous-Vide Chicken Breast for Research Continuity. Foods. 2025; 14(4):647. https://doi.org/10.3390/foods14040647
Chicago/Turabian StyleMasino, Francesca, Giuseppe Montevecchi, Andrea Antonelli, Domenico Pietro Lo Fiego, Patrizia Fava, Roberta Foligni, and Andrea Pulvirenti. 2025. "Adapting Sensory Analysis to the Pandemic Era: Exploring “Remote Home Tasting” of Sous-Vide Chicken Breast for Research Continuity" Foods 14, no. 4: 647. https://doi.org/10.3390/foods14040647
APA StyleMasino, F., Montevecchi, G., Antonelli, A., Fiego, D. P. L., Fava, P., Foligni, R., & Pulvirenti, A. (2025). Adapting Sensory Analysis to the Pandemic Era: Exploring “Remote Home Tasting” of Sous-Vide Chicken Breast for Research Continuity. Foods, 14(4), 647. https://doi.org/10.3390/foods14040647