Reduced Doses of Diatomaceous Earth and Basil Essential Oil on Stored Grain Against the Wheat-Damaging Sitophilus oryzae: Influence on Bread Quality and Sensory Profile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. EO and HS-SPME Gas Chromatography–Mass Spectrometry Analysis
2.3. Sitophilus oryzae Rearing
2.4. Toxicity Tests on Sitophilus oryzae
- DE: 130 mg of DE/kg of wheat;
- EO: 130 µL of O. basilicum EO/kg of wheat;
- DE + EO: 65 mg of DE/kg of wheat + 65 µL of O. basilicum EO/kg of wheat;
- C: untreated control.
2.5. Milling Procedure and Mycotoxins Test
2.6. Bread Making
2.7. Bread Shelf-Life Assessment
2.8. VOCs Profile of Bread
2.9. Sensory Analysis
2.10. Statistical Analysis
3. Results and Discussion
3.1. Basil Essential Oil Composition
3.2. Mean Mortality Percentage of Sitophilus oryzae
3.3. Bread VOCs Profile
3.4. Bread Sensory Profile
3.5. Bread Shelf Life
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bianchi, A.; Venturi, F.; Palermo, C.; Taglieri, I.; Angelini, G.L.; Tavarini, S.; Sanmartin, C. Primary and secondary shelf-life of bread as a function of formulation and MAP conditions: Focus on physical-chemical and sensory markers. Food Packag. Shelf Life 2024, 41, 101241. [Google Scholar] [CrossRef]
- Dapčević-Hadnađev, T.; Stupar, A.; Stevanović, D.; Škrobot, D.; Maravić, N.; Tomić, J.; Hadnađev, M. Ancient Wheat Varieties and Sourdough Fermentation as a Tool to Increase Bioaccessibility of Phenolics and Antioxidant Capacity of Bread. Foods 2022, 11, 3985. [Google Scholar] [CrossRef]
- Shewry, P.R.; Hey, S. Do “ancient” wheat species differ from modern bread wheat in their contents of bioactive components? J. Cereal Sci. 2015, 65, 236–243. [Google Scholar] [CrossRef]
- Bianchi, A.; Sanmartin, C.; Taglieri, I.; Macaluso, M.; Venturi, F.; Napoli, M.; Mancini, M.; Fabbri, C.; Zinnai, A. Effect of Fertilization Regime of Common Wheat (Triticum aestivum) on Flour Quality and Shelf-Life of PDO Tuscan Bread. Foods 2023, 12, 2672. [Google Scholar] [CrossRef]
- Katina, K.; Heiniö, R.-L.; Autio, K.; Poutanen, K. Optimization of sourdough process for improved sensory profile and texture of wheat bread. LWT Food Sci. Technol. 2006, 39, 1189–1202. [Google Scholar] [CrossRef]
- Mondal, A.; Datta, A.K. Bread baking—A review. J. Food Eng. 2008, 86, 465–474. [Google Scholar] [CrossRef]
- Taglieri, I.; Macaluso, M.; Bianchi, A.; Sanmartin, C.; Quartacci, M.F.; Zinnai, A.; Venturi, F. Overcoming bread quality decay concerns: Main issues for bread shelf life as a function of biological leavening agents and different extra ingredients used in formulation. A review. J. Sci. Food Agric. 2021, 101, 1732–1743. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Ma, Q.; Chen, J.; Zhao, G. Current progress on innovative pest detection techniques for stored cereal grains and thereof powders. Food Chem. 2022, 396, 133706. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.R.; Sial, M.U.; Arshad, M.; Riaz, A.; Ummara, U.E.; Parveen, A.; Liaqat, T. 8 Insect Pests of Fodder Grains of Summer Season. In Sustainable Summer Fodder Production, Challenges, and Prospects; Haq, I.U., Ijaz, S., Ali, H.M., Eds.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2023; p. 274. ISBN 9781003265801. [Google Scholar]
- Raafat, B.A.A.; Nariman, M.E.-T. Impacting of some selected plant and cattle dung powders as protectants against Tribolium castaneum (Coleoptera: Tenebrionidae) and Sitophilus oryzae (Coleoptera Curculionidae) adults. Egypt. J. Plant Prot. Res. Inst. 2022, 5, 47–62. [Google Scholar]
- Singh, S.; Sharma, D.K. Deterioration of Grain Quality of Wheat by Rice Weevil, Sitophilus oryzae (L.) during Storage. Indian J. Agric. Res. 2024, 58, 344–349. [Google Scholar] [CrossRef]
- Dal Bello, G.; Padin, S.; López Lastra, C.; Fabrizio, M. Laboratory evaluation of chemical-biological control of the rice weevil (Sitophilus oryzae L.) in stored grains. J. Stored Prod. Res. 2000, 37, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Padín, S.; Dal Bello, G.; Fabrizio, M. Grain loss caused by Tribolium castaneum, Sitophilus oryzae and Acanthoscelides obtectus in stored durum wheat and beans treated with Beauveria bassiana. J. Stored Prod. Res. 2002, 38, 69–74. [Google Scholar] [CrossRef]
- Hernandez Nopsa, J.F.; Daglish, G.J.; Hagstrum, D.W.; Leslie, J.F.; Phillips, T.W.; Scoglio, C.; Thomas-Sharma, S.; Walter, G.H.; Garrett, K.A. Ecological Networks in Stored Grain: Key Postharvest Nodes for Emerging Pests, Pathogens, and Mycotoxins. Bioscience 2015, 65, 985–1002. [Google Scholar] [CrossRef] [PubMed]
- Moncini, L.; Sabrina, S.; Gianpaola, P.; Antonio, M.; Miriam, H.; Giovanni, V. N2 controlled atmosphere reduces postharvest mycotoxins risk and pests attack on cereal grains. Phytoparasitica 2020, 48, 555–565. [Google Scholar] [CrossRef]
- Sarrocco, S.; Mauro, A.; Battilani, P. Use of Competitive Filamentous Fungi as an Alternative Approach for Mycotoxin Risk Reduction in Staple Cereals: State of Art and Future Perspectives. Toxins 2019, 11, 701. [Google Scholar] [CrossRef] [PubMed]
- Sehgal, B.; Subramanyam, B. Efficacy of a New Deltamethrin Formulation on Concrete and Wheat Against Adults of Laboratory and Field Strains of Three Stored-Grain Insect Species. J. Econ. Entomol. 2014, 107, 2229–2238. [Google Scholar] [CrossRef] [PubMed]
- Nayak, M.K.; Daglish, G.J.; Phillips, T.W.; Ebert, P.R. Resistance to the fumigant phosphine and its management in insect pests of stored products: A global perspective. Annu. Rev. Entomol. 2020, 65, 333–350. [Google Scholar] [CrossRef]
- Khan, H.A.A.; Khan, T. Mode of inheritance of field-evolved resistance to pirimiphos-methyl in Sitophilus oryzae (Linnaeus) (Coleoptera: Curculionidae). J. Stored Prod. Res. 2023, 102, 102126. [Google Scholar] [CrossRef]
- Opit, G.; Collins, P.J.; Daglish, G.J. 13 Resistance Management. In Stored Product Protection; Hagstrum, D.W., Phillips, T.W., Cuperus, G., Eds.; Kansas State University: Manhattan, KS, USA, 2012; p. 143. ISBN 978-0-9855003-0-6. [Google Scholar]
- Regnault-Roger, C.; Vincent, C.; Arnason, J.T. Essential oils in insect control: Low-risk products in a high-stakes world. Annu. Rev. Entomol. 2012, 57, 405–424. [Google Scholar] [CrossRef]
- Zeni, V.; Baliota, G.V.; Benelli, G.; Canale, A.; Athanassiou, C.G. Diatomaceous Earth for Arthropod Pest Control: Back to the Future. Molecules 2021, 26, 7487. [Google Scholar] [CrossRef] [PubMed]
- Costantini, E.; La Torre, A. Regulatory framework in the European Union governing the use of basic substances in conventional and organic production. J. Plant Dis. Prot. 2022, 129, 715–743. [Google Scholar] [CrossRef]
- Germinara, G.S.; Pistillo, M.; De Cristofaro, A.; Rotundo, G. Effetto del Trattamento Con Polveri Inerti Sulle Interazioni Semiochimiche Insetto-Pianta Ospite. In XXXIII. XXXVII. Nuove Tecnologie per la Difesa delle Derrate Aliment; Accademia Nazionale Italiana di Entomologia: Firenze, Italy, 2020. [Google Scholar]
- Gadd, G.M.; Raven, J.A. Geomicrobiology of Eukaryotic Microorganisms. Geomicrobiol. J. 2010, 27, 491–519. [Google Scholar] [CrossRef]
- Fernández, M.A.; Bellotti, N. Silica-based bioactive solids obtained from modified diatomaceous earth to be used as antimicrobial filler material. Mater. Lett. 2017, 194, 130–134. [Google Scholar] [CrossRef]
- Shah, M.A.; Khan, A.A. Use of diatomaceous earth for the management of stored-product pests. Int. J. Pest Manag. 2014, 60, 100–113. [Google Scholar] [CrossRef]
- Losic, D.; Korunic, Z. Diatomaceous Earth, A Natural Insecticide for Stored Grain Protection: Recent Progress and Perspectives. In Diatom Nanotechnology: Progress and Emerging Applications; Losic, D., Ed.; The Royal Society of Chemistry: London, UK, 2017; pp. 219–247. ISBN 978-1-78262-932-0. [Google Scholar]
- Farina, P.; Ascrizzi, R.; Bedini, S.; Castagna, A.; Flamini, G.; Macaluso, M.; Mannucci, A.; Pieracci, Y.; Ranieri, A.; Sciampagna, M.C.; et al. Chitosan and Essential Oils Combined for Beef Meat Protection against the Oviposition of Calliphora vomitoria, Water Loss, Lipid Peroxidation, and Colour Changes. Foods 2022, 11, 3994. [Google Scholar] [CrossRef]
- Campolina, G.A.; Cardoso, M.D.G.; Caetano, A.R.S.; Nelson, D.L.; Ramos, E.M. Essential Oil and Plant Extracts as Preservatives and Natural Antioxidants Applied to Meat and Meat Products: A Review. Food Technol. Biotechnol. 2023, 61, 212–225. [Google Scholar] [CrossRef]
- Srivastava, S.; Lal, R.K.; Yadav, K.; Pant, Y.; Bawitlung, L.; Kumar, P.; Mishra, A.; Gupta, P.; Pal, A.; Rout, P.K.; et al. Chemical composition of phenylpropanoid rich chemotypes of Ocimum basilicum L. and their antimicrobial activities. Ind. Crops Prod. 2022, 183, 114978. [Google Scholar] [CrossRef]
- NIST. NIST/EPA/NIH Mass Spectral Library; Stein, S.E., Ed.; National Institute of Standards and Technology, Mass Spectrometry Data Center: Gaithersburg, MD, USA, 2014.
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy; Allured Pub. Corp: Carol Stream, IL, USA, 2007; ISBN 0-931710-42-1. [Google Scholar]
- Bedini, S.; Djebbi, T.; Ascrizzi, R.; Farina, P.; Pieracci, Y.; Echeverría, M.C.; Flamini, G.; Trusendi, F.; Ortega, S.; Chiliquinga, A.; et al. Repellence and attractiveness: The hormetic effect of aromatic plant essential oils on insect behavior. Ind. Crops Prod. 2024, 210, 118122. [Google Scholar] [CrossRef]
- Pierattini, E.C.; Bedini, S.; Venturi, F.; Ascrizzi, R.; Flamini, G.; Bocchino, R.; Girardi, J.; Giannotti, P.; Ferroni, G.; Conti, B. Sensory Quality of Essential Oils and Their Synergistic Effect with Diatomaceous Earth, for the Control of Stored Grain Insects. Insects 2019, 10, 114. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, A.; Venturi, F.; Zinnai, A.; Taglieri, I.; Najar, B.; Macaluso, M.; Merlani, G.; Angelini, L.G.; Tavarini, S.; Clemente, C.; et al. Valorization of an Old Variety of Triticum aestivum: A Study of Its Suitability for Breadmaking Focusing on Sensory and Nutritional Quality. Foods 2023, 12, 1351. [Google Scholar] [CrossRef]
- Bianchi, A.; Taglieri, I.; Zinnai, A.; Macaluso, M.; Sanmartin, C.; Venturi, F. Effect of Argon as Filling Gas of the Storage Atmosphere on the Shelf-Life of Sourdough Bread—Case Study on PDO Tuscan Bread. Foods 2022, 11, 3470. [Google Scholar] [CrossRef] [PubMed]
- Taglieri, I.; Sanmartin, C.; Venturi, F.; Macaluso, M.; Bianchi, A.; Sgherri, C.; Quartacci, M.F.; De Leo, M.; Pistelli, L.; Palla, F.; et al. Bread fortified with cooked purple potato flour and citrus albedo: An evaluation of its compositional and sensorial properties. Foods 2021, 10, 942. [Google Scholar] [CrossRef] [PubMed]
- Mastrangelo, N.; Bianchi, A.; Pettinelli, S.; Santini, G.; Merlani, G.; Bellincontro, A.; Baris, F.; Chinnici, F.; Mencarelli, F. Novelty of Italian Grape Ale (IGA) beer: Influence of the addition of Gamay macerated grape must or dehydrated Aleatico grape pomace on the aromatic profile. Heliyon 2023, 9, e20422. [Google Scholar] [CrossRef] [PubMed]
- Pistelli, L.; Ascrizzi, R.; Giuliani, C.; Cervelli, C.; Ruffoni, B.; Princi, E.; Fontanesi, G.; Flamini, G.; Pistelli, L. Growing basil in the underwater biospheres of Nemo’s Garden®: Phytochemical, physiological and micromorphological analyses. Sci. Hortic. 2020, 259, 108851. [Google Scholar] [CrossRef]
- The Good Scents Company Information System. Available online: https://www.thegoodscentscompany.com/index.html (accessed on 16 December 2024).
- Kačániová, M.; Galovičová, L.; Borotová, P.; Vukovic, N.L.; Vukic, M.; Kunová, S.; Hanus, P.; Bakay, L.; Zagrobelna, E.; Kluz, M.; et al. Assessment of Ocimum basilicum Essential Oil Anti-Insect Activity and Antimicrobial Protection in Fruit and Vegetable Quality. Plants 2022, 11, 1030. [Google Scholar] [CrossRef] [PubMed]
- Tapondjou, A.L.; Adler, C.; Fontem, D.A.; Bouda, H.; Reichmuth, C. Bioactivities of cymol and essential oils of Cupressus sempervirens and Eucalyptus saligna against Sitophilus zeamais Motschulsky and Tribolium confusum du Val. J. Stored Prod. Res. 2005, 41, 91–102. [Google Scholar] [CrossRef]
- Seada, M.A.; Arab, R.A.; Adel, I.; Seif, A.I. Bioactivity of essential oils of basil, fennel, and geranium against Sitophilus oryzae and Callosobruchus maculatus: Evaluation of repellency, progeny production and residual activity. Egypt. J. Exp. Biol. 2016, 12, 1–12. [Google Scholar]
- Muráriková, A.; Ťažký, A.; Neugebauerová, J.; Planková, A.; Jampílek, J.; Mučaji, P.; Mikuš, P. Characterization of Essential Oil Composition in Different Basil Species and Pot Cultures by a GC-MS Method. Molecules 2017, 22, 1221. [Google Scholar] [CrossRef]
- Yaldiz, G.; Camlica, M. Essential oils content, composition and antioxidant activity of selected basil (Ocimum basilicum L.) genotypes. S. Afri. J. Bot. 2022, 151, 675–694. [Google Scholar] [CrossRef]
- da Silva, W.M.F.; Kringel, D.H.; de Souza, E.J.D.; da Rosa Zavareze, E.; Dias, A.R.G. Basil Essential Oil: Methods of Extraction, Chemical Composition, Biological Activities, and Food Applications. Food Bioprocess Technol. 2022, 15, 1–27. [Google Scholar] [CrossRef]
- Telci, I.; Bayram, E.; Yılmaz, G.; Avcı, B. Variability in essential oil composition of Turkish basils (Ocimum basilicum L.). Biochem. Syst. Ecol. 2006, 34, 489–497. [Google Scholar] [CrossRef]
- Tangpao, T.; Chung, H.-H.; Sommano, S.R. Aromatic Profiles of Essential Oils from Five Commonly Used Thai Basils. Foods 2018, 7, 175. [Google Scholar] [CrossRef] [PubMed]
- Bernhardt, B.; Sipos, L.; Kókai, Z.; Gere, A.; Szabó, K.; Bernáth, J.; Sárosi, S. Comparison of different Ocimum basilicum L. gene bank accessions analyzed by GC–MS and sensory profile. Ind. Crops Prod. 2015, 67, 498–508. [Google Scholar] [CrossRef]
- Athanassiou, C.G.; Vayias, B.J.; Dimizas, C.B.; Kavallieratos, N.G.; Papagregoriou, A.S.; Buchelos, C.T. Insecticidal efficacy of diatomaceous earth against Sitophilus oryzae (L.) (Coleoptera: Curculionidae) and Tribolium confusum du Val (Coleoptera: Tenebrionidae) on stored wheat: Influence of dose rate, temperature and exposure interval. J. Stored Prod. Res. 2005, 41, 47–55. [Google Scholar] [CrossRef]
- Vayias, B.J.; Athanassiou, C.G.; Korunic, Z.; Rozman, V. Evaluation of natural diatomaceous earth deposits from south-eastern Europe for stored-grain protection: The effect of particle size. Pest Manag. Sci. 2009, 65, 1118–1123. [Google Scholar] [CrossRef] [PubMed]
- Athanassiou, C.G.; Kavallieratos, N.G.; Andris, N.S. Insecticidal Effect of Three Diatomaceous Earth Formulations Against Adults of Sitophilus oryzae (Coleoptera: Curculionidae) and Tribolium confusum (Coleoptera: Tenebrionidae) on Oat, Rye, and Triticale. J. Econ. Entomol. 2004, 97, 2160–2167. [Google Scholar] [CrossRef] [PubMed]
- Kéita, S.M.; Vincent, C.; Schmit, J.-P.; Arnason, J.T.; Bélanger, A. Efficacy of essential oil of Ocimum basilicum L. and O. gratissimum L. applied as an insecticidal fumigant and powder to control Callosobruchus maculatus (Fab.) [Coleoptera: Bruchidae]. J. Stored Prod. Res. 2001, 37, 339–349. [Google Scholar] [CrossRef]
- Popović, Z.; Kostić, M.; Popović, S.; Skorić, S. Bioactivities of Essential Oils from Basil and Sage to Sitophilus oryzae L. Biotechnol. Biotechnol. Equip. 2006, 20, 36–40. [Google Scholar] [CrossRef]
- Moura, E.D.; Faroni, L.R.; Heleno, F.F.; Rodrigues, A.A. Toxicological Stability of Ocimum basilicum Essential Oil and Its Major Components in the Control of Sitophilus zeamais. Molecules 2021, 26, 6483. [Google Scholar] [CrossRef] [PubMed]
- Bincy, K.; Remesh, A.V.; Prabhakar, P.R.; Vivek Babu, C.S. Chemical composition and insecticidal activity of Ocimum basilicum (Lamiaceae) essential oil and its major constituent, estragole against Sitophilus oryzae (Coleoptera: Curculionidae). J. Plant Dis. Prot. 2023, 130, 529–541. [Google Scholar] [CrossRef]
- Yang, F.-L.; Liang, G.-W.; Xu, Y.-J.; Lu, Y.-Y.; Zeng, L. Diatomaceous earth enhances the toxicity of garlic, Allium sativum, essential oil against stored-product pests. J. Stored Prod. Res. 2010, 46, 118–123. [Google Scholar] [CrossRef]
- Ziaee, M.; Moharramipour, S.; Francikowski, J. The synergistic effects of Carum copticum essential oil on diatomaceous earth against Sitophilus granarius and Tribolium confusum. J. Asia. Pac. Entomol. 2014, 17, 817–822. [Google Scholar] [CrossRef]
- Campolo, O.; Romeo, F.V.; Malacrinò, A.; Laudani, F.; Carpinteri, G.; Fabroni, S.; Rapisarda, P.; Palmeri, V. Effects of inert dusts applied alone and in combination with sweet orange essential oil against Rhyzopertha dominica (Coleoptera: Bostrichidae) and wheat microbial population. Ind. Crops Prod. 2014, 61, 361–369. [Google Scholar] [CrossRef]
- Pico, J.; Bernal, J.; Gómez, M. Wheat bread aroma compounds in crumb and crust: A review. Food Res. Int. 2015, 75, 200–215. [Google Scholar] [CrossRef] [PubMed]
- Starowicz, M.; Zieliński, H. How Maillard Reaction Influences Sensorial Properties (Color, Flavor and Texture) of Food Products? Food Rev. Int. 2019, 35, 707–725. [Google Scholar] [CrossRef]
- Birch, A.N.; Petersen, M.A.; Arneborg, N.; Hansen, Å.S. Influence of commercial baker’s yeasts on bread aroma profiles. Food Res. Int. 2013, 52, 160–166. [Google Scholar] [CrossRef]
- Ma, S.; Wang, Z.; Guo, X.; Wang, F.; Huang, J.; Sun, B.; Wang, X. Sourdough improves the quality of whole-wheat flour products: Mechanisms and challenges—A review. Food Chem. 2021, 360, 130038. [Google Scholar] [CrossRef] [PubMed]
- Korunic, Z.; Fields, P.G. Evaluation of three new insecticide formulations based on inert dusts and botanicals against four stored-grain beetles. J. Stored Prod. Res. 2020, 88, 101633. [Google Scholar] [CrossRef]
- Morsy, M.M. Sustainable Storage Pest Management Using Diatomaceous Earth against Sitophilus oryzae L. J. Appl. Plant Prot. 2021, 10, 59–67. [Google Scholar] [CrossRef]
- Jurkaninová, L.; Švec, I.; Kučerová, I.; Havrlentová, M.; Božik, M.; Klouček, P.; Leuner, O. The Use of Thyme and Lemongrass Essential Oils in Cereal Technology—Effect on Wheat Dough Behavior and Bread Properties. Appl. Sci. 2024, 14, 4831. [Google Scholar] [CrossRef]
- Dong, Y.; Karboune, S. A review of bread qualities and current strategies for bread bioprotection: Flavor, sensory, rheological, and textural attributes. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1937–1981. [Google Scholar] [CrossRef] [PubMed]
- Noshirvani, N.; Le Coz, C.; Gardrat, C.; Ghanbarzadeh, B.; Coma, V. Active Polysaccharide-Based Films Incorporated with Essential Oils for Extending the Shelf Life of Sliced Soft Bread. Molecules 2024, 29, 4664. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Liu, Y.; Zhang, T.; Qiu, W.; Chen, X.; Wang, G. Microencapsulated cinnamon essential oil extends bread shelf life and alters microbial diversity. Food Biosci. 2024, 62, 105078. [Google Scholar] [CrossRef]
- Bodroža-Solarov, M.I.; Kljajić, P.; Andrić, G.; Pražić-Golić, M.; Filipčev, B.V.; Šimurina, O.; Adamović, M. Trading quality and breadmaking performance of wheat treated with natural zeolite and diatomaceous earth. Acta Period. Technol. 2011, 2011, 1–9. [Google Scholar] [CrossRef]
- Freo, J.D.; de Moraes, L.B.D.; Santetti, G.S.; Gottmannshausen, T.L.; Elias, M.C.; Gutkoski, L.C. Physicochemical characteristics of wheat treated with diatomaceous earth and conventionally stored. Ciência e Agrotecnol. 2014, 38, 546–553. [Google Scholar] [CrossRef]
- Kessler, J.C.; Vieira, V.; Martins, I.M.; Manrique, Y.A.; Ferreira, P.; Calhelha, R.C.; Afonso, A.; Barros, L.; Rodrigues, A.E.; Dias, M.M. Chemical and organoleptic properties of bread enriched with Rosmarinus officinalis L.: The potential of natural extracts obtained through green extraction methodologies as food ingredients. Food Chem. 2022, 384, 132514. [Google Scholar] [CrossRef]
- Rahman, M.; Islam, R.; Hasan, S.; Zzaman, W.; Rana, M.R.; Ahmed, S.; Roy, M.; Sayem, A.; Matin, A.; Raposo, A.; et al. A Comprehensive Review on Bio-Preservation of Bread: An Approach to Adopt Wholesome Strategies. Foods 2022, 11, 319. [Google Scholar] [CrossRef] [PubMed]
- Debonne, E.; Van Bockstaele, F.; Samapundo, S.; Eeckhout, M.; Devlieghere, F. The use of essential oils as natural antifungal preservatives in bread products. J. Essent. Oil Res. 2018, 30, 309–318. [Google Scholar] [CrossRef]
- Kačániová, M.; Galovičová, L.; Valková, V.; Tvrdá, E.; Terentjeva, M.; Žiarovská, J.; Kunová, S.; Savitskaya, T.; Grinshpan, D.; Štefániková, J.; et al. Antimicrobial and antioxidant activities of Cinnamomum cassia essential oil and its application in food preservation. Open Chem. 2021, 19, 214–227. [Google Scholar] [CrossRef]
Compounds | l.r.i. a | Relative Abundance (%) b |
---|---|---|
Limonene | 1032 | 0.1 ± 0.07 |
1,8-Cineole | 1034 | 0.4 ± 0.03 |
(E)-β-Ocimene | 1052 | 0.1 ± 0.01 |
Linalool | 1101 | 16.7 ± 0.03 |
Menthol | 1173 | 0.3 ± 0.02 |
α-Terpineol | 1189 | 0.2 ± 0.00 |
Methyl chavicol | 1197 | 75.2 ± 0.59 |
Neral | 1240 | 0.5 ± 0.05 |
trans-Citral | 1273 | 0.8 ± 0.08 |
Eugenol | 1358 | 0.1 ± 0.04 |
β-Caryophyllene | 1420 | 0.6 ± 0.04 |
trans-α-Bergamotene | 1438 | 0.9 ± 0.05 |
α-Humulene | 1456 | 0.3 ± 0.02 |
(E)-β-Farnesene | 1460 | 0.3 ± 0.04 |
Germacrene D | 1478 | 0.5 ± 0.05 |
Germacrene B | 1554 | 2.9 ± 0.06 |
epi-α-Cadinol | 1641 | 0.1 ± 0.00 |
Monoterpene hydrocarbons | 0.2 ± 0.08 | |
Oxygenated monoterpenes | 18.8 ± 0.21 | |
Sesquiterpene hydrocarbons | 5.6 ± 0.26 | |
Oxygenated sesquiterpenes | 0.1 ± 0.00 | |
Phenylpropanoids | 75.3 ± 0.55 | |
Total identified (%) | 100.0 ± 0.00 |
Volatile Organic Compounds (VOCs) | p-Value 1 | B-C-Whole | B-DE-Whole | B-DE + EO-Whole | B-EO-Whole | p-Value 1 | B-C-Slices | B-DE-Slices | DE + EO-Slices | EO-Slices |
---|---|---|---|---|---|---|---|---|---|---|
δ-3-Carene | ns | n.d. | n.d. | n.d. | n.d. | ** | n.d. b | 0.3 ± 0.1 a | n.d. b | n.d. b |
Limonene | * | 0.3 ± 0.1 a | 0.2 ± 0.1 a | n.d. b | n.d. b | *** | 3.8 ± 0.1 b | 4.9 ± 0.1 a | 1.2 ± 0.1 c | 0.6 ± 0.1 d |
Monoterpene hydrocarbons | * | 0.3 ± 0.1 a | 0.2 ± 0.1 a | n.d. b | n.d. b | *** | 3.8 ± 0.1 b | 5.1 ± 0.1 a | 1.2 ± 0.1 c | 0.6 ± 0.1 d |
1,8-Cineole | ns | n.d. | n.d. | n.d. | n.d. | *** | n.d. c | n.d. c | 1.0 ± 0.0 a | 0.2 ± 0.1 b |
Linalool | ns | n.d. | n.d. | n.d. | n.d. | *** | n.d. b | n.d. b | 0.1 ± 0.0 a | 0.1 ± 0.0 a |
Oxygenated monoterpenes | ns | n.d. | n.d. | n.d. | n.d. | *** | n.d. c | n.d. c | 1.1 ± 0.0 a | 0.3 ± 0.1 b |
trans-α-Bergamotene | *** | n.d. c | n.d. c | 0.2 ± 0.0 b | 0.3 ± 0.0 a | *** | n.d. c | n.d. c | 0.4 ± 0.0 b | 0.6 ± 0.0 a |
Sesquiterpene hydrocarbons | *** | n.d. c | n.d. c | 0.2 ± 0.0 b | 0.3 ± 0.0 a | *** | n.d. c | n.d. c | 0.4 ± 0.0 b | 0.6 ± 0.0 a |
Pyrazine | *** | n.d. b | n.d. b | n.d. b | 0.9 ± 0.0 a | ** | n.d. b | n.d. b | n.d. b | 0.1 ± 0.0 a |
Pyridine | * | n.d. b | n.d. b | n.d. b | 0.1 ± 0.0 a | ns | n.d. | n.d. | n.d. | n.d. |
2-Methylpyridine | * | 0.5 ± 0.1 a | 0.4 ± 0.1 a | 0.2 ± 0.1 ab | 0.2 ± 0.0 b | ns | n.d. | n.d. | n.d. | n.d. |
Methylpyrazine | ** | 7.4 ± 0.3 a | 7.2 ± 0.0 a | 6.4 ± 0.1 b | 6.2 ± 0.2 b | ** | 3.7 ± 0.0 a | 2.4 ± 0.1 b | 3.4 ± 0.4 a | 3.4 ± 0.1 a |
2,6-Dimethylpyrazine | *** | 2.8 ± 0.1 a | 1.5 ± 0.1 b | 0.9 ± 0.2 c | 0.9 ± 0.0 c | * | 0.7 ± 0.1 a | 0.2 ± 0.0 c | 0.5 ± 0.1 ab | 0.4 ± 0.0 b |
2-Ethylpyrazine | ** | 5.1 ± 0.1 b | 5.6 ± 0.1 a | 5.2 ± 0.1 b | 4.8 ± 0.1 b | * | 2.3 ± 0.1 a | 1.7 ± 0.1 b | 2.1 ± 0.2 ab | 2.1 ± 0.1 ab |
2,3-Dimethylpyrazine | ns | 1.6 ± 0.1 | 1.6 ± 0.1 | 1.4 ± 0.1 | 1.4 ± 0.1 | *** | n.d. b | n.d. b | n.d. b | 0.3 ± 0.0 a |
2-Ethyl-6-methylpyrazine | * | 1.8 ± 0.1 a | 1.6 ± 0.1 ab | 1.5 ± 0.0 b | 1.5 ± 0.0 b | *** | 2.2 ± 0.1 b | 2.6 ± 0.1 a | 1.4 ± 0.1 c | 1.2 ± 0.1 c |
2-Ethyl-5-methylpyrazine | * | 0.8 ± 0.1 b | 0.8 ± 0.0 ab | 0.8 ± 0.1 b | 1.0 ± 0.0 a | * | 1.0 ± 0.2 a | 0.4 ± 0.1 b | 0.5 ± 0.1 b | 0.5 ± 0.1 b |
Trimethylpyrazine | ns | 0.5 ± 0.0 | 0.5 ± 0.0 | 0.5 ± 0.1 | 0.5 ± 0.1 | *** | 0.4 ± 0.0 b | 0.6 ± 0.1 a | n.d. c | n.d. c |
2-Ethyl-3-methylpyrazine | ns | 0.6 ± 0.1 | 0.6 ± 0.1 | 0.5 ± 0.1 | 0.7 ± 0.0 | *** | n.d. c | 0.5 ± 0.1 a | 0.1 ± 0.0 b | 0.1 ± 0.0 b |
2-Ethenyl-6-methylpyrazine | ** | 0.9 ± 0.1 ab | 0.9 ± 0.0 a | 0.7 ± 0.1 bc | 0.6 ± 0.0 c | ** | 0.5 ± 0.1 ab | 0.7 ± 0.1 a | 0.4 ± 0.0 b | 0.2 ± 0.0 c |
2-Acetylpyrrole | ns | 0.2 ± 0.0 | 0.1 ± 0.0 | 0.2 ± 0.1 | 0.2 ± 0.0 | * | 0.2 ± 0.1 b | 0.5 ± 0.1 a | 0.2 ± 0.0 b | 0.2 ± 0.0 b |
3-Ethyl-2,5-dimethylpyrazine | ns | 0.2 ± 0.1 | 0.2 ± 0.1 | 0.2 ± 0.1 | 0.2 ± 0.0 | * | 0.2 ± 0.1 b | 0.4 ± 0.0 a | 0.2 ± 0.1 b | 0.1 ± 0.0 b |
Nitrogen derivatives | *** | 22.1 ± 0.2 a | 20.7 ± 0.0 b | 18.1 ± 0.5 d | 19.1 ± 0.2 c | ** | 11.0 ± 0.1 a | 9.6 ± 0.0 b | 8.6 ± 0.5 c | 8.5 ± 0.4 c |
Methyl chavicol | *** | 1.1 ± 0.1 d | 1.5 ± 0.1 c | 13.5 ± 0.3 b | 19.2 ± 0.7 a | *** | 4.5 ± 0.4 c | 4.5 ± 0.1 c | 35.8 ± 1.0 b | 44.2 ± 0.5 a |
(E)-Anethole | * | n.d. b | n.d. b | 0.2 ± 0.1 a | 0.3 ± 0.1 a | *** | n.d. b | n.d. b | 0.5 ± 0.1 a | 0.6 ± 0.1 a |
Phenylpropanoids | *** | 1.1 ± 0.1 d | 1.5 ± 0.1 c | 13.7 ± 0.2 b | 19.5 ± 0.8 a | *** | 4.5 ± 0.4 c | 4.5 ± 0.1 c | 36.3 ± 1.1 b | 44.7 ± 0.4 a |
n-Heptane | * | 0.4 ± 0.1 a | 0.2 ± 0.0 ab | 0.2 ± 0.1 ab | n.d. b | *** | 0.2 ± 0.0 a | n.d. b | n.d. b | n.d. b |
Hydrocarbons | * | 0.4 ± 0.1 a | 0.2 ± 0.0 ab | 0.2 ± 0.1 ab | n.d. b | *** | 0.2 ± 0.0 a | n.d. b | n.d. b | n.d. b |
3-Methylbutanal | ** | 1.4 ± 0.1 a | 0.9 ± 0.0 b | 0.6 ± 0.1 b | 0.8 ± 0.1 b | *** | 3.1 ± 0.1 b | 3.9 ± 0.1 a | 1.1 ± 0.1 c | 1.3 ± 0.1 c |
2-Methylbutanal | ** | 4.8 ± 0.1 a | 4.4 ± 0.2 ab | 3.9 ± 0.1 b | 3.2 ± 0.2 c | *** | 6.2 ± 0.1 b | 6.8 ± 0.2 a | 3.1 ± 0.1 c | 2.9 ± 0.0 c |
2,3-Pentanedione | *** | 0.6 ± 0.0 b | 0.7 ± 0.0 a | 0.5 ± 0.0 c | 0.3 ± 0.0 d | * | 0.7 ± 0.1 a | 0.5 ± 0.1 ab | 0.4 ± 0.0 b | 0.4 ± 0.0 b |
Pentanal | ns | n.d. | n.d. | n.d. | n.d. | ** | n.d. b | 0.3 ± 0.1 a | 0.1 ± 0.0 a | n.d. b |
Acetoin | *** | 1.8 ± 0.1 a | 1.3 ± 0.0 b | 1.6 ± 0.1 a | 0.9 ± 0.1 c | *** | 3.8 ± 0.2 a | 3.7 ± 0.1 a | 2.6 ± 0.1 b | 1.9 ± 0.1 c |
Hexanal | *** | 3.0 ± 0.2 a | 3.1 ± 0.1 a | 1.8 ± 0.1 b | 1.4 ± 0.2 b | *** | 4.4 ± 0.1 a | 4.4 ± 0.1 a | 2.3 ± 0.1 b | 1.8 ± 0.1 c |
Dihydro-2-methyl-3(2H)-furanone | ns | 1.4 ± 0.1 | 1.3 ± 0.1 | 1.4 ± 0.0 | 1.4 ± 0.1 | *** | 1.7 ± 0.1 a | 1.5 ± 0.1 a | 0.9 ± 0.0 b | 1.0 ± 0.1 b |
Furfural | ** | 20.4 ± 0.1 b | 21.2 ± 0.2 b | 22.6 ± 0.4 a | 22.9 ± 0.4 a | *** | 9.5 ± 0.1 c | 8.6 ± 0.1 d | 12.0 ± 0.3 b | 13.0 ± 0.1 a |
Acetoxyacetone | ns | 1.1 ± 0.1 | 1.1 ± 0.1 | 1.0 ± 0.0 | 1.1 ± 0.0 | ns | n.d. | n.d. | n.d. | n.d. |
2-Heptanone | ** | 0.6 ± 0.1 a | 0.6 ± 0.0 a | 0.3 ± 0.1 b | 0.3 ± 0.0 b | ** | 0.8 ± 0.0 a | 0.6 ± 0.1 b | 0.5 ± 0.1 bc | 0.3 ± 0.0 c |
Heptanal | ** | 0.9 ± 0.1 b | 1.0 ± 0.0 a | 0.8 ± 0.0 bc | 0.7 ± 0.0 c | *** | 1.3 ± 0.1 a | 0.9 ± 0.0 bc | 1.0 ± 0.0 b | 0.8 ± 0.0 c |
2-Acetylfuran | ns | 3.6 ± 0.1 | 3.7 ± 0.1 | 3.9 ± 0.4 | 4.3 ± 0.1 | ** | 3.2 ± 0.1 a | 2.7 ± 0.1 b | 2.2 ± 0.1 c | 2.4 ± 0.2 bc |
5-Methyl-2(5H)-furanone | * | n.d. b | 0.2 ± 0.0 a | 0.2 ± 0.1 a | 0.2 ± 0.0 a | ns | n.d. | n.d. | n.d. | n.d. |
Benzaldehyde | *** | 0.7 ± 0.0 a | 0.7 ± 0.0 a | 0.3 ± 0.0 b | 0.3 ± 0.0 b | *** | 1.0 ± 0.0 a | 1.0 ± 0.1 a | 0.5 ± 0.1 b | 0.4 ± 0.0 b |
5-Methylfurfural | *** | 2.3 ± 0.1 c | 2.3 ± 0.1 c | 3.3 ± 0.1 b | 5.9 ± 0.0 a | *** | 1.2 ± 0.0 c | 0.9 ± 0.1 d | 1.7 ± 0.2 b | 2.7 ± 0.1 a |
Phenylacetaldehyde | *** | 1.0 ± 0.1 a | 0.9 ± 0.1 a | 0.3 ± 0.0 b | 0.4 ± 0.1 b | *** | 1.0 ± 0.1 a | 0.5 ± 0.1 b | 0.3 ± 0.0 c | 0.3 ± 0.0 c |
(E)-2-Octenal | ns | 0.3 ± 0.0 | 0.3 ± 0.0 | 0.2 ± 0.0 | 0.3 ± 0.0 | * | 0.3 ± 0.1 a | 0.3 ± 0.1 a | 0.1 ± 0.0 b | 0.1 ± 0.0 b |
Nonanal | *** | 0.9 ± 0.1 a | 0.7 ± 0.1 a | 0.4 ± 0.0 b | 0.2 ± 0.0 b | *** | 0.3 ± 0.0 b | 0.7 ± 0.1 a | 0.2 ± 0.0 bc | 0.1 ± 0.0 c |
(E)-2-Nonenal | * | 1.8 ± 0.1 a | 1.6 ± 0.0 ab | 1.3 ± 0.1 b | 1.4 ± 0.1 b | *** | 1.6 ± 0.0 b | 1.9 ± 0.1 a | 0.9 ± 0.0 c | 0.8 ± 0.0 c |
Decanal | ** | 0.2 ± 0.0 b | 0.2 ± 0.0 b | 0.5 ± 0.1 a | 0.1 ± 0.0 b | ** | n.d. b | n.d. b | 0.2 ± 0.0 a | n.d. b |
(E,E)-2,4-Decadienal | ns | 0.3 ± 0.1 | 0.3 ± 0.1 | 0.1 ± 0.0 | 0.1 ± 0.0 | *** | 0.4 ± 0.1 b | 1.4 ± 0.1 a | 0.2 ± 0.1 bc | 0.2 ± 0.0 c |
Aldehydes/Ketones | ns | 46.6 ± 0.1 | 46.0 ± 0.0 | 44.6 ± 0.8 | 45.9 ± 1.2 | *** | 40.1 ± 0.1 a | 39.8 ± 0.2 a | 30.0 ± 0.4 b | 30.2 ± 0.1 b |
Isobutyl alcohol | ns | n.d. | n.d. | n.d. | n.d. | ** | 0.9 ± 0.1 a | 0.8 ± 0.1 a | 0.4 ± 0.0 b | 0.3 ± 0.1 b |
Isopentyl alcohol | *** | 4.2 ± 0.1 a | 3.5 ± 0.1 b | 2.5 ± 0.1 c | 1.4 ± 0.1 d | *** | 11.3 ± 0.1 a | 9.9 ± 0.1 b | 5.1 ± 0.1 c | 3.2 ± 0.1 d |
2-Methylbutanol | *** | 1.8 ± 0.1 a | 1.8 ± 0.0 a | 1.4 ± 0.0 b | n.d. c | *** | 3.2 ± 0.1 a | 2.9 ± 0.1 b | 1.7 ± 0.0 c | 1.3 ± 0.1 d |
1-Pentanol | *** | 0.2 ± 0.0 a | 0.2 ± 0.0 a | n.d. b | n.d. b | ns | n.d. | n.d. | n.d. | n.d. |
(Z)-2-Penten-1-ol | ** | 0.2 ± 0.0 a | 0.3 ± 0.1 a | n.d. b | n.d. b | ns | n.d. | n.d. | n.d. | n.d. |
1,3-Butanediol | * | 0.2 ± 0.0 a | 0.2 ± 0.1 a | 0.1 ± 0.0 ab | n.d. b | ns | 0.1 ± 0.0 | 0.2 ± 0.0 | 0.2 ± 0.0 | 0.1 ± 0.0 |
1-Methoxyhexane | *** | 1.7 ± 0.1 a | n.d. b | n.d. b | n.d. b | ns | n.d. | n.d. | n.d. | n.d. |
Furfuryl alcohol | *** | 14.8 ± 0.2 b | 16.7 ± 0.1 a | 14.4 ± 0.1 b | 8.4 ± 0.0 c | *** | 9.5 ± 0.1 a | 9.6 ± 0.1 a | 7.9 ± 0.3 b | 5.2 ± 0.0 c |
1-Hexanol | ns | n.d. | n.d. | n.d. | n.d. | * | 0.9 ± 0.1 a | 0.7 ± 0.1 ab | 0.7 ± 0.1 ab | 0.6 ± 0.1 b |
2-Pentyl furan | *** | 4.4 ± 0.1 a | 4.5 ± 0.2 a | 1.8 ± 0.3 b | 2.5 ± 0.2 b | *** | 8.4 ± 0.1 b | 8.8 ± 0.1 a | 3.3 ± 0.1 c | 2.4 ± 0.1 d |
3-Ethyl-1-hexanol | * | 0.3 ± 0.1 a | 0.4 ± 0.1 a | n.d. b | n.d. b | ns | n.d. | n.d. | n.d. | n.d. |
Maltol | ns | 0.6 ± 0.1 | 0.5 ± 0.1 | 0.5 ± 0.0 | 0.4 ± 0.0 | *** | 0.8 ± 0.0 a | 0.9 ± 0.0 a | 0.6 ± 0.1 b | 0.3 ± 0.0 c |
Phenylethyl alcohol | ns | 0.7 ± 0.1 | 0.7 ± 0.1 | 0.6 ± 0.0 | 0.5 ± 0.0 | *** | 3.5 ± 0.5 a | 3.6 ± 0.1 a | 1.0 ± 0.1 b | 0.9 ± 0.1 b |
p-Vinylguaiacol | ns | 0.1 ± 0.0 | 0.1 ± 0.0 | 0.1 ± 0.0 | 0.1 ± 0.0 | ** | 0.1 ± 0.0 b | 0.4 ± 0.1 a | 0.1 ± 0.0 b | 0.1 ± 0.0 b |
Alcohols/Phenols/Ethers | *** | 28.9 ± 0.1 a | 28.6 ± 0.4 a | 21.4 ± 0.1 b | 13.3 ± 0.1 c | *** | 38.5 ± 0.5 a | 37.4 ± 0.2 b | 20.9 ± 0.3 c | 14.2 ± 0.2 d |
Butyrolactone | ns | n.d. | n.d. | n.d. | n.d. | *** | n.d. b | 0.9 ± 0.0 a | 0.9 ± 0.1 a | 0.8 ± 0.1 a |
γ-Nonalactone | ns | 0.2 ± 0.0 | 0.2 ± 0.0 | 0.2 ± 0.0 | 0.1 ± 0.0 | ** | 0.3 ± 0.1 b | 0.9 ± 0.1 a | 0.2 ± 0.1 bc | 0.1 ± 0.0 c |
Lactones | ns | 0.2 ± 0.0 | 0.2 ± 0.0 | 0.2 ± 0.0 | 0.1 ± 0.0 | *** | 0.3 ± 0.1 c | 1.7 ± 0.1 a | 1.1 ± 0.1 b | 0.9 ± 0.1 b |
Total identified | 99.5 ± 0.3 | 97.3 ± 0.2 | 98.2 ± 0.1 | 98.0 ± 0.1 | 98.2 ± 0.0 | 98.0 ± 0.2 | 99.3 ± 0.3 | 99.8 ± 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bianchi, A.; Farina, P.; Venturi, F.; Trusendi, F.; Flamini, G.; Ascrizzi, R.; Sarrocco, S.; Ortega-Andrade, S.; Echeverria, M.C.; Conti, B.; et al. Reduced Doses of Diatomaceous Earth and Basil Essential Oil on Stored Grain Against the Wheat-Damaging Sitophilus oryzae: Influence on Bread Quality and Sensory Profile. Foods 2025, 14, 572. https://doi.org/10.3390/foods14040572
Bianchi A, Farina P, Venturi F, Trusendi F, Flamini G, Ascrizzi R, Sarrocco S, Ortega-Andrade S, Echeverria MC, Conti B, et al. Reduced Doses of Diatomaceous Earth and Basil Essential Oil on Stored Grain Against the Wheat-Damaging Sitophilus oryzae: Influence on Bread Quality and Sensory Profile. Foods. 2025; 14(4):572. https://doi.org/10.3390/foods14040572
Chicago/Turabian StyleBianchi, Alessandro, Priscilla Farina, Francesca Venturi, Francesca Trusendi, Guido Flamini, Roberta Ascrizzi, Sabrina Sarrocco, Sania Ortega-Andrade, Maria Cristina Echeverria, Barbara Conti, and et al. 2025. "Reduced Doses of Diatomaceous Earth and Basil Essential Oil on Stored Grain Against the Wheat-Damaging Sitophilus oryzae: Influence on Bread Quality and Sensory Profile" Foods 14, no. 4: 572. https://doi.org/10.3390/foods14040572
APA StyleBianchi, A., Farina, P., Venturi, F., Trusendi, F., Flamini, G., Ascrizzi, R., Sarrocco, S., Ortega-Andrade, S., Echeverria, M. C., Conti, B., & Taglieri, I. (2025). Reduced Doses of Diatomaceous Earth and Basil Essential Oil on Stored Grain Against the Wheat-Damaging Sitophilus oryzae: Influence on Bread Quality and Sensory Profile. Foods, 14(4), 572. https://doi.org/10.3390/foods14040572