Effect of Nisin and Storage Temperature on Outgrowth of Bacillus cereus Spores in Pasteurized Liquid Whole Eggs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains
2.2. Spore Preparation
2.3. Sample Preparation
2.4. Growth Study
2.5. Enumeration of B. cereus Population
2.6. Data Analysis and Modeling
2.6.1. Primary Modeling
2.6.2. Secondary Modeling
2.6.3. Tertiary Modeling
2.6.4. Model Validation
3. Results and Discussion
3.1. pH and Water Activity
3.2. Primary Models
3.3. Secondary Models
3.4. Model Validation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Temp (°C) | Conc. of Nisin (ppm) | Growth Parameters | ||||||||||||||
h0 | umax | LPD | yo | ymax | ||||||||||||
R1 | R2 | R3 | R1 | R2 | R3 | R1 | R2 | R3 | R1 | R2 | R3 | R1 | R2 | R3 | ||
15 | 0 | 2.67 | 3.33 | 2.47 | 0.1 | 0.13 | 0.08 | 2.99 | 3.11 | 30.88 | 2.57 | 2.48 | 2.13 | 7.69 | 7.71 | 7.27 |
2 | 15.19 | 9.58 | 22.28 | 0.11 | 0.06 | 0.11 | 3.3 | 3.27 | 3.51 | 2.32 | 2.26 | 2.21 | 7.66 | 7.4 | 7.76 | |
4 | - | 13.62 | 39.32 | - | 0.06 | 0.09 | - | 2.93 | 4.48 | - | 2.04 | 1.61 | - | 5.97 | 7.21 | |
6.25 | 61.89 | 109.9 | 61.93 | 0.1 | 0.11 | 0.12 | 599.15 | 999.09 | 516.08 | 2.17 | 2.29 | 2.16 | 7.14 | 7.68 | 7.58 | |
25 | 0 | 2.4 | 3.46 | 3.51 | 0.52 | 0.61 | 0.59 | 3.62 | 5.67 | 5.95 | 2.23 | 3.17 | 2.11 | 8.06 | 7.88 | 7.9 |
2 | 6.49 | 7.77 | 6.95 | 0.46 | 0.54 | 0.52 | 3.06 | 14.39 | 13.37 | 2.63 | 2.28 | 2.14 | 8.04 | 7.97 | 8.01 | |
4 | 18.44 | 27.05 | 31.53 | 0.41 | 0.42 | 0.53 | 3.9 | 3.92 | 3.83 | 2.11 | 2.02 | 2.06 | 8.22 | 7.91 | 7.88 | |
6.25 | 49.62 | 26.93 | 24.26 | 0.52 | 0.38 | 0.33 | 3.78 | 3.69 | 3.7 | 2.11 | 2.16 | 2.16 | 7.98 | 7.96 | 7.99 | |
35 | 0 | 2.03 | 2.28 | 3.5 | 0.92 | 0.9 | 1.25 | 3.99 | 2.53 | 2.8 | 2.05 | 2.29 | 2.87 | 8.19 | 8.12 | 8.12 |
2 | 15.94 | 13.34 | 15.97 | 1.12 | 0.9 | 1.38 | 4.47 | 14.82 | 11.57 | 1.78 | 1.93 | 1.92 | 7.96 | 8.04 | 7.93 | |
4 | 49.93 | 43.5 | 51.3 | 1.05 | 0.45 | 0.91 | 3.96 | 3.32 | 3.72 | 1.99 | 1.77 | 2.11 | 7.89 | 5.87 | 7.85 | |
6.25 | 75.86 | 116.52 | 71.08 | 0.8 | 0.9 | 0.99 | 4.35 | 4.33 | 6.39 | 1.82 | 1.7 | 1.33 | 7.91 | 7.36 | 8.5 | |
40 | 0 | 2.09 | 2.9 | 1.63 | 1.02 | 1.19 | 0.95 | 3.62 | 3.46 | 3.62 | 2.28 | 2.37 | 2.36 | 8.25 | 8.2 | 8.55 |
2 | 14.69 | 27.75 | 8.22 | 1.44 | 1.3 | 1.27 | 4.64 | 4.94 | 4.28 | 1.78 | 1.6 | 1.79 | 8.26 | 7.9 | 7.66 | |
4 | 66.4 | 44 | 59.08 | 0.92 | 0.91 | 1 | 3.72 | 4.09 | 3.84 | 2.15 | 1.93 | 2.05 | 7.99 | 7.9 | 7.88 | |
6.25 | 81.63 | 67.71 | 122.03 | 0.98 | 0.8 | 0.97 | 4.64 | 4.22 | 6.04 | 1.71 | 1.9 | 1.34 | 7.93 | 8.02 | 8.09 | |
45 | 0 | 4.53 | 4.37 | 5.1 | 0.99 | 1.25 | 1.09 | 3.98 | 3.5 | 3.04 | 2.03 | 1.92 | 2.55 | 8.06 | 7.73 | 7.76 |
2 | 9.29 | 13.75 | 8.1 | 0.47 | 1.07 | 0.55 | 2.95 | 4.02 | 3.7 | 2.82 | 2.24 | 2.16 | 8.31 | 9 | 8 | |
4 | 38.18 | 50.19 | 50.67 | 0.93 | 0.93 | 0.95 | 4.09 | 53.97 | 3.91 | 1.89 | 1.71 | 1.97 | 7.73 | 7.73 | 7.71 | |
6.25 | 49.15 | 65.21 | 32.22 | 0.65 | 0.57 | 0.38 | 4.91 | 114.4 | 97.92 | 1.63 | 1.68 | 1.51 | 8 | 7.69 | 7.97 |
References
- Chousalkar, K.K.; Khan, S.; McWhorter, A.R. Microbial quality, safety and storage of eggs. Curr. Opin. Food Sci. 2021, 38, 91–95. [Google Scholar] [CrossRef]
- Garcia-Gonzalez, L.; Geeraerd, A.H.; Elst, K.; Van Ginneken, L.; Van Impe, J.F.; Devlieghere, F. Inactivation of naturally occurring microorganisms in liquid whole egg using high pressure carbon dioxide processing as an alternative to heat pasteurization. J. Supercrit. Fluids 2009, 51, 74–82. [Google Scholar] [CrossRef]
- Fact, M.R. Liquid Egg Market Study by Whole Eggs, Egg White, Egg Yolks, and Scrambled Mix for Food, Biotechnology, Cosmetics, Pharmaceuticals & Dietary Supplements, and Animal Nutrition from 2024 to 2034. Available online: https://www.factmr.com/report/liquid-egg-market (accessed on 15 November 2024).
- Newswire, G. Liquid Egg Market to Hit US$ 9 Billion by 2033. Available online: https://www.globenewswire.com/news-release/2023/11/01/2771778/0/en/Liquid-Egg-Market-to-Hit-US-9-Billion-by-2033-Fact-MR-Report.html (accessed on 15 November 2024).
- Froning, G.W. Egg Products Industry and Future Perspectives. In Egg Bioscience and Biotechnology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008; pp. 307–325. [Google Scholar] [CrossRef]
- Wang, J.; Gu, L.; Su, Y.; Chang, C.; Xu, L.; Yang, Y.; Li, J. Changes in microbial, physiochemical, and functional properties of pasteurized liquid whole egg during refrigerated storage. J. Sci. Food Agric. 2020, 100, 2873–2879. [Google Scholar] [CrossRef]
- Miranda, J.M.; Anton, X.; Redondo-Valbuena, C.; Roca-Saavedra, P.; Rodriguez, J.A.; Lamas, A.; Franco, C.M.; Cepeda, A. Egg and egg-derived foods: Effects on human health and use as functional foods. Nutrients 2015, 7, 706–729. [Google Scholar] [CrossRef]
- USDA-FSIS. U.S. Department of Agriculture, Food Safety and Inspection Service. FSIS Food Safety Guideline for Egg Products. Available online: https://www.fsis.usda.gov/guidelines/2020-0005 (accessed on 15 November 2024).
- Lewis, M.J.; Heppell, N.J. Continuous Thermal Processing of Foods: Pasteurization and UHT Sterilization; Springer: Berlin/Heidelberg, Germany, 2000; ISBN 0834212595. [Google Scholar]
- Shrestha, S.; Hariram, U. Control of Bacillus weihenstephanensis in pasteurized liquid whole eggs formulated with nisin. J. Food Prot. 2022, 85, 647–652. [Google Scholar] [CrossRef]
- Bottone, E.J. Bacillus cereus, a volatile human pathogen. Clin. Microbiol. Rev. 2010, 23, 382–398. [Google Scholar] [CrossRef]
- Finlay, W.J.J.; Logan, N.A.; Sutherland, A.D. Bacillus cereus emetic toxin production in cooked rice. Food Microbiol. 2002, 19, 431–439. [Google Scholar] [CrossRef]
- Martínez-Blanch, J.F.; Sánchez, G.; Garay, E.; Aznar, R. Detection and quantification of viable Bacillus cereus in food by RT–qPCR. Eur. Food Res. Technol. 2011, 232, 951–955. [Google Scholar] [CrossRef]
- Wood, S.L.; Waites, W. Factors affecting the occurrence of Bacillus cereus in liquid whole egg. Food Microbiol. 1988, 5, 103–107. [Google Scholar] [CrossRef]
- Jan, S.; Brunet, N.; Techer, C.; Le Maréchal, C.; Koné, A.Z.; Grosset, N.; Cochet, M.F.; Gillard, A.; Gautier, M.; Puterflam, J.; et al. Biodiversity of psychrotrophic bacteria of the Bacillus cereus group collected on farm and in egg product industry. Food Microbiol. 2011, 28, 261–265. [Google Scholar] [CrossRef]
- Kone, A.Z.; Jan, S.; Le Maréchal, C.; Grosset, N.; Gautier, M.; Puterflam, J.; Baron, F. Identifying risk factors for eggshell contamination by Bacillus cereus group bacteria in French laying farms. Br. Poult. Sci. 2013, 54, 298–305. [Google Scholar] [CrossRef]
- Tewari, A.; Singh, S.P.; Singh, R. Incidence and enterotoxigenic profile of Bacillus cereus in meat and meat products of Uttarakhand, India. J. Food Sci. Technol. 2015, 52, 1796–1801. [Google Scholar] [CrossRef] [PubMed]
- Rajkovic, A.; Uyttendaele, M.; Dierick, K.; Samapundo, S.; Botteldoorn, N.; Mahillon, J.; Heyndrickx, M. Risk profile of the Bacillus cereus group implicated in food poisoning. Rep. Super. Health Counc. Belg. 2008, 1, 1–80. [Google Scholar]
- Drobniewski, F.A. Bacillus cereus and related species. Clin. Microbiol. Rev. 1993, 6, 324–338. [Google Scholar] [CrossRef] [PubMed]
- Payne, J.; Gooch, J.; Barnes, E.M. Heat-resistant bacteria in pasteurized whole egg. J. Appl. Microbiol. 1979, 46, 601–613. [Google Scholar] [CrossRef] [PubMed]
- Baron, F.; Cochet, M.F.; Grosset, N.; Madec, M.N.; Briandet, R.; Dessaigne, S.; Chevalier, S.; Gautier, M.; Jan, S. Isolation and characterization of a psychrotolerant toxin producer, Bacillus weihenstephanensis, in liquid egg products. J. Food Prot. 2007, 70, 2782–2791. [Google Scholar] [CrossRef]
- Buzrul, S. High hydrostatic pressure applications on liquid whole egg. World’s Poult. Sci. J. 2021, 77, 71–90. [Google Scholar] [CrossRef]
- Bermudez-Aguirre, D.; Niemira, B.A. A review on egg pasteurization and disinfection: Traditional and novel processing technologies. Compr. Rev. Food Sci. Food Saf. 2023, 22, 756–784. [Google Scholar] [CrossRef]
- Te Giffel, M. Isolation, Identification and Characterization of Bacillus cereus from the Dairy Environment; Wageningen University and Research: Wageningen, The Netherlands, 1997. [Google Scholar]
- Picart-Palmade, L.; Cunault, C.; Chevalier-Lucia, D.; Belleville, M.P.; Marchesseau, S. Potentialities and limits of some non-thermal technologies to improve sustainability of food processing. Front. Nutr. 2019, 5, 130. [Google Scholar] [CrossRef] [PubMed]
- Anumudu, C.; Hart, A.; Miri, T.; Onyeaka, H. Recent advances in the application of the antimicrobial peptide nisin in the inactivation of spore-forming bacteria in foods. Molecules 2021, 26, 5552. [Google Scholar] [CrossRef] [PubMed]
- Lubelski, J.; Rink, R.; Khusainov, R.; Moll, G.N.; Kuipers, O.P. Biosynthesis, immunity, regulation, mode of action and engineering of the model lantibiotic nisin. Cell. Mol. Life Sci. 2008, 65, 455–476. [Google Scholar] [CrossRef]
- Udompijitkul, P.; Paredes-Sabja, D.; Sarker, M.R. Inhibitory Effects of Nisin Against Clostridium perfringens Food Poisoning and Nonfood-Borne Isolates. J. Food Sci. 2012, 77, M51–M56. [Google Scholar] [CrossRef] [PubMed]
- Gharsallaoui, A.; Oulahal, N.; Joly, C.; Degraeve, P. Nisin as a food preservative: Part 1: Physicochemical properties, antimicrobial activity, and main uses. Crit. Rev. Food Sci. Nutr. 2016, 56, 1262–1274. [Google Scholar] [CrossRef] [PubMed]
- Pongtharangkul, T. Enhanced Nisin Production in a Biofilm Reactor and Separation of Nisin; The Pennsylvania State University: University Park, PA, USA, 2006; Available online: https://www.proquest.com/dissertations-theses/enhanced-nisin-production-biofilm-reactor/docview/305261315/se-2 (accessed on 31 January 2025).
- Singh, A.; Korasapati, N.R.; Juneja, V.K.; Subbiah, J.; Froning, G.; Thippareddi, H. Dynamic Predictive Model for the Growth of Salmonella spp. in Liquid Whole Egg. J. Food Sci. 2011, 76, M225–M232. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.S.; Son, N.; Cho, J.I.; Joo, I.S.; Han, J.A.; Kwak, H.S.; Hong, J.H.; Suh, S.H. Predictive model of Staphylococcus aureus growth on egg products. Food Sci. Biotechnol. 2019, 28, 913–922. [Google Scholar] [CrossRef]
- Jaquette, C.; Beuchat, L. Combined effects of pH, nisin, and temperature on growth and survival of psychrotrophic Bacillus cereus. J. Food Prot. 1998, 61, 563–570. [Google Scholar] [CrossRef]
- Juneja, V.K.; Mishra, A.; Pradhan, A.K. Dynamic Predictive Model for Growth of Bacillus cereus from Spores in Cooked Beans. J. Food Prot. 2018, 81, 308–315. [Google Scholar] [CrossRef]
- FDA. BAM Media M95: Mannitol-Egg Yolk-Polymyxin (MYP) Agar. Laboratory Methods (Food) 2017. Available online: https://www.fda.gov/food/laboratory-methods-food/bam-media-m95-mannitol-egg-yolk-polymyxin-myp-agar (accessed on 15 November 2024).
- USDA. FSIS Directive. Safe and Suitable Ingredients Used in the Production of Meat, Poultry, and Egg Products. Available online: https://www.fsis.usda.gov/policy/fsis-directives/7120.1 (accessed on 15 November 2024).
- European Union. Regulation (EC) No 1333/2008 of the European Parliament and the Council of 16 December 2008 on Food Additives. Official Journal of European Union L354:16–33. 2018. Available online: http://data.europa.eu/eli/reg/2008/1333/oj (accessed on 31 January 2025).
- Baranyi, J.; Roberts, T.A. A dynamic approach to predicting bacterial growth in food. Int. J. Food Microbiol. 1994, 23, 277–294. [Google Scholar] [CrossRef] [PubMed]
- Juneja, V.K.; Marks, H.; Thippareddi, H.H. Predictive model for growth of Clostridium perfringens during cooling of cooked ground pork. Innov. Food Sci. Emerg. Technol. 2010, 11, 146–154. [Google Scholar] [CrossRef]
- Hodson, T.O. Root mean square error (RMSE) or mean absolute error (MAE): When to use them or not. Geosci. Model Dev. Discuss. 2022, 15, 5481–5487. [Google Scholar] [CrossRef]
- Ross, T. Indices for performance evaluation of predictive models in food microbiology. J. Appl. Bacteriol. 1996, 81, 501–508. [Google Scholar] [CrossRef]
- Oscar, T.E. Validation of lag time and growth rate models for Salmonella Typhimurium: Acceptable prediction zone method. J. Food Sci. 2005, 70, M129–M137. [Google Scholar] [CrossRef]
- Mishra, A.; Baldwin, W.C.; Schaffner, D.W.; Schaffner, D.W. Development of growth and survival models for Salmonella and Listeria monocytogenes during non-isothermal time-temperature profiles in leafy greens. Food Control 2017, 71, 32–41. [Google Scholar] [CrossRef]
- Rossi, M.; Casiraghi, E.; Primavesi, L.; Pompei, C.; Hidalgo, A. Functional properties of pasteurised liquid whole egg products as affected by the hygienic quality of the raw eggs. LWT-Food Sci. Technol. 2010, 43, 436–441. [Google Scholar] [CrossRef]
- Ribeiro, A.C.; Barba, F.J.; Barber, X.; da Silva, J.L.; Saraiva, J.A. Influence of pressure pre-treatments on liquid whole egg thermal pasteurization–microbiological, physicochemical and functional properties. Food Chem. Adv. 2023, 2, 100293. [Google Scholar] [CrossRef]
- Marušić Radovčić, N.; Karlović, S.; Medić, H.; Režek Jambrak, A. Effect of citric acid addition on functional properties of pasteurized liquid whole eggs. J. Food Sci. Technol. 2021, 58, 985–995. [Google Scholar] [CrossRef]
- USDA. Federal Purchase Program Specification (FPPS) for Whole Eggs; USDA: Washington, DC, USA, 2022. Available online: https://www.ams.usda.gov/sites/default/files/media/USDAFPPSforWholeEggsProcedure.pdf (accessed on 15 November 2024).
- Puertas, G.; Vázquez, M. Liquid whole egg fractionation: Effect of centrifugation on physicochemical attributes of quality. J. Food Process. Preserv. 2021, 45, e15334. [Google Scholar] [CrossRef]
- Schmidt, S.J.; Fontana, A.J., Jr. E: Water activity values of select food ingredients and products. In Water Activity in Foods: Fundamentals and Applications; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2020; pp. 573–591. [Google Scholar] [CrossRef]
- Lanciotti, R.; Sinigaglia, M.; Gardini, F.; Vannini, L.; Guerzoni, M.E. Growth/no growth interfaces of Bacillus cereus, Staphylococcus aureus and Salmonella enteritidis in model systems based on water activity, pH, temperature and ethanol concentration. Food Microbiol. 2001, 18, 659–668. [Google Scholar] [CrossRef]
- Pol, I.E.; Smid, E.J. Combined action of nisin and carvacrol on Bacillus cereus and Listeria monocytogenes. Lett. Appl. Microbiol. 1999, 29, 166–170. [Google Scholar] [CrossRef] [PubMed]
- Stanley, D.W.; Parkin, K.L. Biological membrane deterioration and associated quality losses in food tissues. Crit. Rev. Food Sci. Nutr. 1991, 30, 487–553. [Google Scholar] [CrossRef]
- Oshima, S.; Hirano, A.; Kamikado, H.; Nishimura, J.; Kawai, Y.; Saito, T. Nisin A extends the shelf life of high-fat chilled dairy dessert, a milk-based pudding. J. Appl. Microbiol. 2014, 116, 1218–1228. [Google Scholar] [CrossRef]
- Lee, N.K.; Kim, H.W.; Lee, J.Y.; Ahn, D.U.; Kim, C.J.; Paik, H.D. Antimicrobial effect of nisin against Bacillus cereus in beef jerky during storage. Korean J. Food Sci. Anim. Resour. 2015, 35, 272. [Google Scholar] [CrossRef] [PubMed]
- Beuchat, L.R.; Clavero, M.; Jaquette, C.B. Effects of nisin and temperature on survival, growth, and enterotoxin production characteristics of psychrotrophic Bacillus cereus in beef gravy. Appl. Environ. Microbiol. 1997, 63, 1953–1958. [Google Scholar] [CrossRef] [PubMed]
- Penna, T.C.V.; Moraes, D.A.; Fajardo, D.N. The effect of nisin on growth kinetics from activated Bacillus cereus spores in cooked rice and in milk. J. Food Prot. 2002, 65, 419–422. [Google Scholar] [CrossRef]
- Hamill, P.G.; Stevenson, A.; McMullan, P.E.; Williams, J.P.; Lewis, A.D.; Stevenson, K.E.; Farnsworth, K.D.; Khroustalyova, G.; Takemoto, J.Y.; Quinn, J.P.; et al. Microbial lag phase can be indicative of, or independent from, cellular stress. Sci. Rep. 2020, 10, 5948. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.; Li, C.; Fang, T.; Chen, J. Predictive Modeling of the Effect of ε-Polylysine Hydrochloride on Growth and Thermal Inactivation of Listeria monocytogenes in Fish Balls. J. Food Sci. 2019, 84, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Jarvis, B. Resistance to nisin and production of nisin-inactivating enzymes by several Bacillus species. Microbiology 1967, 47, 33–48. [Google Scholar] [CrossRef] [PubMed]
- Jarvis, B.; Farr, J. Partial purification, specificity and mechanism of action of the nisin-inactivating enzyme from Bacillus cereus. Biochim. Biophys. Acta (BBA)-Enzymol. 1971, 227, 232–240. [Google Scholar] [CrossRef]
- Zhou, H.; Fang, J.; Tian, Y.; Lu, X.Y. Mechanisms of nisin resistance in Gram-positive bacteria. Ann. Microbiol. 2014, 64, 413–420. [Google Scholar] [CrossRef]
- Ratkowsky, D.A.; Lowry, R.K.; McMeekin, T.A.; Stokes, A.N.; Chandler, R. Model for bacterial culture growth rate throughout the entire biokinetic temperature range. J. Bacteriol. 1983, 154, 1222–1226. [Google Scholar] [CrossRef]
- Juneja, V.K.; Golden, C.E.; Mishra, A.; Harrison, M.A.; Mohr, T.B. Predictive Model for Growth of Bacillus cereus at Temperatures Applicable to Cooling of Cooked Pasta. J. Food Sci. 2019, 84, 590–598. [Google Scholar] [CrossRef] [PubMed]
- Zwietering, M.; De Wit, J.; Notermans, S. Application of predictive microbiology to estimate the number of Bacillus cereus in pasteurised milk at the point of consumption. Int. J. Food Microbiol. 1996, 30, 55–70. [Google Scholar] [CrossRef] [PubMed]
- McClure, P.J.; Blackburn, C.D.W.; Cole, M.B.; Curtis, P.S.; Jones, J.E.; Legan, J.D.; Ogden, I.D.; Peck, M.W.; Roberts, T.A.; Sutherland, J.P.; et al. Modelling the growth, survival and death of microorganisms in foods: The UK Food Micromodel approach. Int. J. Food Microbiol. 1994, 23, 265–275. [Google Scholar] [CrossRef]
- Swinnen, I.A.M.; Bernaerts, K.; Dens, E.J.; Geeraerd, A.H.; Van Impe, J.F. Predictive modelling of the microbial lag phase: A review. Int. J. Food Microbiol. 2004, 94, 137–159. [Google Scholar] [CrossRef] [PubMed]
- Duh, Y.-H.; Schaffner, D.W. Modeling the effect of temperature on the growth rate and lag time of Listeria innocua and Listeria monocytogenes. J. Food Prot. 1993, 56, 205–210. [Google Scholar] [CrossRef] [PubMed]
- McClure, P.J.; Baranyi, J.; Boogard, E.; Kelly, T.M.; Roberts, T.A. A predictive model for the combined effect of pH, sodium chloride and storage temperature on the growth of Brochothrix thermosphacta. Int. J. Food Microbiol. 1993, 19, 161–178. [Google Scholar] [CrossRef]
- Robinson, T.P.; Ocio, M.J.; Kaloti, A.; Mackey, B.M. The effect of the growth environment on the lag phase of Listeria monocytogenes. Int. J. Food Microbiol. 1998, 44, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Baranyi, J.; Pin, C.; Ross, T. Validating and comparing predictive models. Int. J. Food Microbiol. 1999, 48, 159–166. [Google Scholar] [CrossRef]
- Buchanan, R.; Klawitter, L. Effect of temperature history on the growth of Listeria monocytogenes Scott A at refrigeration temperatures. Int. J. Food Microbiol. 1991, 12, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Delignette-Muller, M.L.; Baty, F.; Cornu, M.; Bergis, H. Modelling the effect of a temperature shift on the lag phase duration of Listeria monocytogenes. Int. J. Food Microbiol. 2005, 100, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Koseki, S.; Nonaka, J. Alternative Approach To Modeling Bacterial Lag Time, Using Logistic Regression as a Function of Time, Temperature, pH, and Sodium Chloride Concentration. Appl. Environ. Microbiol. 2012, 78, 6103–6112. [Google Scholar] [CrossRef] [PubMed]
- Whiting, R.; Bagi, L. Modeling the lag phase of Listeria monocytogenes. Int. J. Food Microbiol. 2002, 73, 291–295. [Google Scholar] [CrossRef] [PubMed]
- Hudson, J. Effect of pre-incubation temperature on the lag time of Aeromonas hydrophila. Lett. Appl. Microbiol. 1993, 16, 274–276. [Google Scholar] [CrossRef]
- Aguirre, J.S.; González, A.; Özçelik, N.; Rodríguez, M.R.; de Fernando GD, G. Modeling the Listeria innocua micropopulation lag phase and its variability. Int. J. Food Microbiol. 2013, 164, 60–69. [Google Scholar] [CrossRef]
- Sifri, C.D. Quorum Sensing: Bacteria Talk Sense. Clin. Infect. Dis. 2008, 47, 1070–1076. [Google Scholar] [CrossRef]
- Waters, C.M.; Bassler, B.L. Quorum sensing: Cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 2005, 21, 319–346. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.L.; Fratamico, P.M.; Novak, J.S. Quorum Sensing: A Primer for Food Microbiologists†. J. Food Prot. 2004, 67, 1053–1070. [Google Scholar] [CrossRef]
- Zhao, L.; Montville, T.J.; Schaffner, D.W. Evidence for quorum sensing in Clostridium botulinum 56A. Lett. Appl. Microbiol. 2006, 42, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Virto, R.; Sanz, D.; Álvarez, I.; Condon, S.; Raso, J. Modeling the effect of initial concentration of E. coli suspensions on their inactivation by chlorine. J. Food Saf. 2005, 25, 120–129. [Google Scholar] [CrossRef]
- McKellar, R.; Butler, G.; Stanich, K. Modelling the influence of temperature on the recovery of Listeria monocytogenes from heat injury. Food Microbiol. 1997, 14, 617–625. [Google Scholar] [CrossRef]
- Gibson, A.M.; Bratchell, N.; Roberts, T. Predicting microbial growth: Growth responses of salmonellae in a laboratory medium as affected by pH, sodium chloride and storage temperature. Int. J. Food Microbiol. 1988, 6, 155–178. [Google Scholar] [CrossRef]
- Duffy, L.L.; Vanderlinde, P.B.; Grau, F.H. Growth of Listeria monocytogenes on vacuum-packed cooked meats: Effects of pH, aw, nitrite and ascorbate. Int. J. Food Microbiol. 1994, 23, 377–390. [Google Scholar] [CrossRef]
- McKellar, R. A heterogeneous population model for the analysis of bacterial growth kinetics. Int. J. Food Microbiol. 1997, 36, 179–186. [Google Scholar] [CrossRef]
- Delignette-Muller, M.; Rosso, L.; Flandrois, J. Accuracy of microbial growth predictions with square root and polynomial models. Int. J. Food Microbiol. 1995, 27, 139–146. [Google Scholar] [CrossRef]
- Oscar, T.P. Response surface models for effects of temperature, pH, and previous growth pH on growth kinetics of Salmonella Typhimurium in brain heart infusion broth. J. Food Prot. 1999, 62, 106–111. [Google Scholar] [CrossRef]
- Peña, W.E.L.; De Massaguer, P.R. Microbial Modeling of Alicyclobacillus acidoterrestris CRA 7152 Growth in Orange Juice with Nisin Added. J. Food Prot. 2006, 69, 1904–1912. [Google Scholar] [CrossRef]
- Koseki, S.; Isobe, S. Prediction of pathogen growth on iceberg lettuce under real temperature history during distribution from farm to table. Int. J. Food Microbiol. 2005, 104, 239–248. [Google Scholar] [CrossRef] [PubMed]
Summary of fit | |
Probability > F | 0.0001 |
R2 | 0.73 |
Adjusted R2 | 0.71 |
RMSE | 0.89 |
LPD Regression | Coefficients |
Parameters | |
Intercept | 488.81 |
Temperature | 38.87 |
Nisin | 118.25 |
Temperature2 | 0.65 |
Temperature X Nisin | 2.65 |
Sinusoidal Profiles | Temperature | Conc. (ppm) | Replication | h0 | Bias Factor | Accuracy Factor |
---|---|---|---|---|---|---|
1 | 15–45 °C (12 h interval) | 1 | 1 | 32.5 | 0.89 | 1.13 |
2 | 21.7 | 0.92 | 1.20 | |||
2 | 15–25 °C (48 h interval) | 2 | 1 | 29.4 | 0.93 | 1.15 |
2 | 14.7 | 0.99 | 1.16 | |||
3 | 15–25 °C (24 h interval) | 3 | 1 | 52.9 | 0.93 | 1.12 |
2 | 59.8 | 0.97 | 1.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goshali, B.K.; Kapoor, H.K.; Dev Kumar, G.; Shrestha, S.; Juneja, V.K.; Mishra, A. Effect of Nisin and Storage Temperature on Outgrowth of Bacillus cereus Spores in Pasteurized Liquid Whole Eggs. Foods 2025, 14, 532. https://doi.org/10.3390/foods14030532
Goshali BK, Kapoor HK, Dev Kumar G, Shrestha S, Juneja VK, Mishra A. Effect of Nisin and Storage Temperature on Outgrowth of Bacillus cereus Spores in Pasteurized Liquid Whole Eggs. Foods. 2025; 14(3):532. https://doi.org/10.3390/foods14030532
Chicago/Turabian StyleGoshali, Binita Kumari, Harsimran Kaur Kapoor, Govindaraj Dev Kumar, Subash Shrestha, Vijay K. Juneja, and Abhinav Mishra. 2025. "Effect of Nisin and Storage Temperature on Outgrowth of Bacillus cereus Spores in Pasteurized Liquid Whole Eggs" Foods 14, no. 3: 532. https://doi.org/10.3390/foods14030532
APA StyleGoshali, B. K., Kapoor, H. K., Dev Kumar, G., Shrestha, S., Juneja, V. K., & Mishra, A. (2025). Effect of Nisin and Storage Temperature on Outgrowth of Bacillus cereus Spores in Pasteurized Liquid Whole Eggs. Foods, 14(3), 532. https://doi.org/10.3390/foods14030532