Recent Discovery of Diverse Prophages Located in Genomes of Vibrio spp. and Their Implications for Bacterial Pathogenicity, Environmental Fitness, Genome Evolution, Food Safety, and Public Health
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source and Searches
2.2. The Collected Prophage Gene Clusters Identified in the Vibrio spp. Genomes
3. Results and Discussion
3.1. Prophages Contribute to the Virulence of Vibrio spp.
3.2. Prophages Amplify the Ecological Persistence of Vibrio spp.
3.3. Prophages Assist the Superinfection Exclusion in Vibrio spp.
3.4. Prophages Promote the Genome Evolution of Vibrio spp.
3.5. Regulation of Prophages in Vibrio spp.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lukjancenko, O.; Ussery, D.W. Vibrio chromosome-specifific families. Front. Microbiol. 2014, 5, 73. [Google Scholar] [CrossRef]
- Serratore, P.; Bignami, G.; Ostanello, F.; Lorito, L. Hazard identification related to the presence of Vibrio spp., biogenic amines, and indole-producing bacteria in a non-filter feeding marine gastropod (Tritia mutabilis) commercialized on the Italian market. Foods 2021, 10, 2574. [Google Scholar] [CrossRef] [PubMed]
- Zeidler, C.; Szott, V.; Alter, T.; Huehn-Lindenbein, S.; Fleischmann, S. Prevalence of Vibrio spp. in seafood from German supermarkets and fish markets. Foods 2024, 13, 3987. [Google Scholar] [CrossRef] [PubMed]
- Thompson, F.L.; Iida, T.; Swings, J. Biodiversity of Vibrios. Microbiol. Mol. Biol. Rev. 2004, 68, 403–431. [Google Scholar] [CrossRef] [PubMed]
- Baker-Austin, C.; Oliver, J.D.; Alam, M.; Ali, A.; Waldor, M.K.; Qadri, F.; Martinez-Urtaza, J. Vibrio spp. infections. Nat. Rev. Dis. Primer 2018, 4, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Grimes, D.J. The Vibrios: Scavengers, symbionts, and pathogens from the sea. Microb. Ecol. 2020, 80, 501–506. [Google Scholar] [CrossRef] [PubMed]
- Hsueh, B.Y.; Waters, C.M. Combating cholera. F1000Research 2019, 8, 589. [Google Scholar] [CrossRef] [PubMed]
- Campos, L.C.; Zahner, V.; Avelar, K.E.S.; Alves, R.M.; Pereira, D.S.G.; Vital, B.J.M.; Freitas, F.S.; Salles, C.A.; Karaolis, D.K.R. Genetic diversity and antibiotic resistance of clinical and environmental suggests that many serogroups are reservoirs of resistance. Epidemiol. Infect. 2004, 132, 985–992. [Google Scholar] [CrossRef] [PubMed]
- Chaguza, C.; Chibwe, I.; Chaima, D.; Musicha, P.; Ndeketa, L.; Kasambara, W.; Mhango, C.; Mseka, U.L.; Bitilinyu-Bangoh, J.; Mvula, B.; et al. Genomic insights into the 2022–2023 Vibrio cholerae outbreak in Malawi. Nat. Commun. 2024, 15, 6291. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Li, X.; Ni, L.; Xu, D.; Xu, Y.; Ding, Y.; Xie, L.; Chen, L. First experimental evidence for the presence of potentially toxic Vibrio cholerae in snails, and virulence, cross-resistance and genetic diversity of the bacterium in 36 species of aquatic food animals. Antibiotics 2021, 10, 412. [Google Scholar] [CrossRef]
- Yan, L.; Jin, Y.; Zhang, B.; Xu, Y.; Peng, X.; Qin, S.; Chen, L. Diverse aquatic animal matrices play a key role in survival and potential virulence of non-O1/O139 Vibrio cholerae isolates. Front. Microbiol. 2022, 13, 896767. [Google Scholar] [CrossRef] [PubMed]
- Ceccarelli, D.; Hasan, N.A.; Huq, A.; Colwell, R.R. Distribution and dynamics of epidemic and pandemic Vibrio parahaemolyticus virulence factors. Front. Cell. Infect. Microbiol. 2013, 3, 97. [Google Scholar] [CrossRef] [PubMed]
- Meza, G.; Majrshi, H.; Tiong, H.K. Recovery of pasteurization-resistant Vibrio parahaemolyticus from seafoods using a modified, two-step enrichment. Foods 2022, 11, 764. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Zou, D.; Long, Y.; Xue, L.; Shuai, S.; Tian, F.; Li, M.; Fan, G.; Zheng, Y.; Sun, X.; et al. Contamination of Vibrio parahaemolyticus in crayfish for sale. Front Microbiol. 2024, 15, 1388658. [Google Scholar] [CrossRef] [PubMed]
- Hughes, M.J.; Flaherty, E.; Lee, N.; Robbins, A.; Weller, D.L. Severe Vibrio vulnificus infections during heat waves—Three eastern U.S. States, July–August 2023. MMWR Morb. Mortal. Wkly. Rep. 2024, 73, 84–85. [Google Scholar] [CrossRef]
- Yamazaki, K.; Kashimoto, T.; Kado, T.; Yoshioka, K.; Ueno, S. Increased vascular permeability due to spread and invasion of Vibrio vulnificus in the wound infection exacerbates potentially fatal necrotizing disease. Front. Microbiol. 2022, 13, 849600. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhang, G.; Xu, D.; Ye, J.; Lu, Y. A novel RAA combined test strip method based on dual gene targets for pathogenic Vibrio vulnificus in aquatic products. Foods 2023, 12, 3605. [Google Scholar] [CrossRef] [PubMed]
- Jacobs Slifka, K.M.; Newton, A.E.; Mahon, B.E. Vibrio alginolyticus infections in the USA, 1988-2012. Epidemiol. Infect. 2017, 145, 1491–1499. [Google Scholar] [CrossRef]
- Abdelsalam, M.; Attia, M.M.; Marzouk, M.S.; Korany, R.M.S.; Elgendy, M.Y.; Soliman, A.W.; Prince, A.; Hamada, A.H. Investigating dynamics, etiology, pathology, and therapeutic interventions of Caligus clemensi and Vibrio alginolyticus co-infection in farmed marine fish. Sci. Rep. 2024, 14, 20704. [Google Scholar] [CrossRef]
- Sun, Y.; Yan, Y.; Yan, S.; Li, F.; Li, Y.; Yan, L.; Yang, D.; Peng, Z.; Yang, B.; Sun, J.; et al. Prevalence, antibiotic susceptibility, and genomic analysis of Vibrio alginolyticus isolated from seafood and freshwater products in China. Front Microbiol. 2024, 15, 1381457. [Google Scholar] [CrossRef] [PubMed]
- Morgado, M.E.; Brumfield, K.D.; Mitchell, C.; Boyle, M.M.; Colwell, R.R.; Sapkota, A.R. Increased incidence of vibriosis in Maryland, U.S.A., 2006–2019. Environ. Res. 2024, 244, 117940. [Google Scholar] [CrossRef] [PubMed]
- Fortier, L.C.; Sekulovic, O. Importance of prophages to evolution and virulence of bacterial pathogens. Virulence 2013, 4, 354–365. [Google Scholar] [CrossRef] [PubMed]
- Shkoporov, A.N.; Turkington, C.J.; Hill, C. Mutualistic interplay between bacteriophages and bacteria in the human gut. Nat. Rev. Microbiol. 2022, 20, 737–749. [Google Scholar] [CrossRef] [PubMed]
- Wendling, C.C.; Refardt, D.; Hall, A.R. Fitness benefits to bacteria of carrying prophages and prophage-encoded antibiotic-resistance genes peak in different environments. Evolution 2021, 75, 515–528. [Google Scholar] [CrossRef]
- Dedrick, R.M.; Jacobs-Sera, D.; Bustamante, C.A.G.; Garlena, R.A.; Mavrich, T.N.; Pope, W.H.; Reyes, J.C.C.; Russell, D.A.; Adair, T.; Alvey, R.; et al. Prophage-mediated defence against viral attack and viral counter-defence. Nat. Microbiol. 2017, 2, 16251. [Google Scholar] [CrossRef]
- Garin-Fernandez, A.; Wichels, A. Looking for the hidden: Characterization of lysogenic phages in potential pathogenic Vibrio species from the North Sea. Mar. Genom. 2020, 51, 100725. [Google Scholar] [CrossRef] [PubMed]
- Steensen, K.; Séneca, J.; Bartlau, N.; Yu, X.A.; Hussain, F.A.; Polz, M.F. Tailless and filamentous prophages are predominant in marine Vibrio. ISME J. 2024, 18, wrae202. [Google Scholar] [CrossRef] [PubMed]
- Castillo, D.; Pérez-Reytor, D.; Plaza, N.; Ramírez-Araya, S.; Blondel, C.J.; Corsini, G.; Bastías, R.; Loyola, D.E.; Jaña, V.; Pavez, L.; et al. Exploring the genomic traits of non-toxigenic Vibrio parahaemolyticus strains isolated in Southern Chile. Front. Microbiol. 2018, 9, 161. [Google Scholar] [CrossRef] [PubMed]
- Kobakhidze, S.; Koulouris, S.; Kakabadze, N.; Kotetishvili, M. Genetic recombination-mediated evolutionary interactions between phages of potential industrial importance and prophages of their hosts within or across the domains of Escherichia, Listeria, Salmonella, Campylobacter, and Staphylococcus. BMC Microbiol. 2024, 24, 155. [Google Scholar] [CrossRef]
- Molina-Quiroz, R.C.; Dalia, T.N.; Camilli, A.; Dalia, A.B.; Silva-Valenzuela, C.A. Prophage-dependent neighbor predation fosters horizontal gene transfer by natural transformation. mSphere 2020, 5, e00975-20. [Google Scholar] [CrossRef]
- Tang, D.; Chen, M.; Huang, X.; Zhang, G.; Zeng, L.; Zhang, G.; Wu, S.; Wang, Y. SRplot: A free online platform for data visualization and graphing. PLoS ONE 2023, 18, e0294236. [Google Scholar] [CrossRef]
- Davis, B.M.; Moyer, K.E.; Boyd, E.F.; Waldor, M.K. CTX prophages in classical biotype Vibrio cholerae: Functional phage genes but dysfunctional phage genomes. J. Bacteriol. 2000, 182, 6992–6998. [Google Scholar] [CrossRef] [PubMed]
- Biswas, Q.; Purohit, A.; Kumar, A.; Rakshit, D.; Maiti, D.; Das, B.; Bhadra, R.K. Genetic and mutational analysis of virulence traits and their modulation in an environmental toxigenic Vibrio cholerae non-O1/non-O139 strain, VCE232. Microbiology 2022, 168, 001135. [Google Scholar] [CrossRef] [PubMed]
- Miller, C.E.; Majewski, J.; Faller, R.; Satija, S.; Kuhl, T.L. Cholera toxin assault on lipid monolayers containing ganglioside GM1. Biophys. J. 2004, 86, 3700–3708. [Google Scholar] [CrossRef] [PubMed]
- Krukonis, E.S.; DiRita, V.J. From motility to virulence: Sensing and responding to environmental signals in Vibrio cholerae. Curr. Opin. Microbiol. 2003, 6, 186–190. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Reytor, D.; Jaña, V.; Pavez, L.; Navarrete, P.; García, K. Accessory toxins of Vibrio pathogens and their role in epithelial disruption during infection. Front. Microbiol. 2018, 9, 2248. [Google Scholar] [CrossRef] [PubMed]
- Marinaro, M.; Fasano, A.; Magistris, M.T.D. Zonula occludens toxin Acts as an adjuvant through different mucosal routes and induces protective immune responses. Infect. Immun. 2003, 71, 1897–1902. [Google Scholar] [CrossRef]
- Castillo, D.; Kauffman, K.; Hussain, F.; Kalatzis, P.; Rørbo, N.; Polz, M.F.; Middelboe, M. Widespread distribution of prophage-encoded virulence factors in marine Vibrio communities. Sci. Rep. 2018, 8, 9973. [Google Scholar] [CrossRef]
- Chibani, C.M.; Hertel, R.; Hoppert, M.; Liesegang, H.; Wendling, C.C. Closely related Vibrio alginolyticus strains encode an identical repertoire of caudovirales-like regions and filamentous phages. Viruses 2020, 12, 1359. [Google Scholar] [CrossRef]
- Nawel, Z.; Rima, O.; Amira, B. An overview on Vibrio temperate phages: Integration mechanisms, pathogenicity, and lysogeny regulation. Microb. Pathog. 2022, 165, 105490. [Google Scholar] [CrossRef]
- Foxall, R.L.; Means, J.; Marcinkiewicz, A.L.; Schillaci, C.; DeRosia-Banick, K.; Xu, F.; Hall, J.A.; Jones, S.H.; Cooper, V.S.; Whistler, C.A. Inoviridae prophage and bacterial host dynamics during diversification, succession, and Atlantic invasion of Pacific-native Vibrio parahaemolyticus. mBio 2024, 15, e02851-23. [Google Scholar] [CrossRef] [PubMed]
- Bochow, S.; Elliman, J.; Owens, L. Bacteriophage adenine methyltransferase: A life cycle regulator? Modelled using Vibrio harveyi myovirus like. J. Appl. Microbiol. 2012, 113, 1001–1013. [Google Scholar] [CrossRef] [PubMed]
- Munro, J.; Oakey, J.; Bromage, E.; Owens, L. Experimental bacteriophage-mediated virulence in strains of Vibrio harveyi. Dis. Aquat. Organ. 2003, 54, 187–194. [Google Scholar] [CrossRef]
- Paul, J.H. Prophages in marine bacteria: Dangerous molecular time bombs or the key to survival in the seas? ISME J. 2008, 2, 579–589. [Google Scholar] [CrossRef] [PubMed]
- Santoriello, F.J.; Michel, L.; Unterweger, D.; Pukatzki, S. Pandemic Vibrio cholerae shuts down site-specific recombination to retain an interbacterial defence mechanism. Nat. Commun. 2020, 11, 6246. [Google Scholar] [CrossRef]
- Santoriello, F.J.; Pukatzki, S. When the pandemic opts for the lockdown: Secretion system evolution in the cholera bacterium. Microb. Cell Graz Austria 2021, 8, 69–72. [Google Scholar] [CrossRef]
- Xu, D.; Peng, X.; Xie, L.; Chen, L. Survival and genome diversity of Vibrio parahaemolyticus isolated from edible aquatic animals. Diversity 2022, 14, 350. [Google Scholar] [CrossRef]
- Yu, Z.; Wu, Y.; Chen, M.; Huo, T.; Zheng, W.; Ludtke, S.J.; Shi, X.; Wang, Z. Membrane translocation process revealed by in situ structures of type II secretion system secretins. Nat. Commun. 2023, 14, 4025. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.H.; Teh, C.S.J.; Yap, K.P.; Ung, E.H.; Thong, K.L. Comparative genomic provides insight into the virulence and genetic diversity of Vibrio parahaemolyticus associated with shrimp acute hepatopancreatic necrosis disease. Infect. Genet. Evol. 2020, 83, 104347. [Google Scholar] [CrossRef] [PubMed]
- Khemayan, K.; Prachumwat, A.; Sonthayanon, B.; Intaraprasong, A.; Sriurairatana, S.; Flegel, T.W. Complete genome sequence of virulence-enhancing siphophage VHS1 from Vibrio harveyi. Appl. Environ. Microbiol. 2012, 78, 2790–2796. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, H.; Chen, D.; Li, Y. Genomic characterization and comparative genomic analysis of pathogenic Vibrio isolated from aquaculture-grown white-leg shrimp (Penaeus vannamei) in Guangdong and Jiangsu, China. Aquaculture 2024, 580, 740302. [Google Scholar] [CrossRef]
- Mesa, C.A.D.; Mendoza, R.M.; Penir, S.M.U.; de la Peña, L.D.; Amar, E.C.; Saloma, C.P. Genomic analysis of Vibrio harveyi strain PH1009, a potential multi-drug resistant pathogen due to acquisition of toxin genes. Heliyon 2023, 9, e14926. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wang, Y.; Yu, P.; Ren, S.; Zhu, Z.; Jin, Y.; Yan, J.; Peng, X.; Chen, L. Prophage-related gene VpaChn25_0724 contributes to cell membrane integrity and growth of Vibrio parahaemolyticus CHN25. Front. Cell. Infect. Microbiol. 2020, 10, 595709. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Yang, L.; Wang, Y.; Zhu, Z.; Yan, J.; Qin, S.; Chen, L. Prophage-encoded gene VpaChn25_0734 amplifies ecological persistence of Vibrio parahaemolyticus CHN25. Curr. Genet. 2022, 68, 267–287. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Xu, Y.; Yang, L.; Wang, Y.; Li, M.; Chen, L. Biological function of prophage-related gene cluster ΔVpaChn25_RS25055~ΔVpaChn25_0714 of Vibrio parahaemolyticus CHN25. Int. J. Mol. Sci. 2024, 25, 1393. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, X.; Li, R.; Zhang, W.; Wang, L.; Yan, B.; Zhu, T.; Xu, Y.; Tan, D. Characterization of a filamentous Phage, Vaf1, from Vibrio alginolyticus AP-1. Appl. Environ. Microbiol. 2023, 89, e00520-23. [Google Scholar] [CrossRef]
- Qin, X.; Yang, L.; Xu, Y.; Xie, L.; Wang, Y.; Chen, L. Growth and genome features of non-O1/O139 Vibrio cholerae isolated from three species of common freshwater fish. Diversity 2024, 16, 268. [Google Scholar] [CrossRef]
- Wang, W.; Tang, K.; Wang, P.; Zeng, Z.; Xu, T.; Zhan, W.; Liu, T.; Wang, Y.; Wang, X. The coral pathogen Vibrio coralliilyticus kills non-pathogenic holobiont competitors by triggering prophage induction. Nat. Ecol. Evol. 2022, 6, 1132–1144. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Portillo, E.; Robertson, S.; Antón, J. Coral mucus as a reservoir of bacteriophages targeting Vibrio pathogens. ISME J. 2024, 18, wrae017. [Google Scholar] [CrossRef]
- Lewis, J.M.; Janda, K.E.; Kotter, D.B.; Grose, J.H.; McCleary, W.R. Characterization of the attachment of three new coliphages onto the ferrichrome transporter FhuA. J. Virol. 2023, 97, e00667-23. [Google Scholar] [CrossRef] [PubMed]
- Cumby, N.; Reimer, K.; Mengin-Lecreulx, D.; Davidson, A.R.; Maxwell, K.L. The phage tail tape measure protein, an inner membrane protein and a periplasmic chaperone play connected roles in the genome injection process of E. coli phage HK97. Mol. Microbiol. 2015, 96, 437–447. [Google Scholar] [CrossRef] [PubMed]
- Kalatzis, P.G.; Rørbo, N.I.; Castillo, D.; Mauritzen, J.J.; Jørgensen, J.; Kokkari, C.; Zhang, F.; Katharios, P.; Middelboe, M. Stumbling across the same phage: Comparative genomics of widespread temperate phages infecting the fish pathogen Vibrio anguillarum. Viruses 2017, 9, 122. [Google Scholar] [CrossRef] [PubMed]
- Stalin, N.; Srinivasan, P. Efficacy of potential phage cocktails against Vibrio harveyi and closely related Vibrio species isolated from shrimp aquaculture environment in the south east coast of India. Vet. Microbiol. 2017, 207, 83–96. [Google Scholar] [CrossRef]
- Williamson, S.J.; McLaughlin, M.R.; Paul, J.H. Interaction of the ΦHSIC virus with its host: Lysogeny or pseudolysogeny? Appl. Environ. Microbiol. 2001, 67, 1682–1688. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhao, L.; Gao, H.; Chen, L.; Fan, F.; Li, Z.; Fan, Y.; Li, J.; Liang, W.; Pang, B.; et al. A novel pre-CTX prophage in the Vibrio cholerae serogroup O139 strain. Infect. Genet. Evol. 2020, 81, 104238. [Google Scholar] [CrossRef]
- Pant, A.; Bag, S.; Saha, B.; Verma, J.; Kumar, P.; Banerjee, S.; Kumar, B.; Kumar, Y.; Desigamani, A.; Maiti, S.; et al. Molecular insights into the genome dynamics and interactions between core and acquired genomes of Vibrio cholerae. Proc. Natl. Acad. Sci. USA 2020, 117, 23762–23773. [Google Scholar] [CrossRef] [PubMed]
- McLeod, S.M.; Kimsey, H.H.; Davis, B.M.; Waldor, M.K. CTXφ and Vibrio cholerae: Exploring a newly recognized type of phage–host cell relationship. Mol. Microbiol. 2005, 57, 347–356. [Google Scholar] [CrossRef]
- Ochi, K.; Mizuno, T.; Samanta, P.; Mukhopadhyay, A.K.; Miyoshi, S.; Imamura, D. Recent Vibrio cholerae O1 epidemic strains are unable to replicate CTXΦ prophage genome. mSphere 2021, 6, e0033721. [Google Scholar] [CrossRef] [PubMed]
- Anderson, A.M.L.; Varkey, J.B.; Petti, C.A.; Liddle, R.A.; Frothingham, R.; Woods, C.W. Non-o1 Vibrio cholerae septicemia: Case report, discussion of literature, and relevance to bioterrorism. Diagn. Microbiol. Infect. Dis. 2004, 49, 295–297. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yang, C.; Sun, Z.; Zheng, W.; Zhang, W.; Yu, H.; Wu, Y.; Didelot, X.; Yang, R.; Pan, J.; et al. Genomic epidemiology of Vibrio cholerae reveals the regional and global spread of two epidemic non-toxigenic lineages. PLoS Negl. Trop. Dis. 2020, 14, e0008046. [Google Scholar] [CrossRef]
- Hao, T.; Zheng, W.; Wu, Y.; Yu, H.; Qian, X.; Yang, C.; Zheng, Z.; Zhang, X.; Guo, Y.; Cui, M.; et al. Population genomics implies potential public health risk of two non-toxigenic Vibrio cholerae lineages. Infect. Genet. Evol. 2023, 112, 105441. [Google Scholar] [CrossRef] [PubMed]
- Behera, D.R.; Nayak, A.K.; Nayak, S.R.; Nayak, D.; Swain, S.; Maharana, P.K.; Biswal, B.; Pany, S.; Pati, S.; Pal, B.B. Genomic diversities of ctxB, tcpA and rstR alleles of Vibrio cholerae O139 strains isolated from Odisha, India. Environ. Microbiol. Rep. 2022, 14, 376–384. [Google Scholar] [CrossRef] [PubMed]
- Thong, K.L.; Tham, K.B.L.; Ngoi, S.T.; Tan, S.C.; Wan Yussof, W.N.; Ahmad Hanapi, R.; Mohamad, N.; Teh, C.S.J. Molecular characterization of Vibrio cholerae O1 El Tor strains in Malaysia revealed genetically diverse variant lineages. Transbound. Emerg. Dis. 2022, 69, e693–e703. [Google Scholar] [CrossRef]
- Abanto, M.; Gavilan, R.G.; Baker-Austin, C.; Gonzalez-Escalona, N.; Martinez-Urtaza, J. Global expansion of Pacific Northwest Vibrio parahaemolyticus sequence type 36. Emerg. Infect. Dis. 2020, 26, 323–326. [Google Scholar] [CrossRef]
- Boyd, E.F.; Moyer, K.E.; Shi, L.; Waldor, M.K. Infectious CTXΦ; and the Vibrio pathogenicity island prophage in Vibrio mimicus: Evidence for recent horizontal transfer between V. mimicus and V. cholerae. Infect. Immun. 2000, 68, 1507–1513. [Google Scholar] [CrossRef]
- Wang, H.; Xie, G.; Huang, J. Genome-based characterization of a novel prophage of Vibrio parahaemolyticus, VPS05ph1, a novel member of Peduoviridae. Virology 2024, 595, 110087. [Google Scholar] [CrossRef] [PubMed]
- Soto, E.; Alegría, M.; Sepúlveda, F.; García, K.; Higuera, G.; Castillo, D.; Fontúrbel, F.; Bastías, R. Prophages carrying Zot toxins on different Vibrio genomes: A comprehensive assessment using multilayer networks. Environ. Microbiol. 2024, 26, e16654. [Google Scholar] [CrossRef]
- Nuidate, T.; Kuaphiriyakul, A.; Surachat, K.; Mittraparp-Arthorn, P. Induction and genome analysis of HY01, a newly reported prophage from an emerging shrimp pathogen Vibrio campbellii. Microorganisms 2021, 9, 400. [Google Scholar] [CrossRef]
- Maiti, D.; Das, B.; Saha, A.; Nandy, R.K.; Nair, G.B.; Bhadra, R.K. Genetic organization of pre-CTX and CTX prophages in the genome of an environmental Vibrio cholerae non-O1, non-O139 strain. Microbiology 2006, 152, 3633–3641. [Google Scholar] [CrossRef] [PubMed]
- Garin-Fernandez, A.; Glöckner, F.O.; Wichels, A. Genomic characterization of filamentous phage vB_VpaI_VP-3218, an inducible prophage of Vibrio parahaemolyticus. Mar. Genom. 2020, 53, 100767. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Zhang, J.; Xu, J.; Du, P.; Pang, B.; Li, J.; Kan, B. The resistance of Vibrio cholerae O1 El Tor strains to the typing phage 919TP, a member of K139 phage family. Front. Microbiol. 2016, 7, 726. [Google Scholar] [CrossRef] [PubMed]
- Oppenheim, A.B.; Kobiler, O.; Stavans, J.; Court, D.L.; Adhya, S. Switches in bacteriophage Lambda development. Annu. Rev. Genet. 2005, 39, 409–429. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Zeng, Y.; Hu, B.; Zhu, T.; Svenningsen, S.L.; Middelboe, M.; Tan, D. Interactions between the prophage 919TP and its Vibrio cholerae host: Implications of gmd mutation for phage resistance, cell auto-aggregation, and motility. Viruses 2021, 13, 2342. [Google Scholar] [CrossRef]
- Tan, D.; Hansen, M.F.; de Carvalho, L.N.; Røder, H.L.; Burmølle, M.; Middelboe, M.; Lo Svenningsen, S. High cell densities favor lysogeny: Induction of an H20 prophage is repressed by quorum sensing and enhances biofilm formation in Vibrio anguillarum. ISME J. 2020, 14, 1731–1742. [Google Scholar] [CrossRef] [PubMed]
- Castillo, D.; Alvise, P.D.; Xu, R.; Zhang, F.; Middelboe, M.; Gram, L. Comparative genome analyses of Vibrio anguillarum strains reveal a link with pathogenicity traits. mSystems 2017, 2, e00001-17. [Google Scholar] [CrossRef]
- Castillo, D.; Andersen, N.; Kalatzis, P.G.; Middelboe, M. Large phenotypic and genetic diversity of prophages induced from the fish pthogen Vibrio anguillarum. Viruses 2019, 11, 983. [Google Scholar] [CrossRef]
- Xu, M.; Xu, M.; Tu, Q. Comparative evaluation of Vibrio delineation methodologies in post-genomic era. Environ. Microbiol. Rep. 2021, 13, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Qin, W.; Li, D.; Xu, L.; Lin, W.; Tong, Y. Complete genome analysis of an active prophage of Vibrio alginolyticus. Arch. Virol. 2021, 166, 891–896. [Google Scholar] [CrossRef] [PubMed]
- Baby, B.; Vijay, D.; Philip, P.S.; Alnuaimi, A.A.; Almansoori, H.M.; Areidat, S.O.; Khan, G.; Vijayan, R.; Akhtar, M.K. Complete genome sequence of Vibrio gazogenes PB1: An estuarine bacterium capable of producing prodigiosin from starch or cellulose. Front. Mar. Sci. 2023, 10, 1028319. [Google Scholar] [CrossRef]
- Rathnapala, J.M.S.N.; Ragab, W.; Kawato, S.; Furukawa, M.; Nozaki, R.; Kondo, H.; Hirono, I. Genomic characterization and identification of virulence-related genes in Vibrio nigripulchritudo isolated from white leg shrimp Penaeus vannamei. J. Fish. Dis. 2023, 46, 779–790. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Yu, P.; Wang, J.; Zhao, T.; Zhao, Y.; Pan, Y.; Chen, L. Genomic and transcriptomic analyses reveal multiple strategies for Vibrio parahaemolyticus to tolerate sub-lethal concentrations of three antibiotics. Foods 2024, 13, 1674. [Google Scholar] [CrossRef] [PubMed]
- Ragab, W.; Kawato, S.; Nozaki, R.; Kondo, H.; Hirono, I. Comparative genome analyses of five Vibrio penaeicida strains provide insights into their virulence-related factors. Microb. Genom. 2022, 8, 000766. [Google Scholar] [CrossRef] [PubMed]
- Zago, V.; Veschetti, L.; Patuzzo, C.; Malerba, G.; Lleo, M.M. Resistome, mobilome and virulome analysis of Shewanella algae and Vibrio spp. strains isolated in Italian aquaculture centers. Microorganisms 2020, 8, 572. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ou, Y.; Yan, J.; Wang, Y.; Chen, L. Recent Discovery of Diverse Prophages Located in Genomes of Vibrio spp. and Their Implications for Bacterial Pathogenicity, Environmental Fitness, Genome Evolution, Food Safety, and Public Health. Foods 2025, 14, 403. https://doi.org/10.3390/foods14030403
Ou Y, Yan J, Wang Y, Chen L. Recent Discovery of Diverse Prophages Located in Genomes of Vibrio spp. and Their Implications for Bacterial Pathogenicity, Environmental Fitness, Genome Evolution, Food Safety, and Public Health. Foods. 2025; 14(3):403. https://doi.org/10.3390/foods14030403
Chicago/Turabian StyleOu, Yafei, Jun Yan, Yongjie Wang, and Lanming Chen. 2025. "Recent Discovery of Diverse Prophages Located in Genomes of Vibrio spp. and Their Implications for Bacterial Pathogenicity, Environmental Fitness, Genome Evolution, Food Safety, and Public Health" Foods 14, no. 3: 403. https://doi.org/10.3390/foods14030403
APA StyleOu, Y., Yan, J., Wang, Y., & Chen, L. (2025). Recent Discovery of Diverse Prophages Located in Genomes of Vibrio spp. and Their Implications for Bacterial Pathogenicity, Environmental Fitness, Genome Evolution, Food Safety, and Public Health. Foods, 14(3), 403. https://doi.org/10.3390/foods14030403