The Influence of Vegetable Oil Addition Levels on the Fatty Acid Profile and Oxidative Transformation Dynamics in Liver Sausage-Type Processed Meats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Methods
2.2.1. Determination of Basic Chemical Composition
2.2.2. Determination of the Fatty Acid Profile
2.2.3. Storage Tests
- Determination of primary and secondary lipid oxidation products
- Sensory evaluation of quality
2.2.4. Texture Analysis
2.3. Statistical Analysis
3. Results
3.1. Determination of Fatty Acid Composition Content in Selected Edible Oils
3.2. Characteristics of the Chemical Composition of Experimental Sausages
3.3. Determination of Primary and Secondary Fat Oxidation Products in Experimental Sausages
3.4. Texture Analysis of Experimental Sausages
3.5. Sensory Evaluation of the Quality of Experimental Sausages
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Estévez, M.; Cava, R. Lipid and protein oxidation, release of iron from heme molecule and colour deterioration during refrigerated storage of liver pâté. Meat Sci. 2004, 68, 551–558. [Google Scholar] [CrossRef]
- Estévez, M.; Ramírez, R.; Ventanas, S.; Cava, R. Sage and rosemary essential oils versus BHT for the inhibition of lipid oxidative reactions in liver pâté. LWT-Food Sci. Technol. 2007, 40, 58–65. [Google Scholar] [CrossRef]
- Terrasa, A.M.; Dello Staffolo, M.; Tomás, M.C. Nutritional improvement and physicochemical evaluation of liver pâté formulations. LWT 2016, 66, 678–684. [Google Scholar] [CrossRef]
- Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A comprehensive review on lipid oxidation in meat and meat products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef]
- Ganhão, R.; Morcuende, D.; Estévez, M. Protein oxidation in emulsified cooked burger patties with added fruit extracts: Influence on colour and texture deterioration during chill storage. Meat Sci. 2010, 85, 402–409. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.S.; Park, K.S.; Kim, H.W.; Hwang, K.E.; Song, D.H.; Choi, M.S.; Lee, S.Y.; Paik, H.D.; Kim, C.J. Quality characteristics of reduced-fat frankfurters with pork fat replaced by sunflower seed oils and dietary fiber extracted from makgeolli lees. Meat Sci. 2013, 93, 652–658. [Google Scholar] [CrossRef]
- Delgado-Pando, G.; Cofrades, S.; Rodríguez-Salas, L.; Jiménez-Colmenero, F. A healthier oil combination and konjac gel as functional ingredients in low-fat pork liver pâté. Meat Sci. 2011, 88, 241–248. [Google Scholar] [CrossRef]
- Domínguez, R.; Pateiro, M.; Sichetti Munekata, P.E.; Bastianello Campagnol, P.C.; Lorenzo, J.M. Influence of partial pork backfat replacement by fish oil on nutritional and technological properties of liver pâté. Eur. J. Lipid Sci. Technol. 2017, 119, 1600178. [Google Scholar] [CrossRef]
- Gómez, I.; Janardhanan, R.; Ibañez, F.C.; Beriain, M.J. The effects of processing and preservation technologies on meat quality: Sensory and nutritional aspects. Foods 2020, 9, 1416. [Google Scholar] [CrossRef] [PubMed]
- Muguerza, E.; Gimeno, O.; Ansorena, D.; Astiasarán, I. New formulations for healthier dry fermented sausages:a review. Trends Food Sci. Technol. 2004, 15, 452–457. [Google Scholar] [CrossRef]
- Shen, J.; Liu, Y.; Wang, X.; Bai, J.; Lin, L.; Luo, F.; Zhong, H. A Comprehensive review of health-benefiting components in rapeseed oil. Nutrients 2023, 15, 999. [Google Scholar] [CrossRef] [PubMed]
- Orsavova, J.; Misurcova, L.; Vavra Ambrozova, J.; Vicha, R.; Mlcek, J. Fatty acids composition of vegetable oils and its contribution to dietary energy intake and dependence of cardiovascular mortality on dietary intake of fatty acids. Int. J. Mol. Sci. 2015, 16, 12871–12890. [Google Scholar] [CrossRef]
- Maszewska, M.; Florowska, A.; Dłuzewska, E.; Wroniak, M.; Marciniak-Lukasiak, K.; Zbikowska, A. Oxidative stability of selected edible oils. Molecules 2018, 23, 15–17. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, V.; Abidi, A.B.; Marker, S.; Bilal, S. Linseed and linseed oil: Health benefits-a review. Int. J. Pharm. Biol. Sci. 2013, 3, 434–442. [Google Scholar]
- Szterk, A.; Roszko, M.; Sosińska, E.; Derewiaka, D.; Lewicki, P.P. Chemical composition and oxidative stability of selected plant oils. J. Am. Oil Chem. Soc. 2010, 87, 637–645. [Google Scholar] [CrossRef]
- Bukowski, M.R.; Goslee, S. Climate-based variability in the essential fatty acid composition of soybean oil. Am. J. Clin. Nutr. 2024, 119, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Makni, M.; Haddar, A.; Fraj, A.B.; Zeghal, N. Physico-chemical properties, composition, and oxidative stability of olive and soybean oils under different conditions. Int. J. Food Prop. 2015, 18, 194–204. [Google Scholar] [CrossRef]
- Maki, K.C.; Hasse, W.; Dicklin, M.R.; Bell, M.; Buggia, M.A.; Cassens, M.E.; Eren, F. Corn Oil Lowers Plasma Cholesterol Compared with Coconut Oil in Adults with Above-Desirable Levels of Cholesterol in a Randomized Crossover Trial. J. Nutr. 2018, 148, 1556–1563. [Google Scholar] [CrossRef]
- Maki, K.C.; Lawless, A.L.; Kelley, K.M.; Kaden, V.N.; Geiger, C.J.; Dicklin, M.R. Corn oil improves the plasma lipoprotein lipid profile compared with extra-virgin olive oil consumption in men and women with elevated cholesterol: Results from a randomized controlled feeding trial. J. Clin. Lipidol. 2015, 9, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Susik, J. Corn oil production methods determining its chemical properties (in Polish). Zywn. Nauk. Technol. Jakosc/Food Sci. Technol. Qual. 2021, 28, 47–56. [Google Scholar] [CrossRef]
- Kozłowska, M.; Gruczyńska, E. Comparison of the oxidative stability of soybean and sunflower oils enriched with herbal plant extracts. Chem. Pap. 2018, 72, 2607–2615. [Google Scholar] [CrossRef] [PubMed]
- Gotor, A.A.; Rhazi, L. Effects of refining process on sunflower oil minor components: A review. OCL-Oilseeds Fats Crops Lipids 2016, 23, D207. [Google Scholar] [CrossRef]
- Regitano Neto, A.; Miguel, A.M.R.d.O.; Mourad, A.L.; Henriques, E.A.; Alves, R.M.V. Environmental effect on sunflower oil quality. Crop Breed. Appl. Biotechnol. 2016, 16, 197–204. [Google Scholar] [CrossRef]
- Rai, A.; Mohanty, B.; Bhargava, R. Supercritical extraction of sunflower oil: A central composite design for extraction variables. Food Chem. 2016, 192, 647–659. [Google Scholar] [CrossRef] [PubMed]
- ISO 1442:1997; Methods of Test for Meat and Meat Products. Determination of Moisture Content. Technical Committee ISO/TC 34: Geneva, Switzerland, 1997; pp. 1–4.
- ISO 5983-2:2009; Animal Feeding Stuffs. Determination of Nitrogen Content and Calculation of Crude Protein Content. Part 2: Block Digestion/Steam Distillation Method. Technical Committee ISO/TC 34: Geneva, Switzerland, 2009; pp. 1–4.
- ISO 3960:2017; Animal and Vegetable Fats and Oils. Determination of Peroxide Value. Iodometric (Visual) Endpoint Determination. Technical Committee ISO/TC 34: Geneva, Switzerland, 2017; pp. 1–4.
- ISO 1841-1:1996; Meat and Meat Products-Determination of Chloride Content-Part 1: Volhard Method. International Organization for Standardization: Geneva, Switzerland, 1996; pp. 1–4.
- Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef] [PubMed]
- AOCS (Ed.) AOCS Official Method Ce 1h-05 determination of cis-, trans-, saturated, monounsaturated and polyunsaturated fatty acids in vegetable or non-ruminant animal oils and fats by capillary GLC. In Methods Recomm Pract AOCS; AOCS Press: Champaign, IL, USA, 2017. [Google Scholar]
- Tarladgis, B.G.; Watts, B.M.; Younathan, M.T.; Dugan, L. A distillation method for the quantitative determination of malonaldehyde in rancid foods. J. Am. Oil Chem. Soc. 1960, 37, 44–48. [Google Scholar] [CrossRef]
- Pikul, J.; Leszczynski, D.E.; Kummerow, F.A. Evaluation of three modified TBA methods for measuring lipid oxidation in chicken meat. J. Agric. Food Chem. 1989, 37, 1309–1313. [Google Scholar] [CrossRef]
- PN-EN-ISO13299:2016-05; Analiza Sensoryczna-Metodyka-Ogólne Wytyczne Ustalania Profilu Sensorycznego. Polski Komitet Normalizacyjny Norm PN-ISO i PN-EN: Warszawa, Poland, 2016; pp. 1–54.
- PN-EN-ISO5492:2009; Analiza Sensoryczna-Terminologia. Polski Komitet Normalizacyjny Norm PN-ISO i PN-EN: Warszawa, Poland, 2009; pp. 1–110.
- PN-A-82007:1996/Az1:1998; Przetwory Mięsne-Wędliny. PKN: Warszawa, Poland, 1998; pp. 1–10.
- Fadda, A.; Sanna, D.; Sakar, E.H.; Gharby, S.; Mulas, M.; Medda, S.; Yesilcubuk, N.S.; Karaca, A.C.; Gozukirmizi, C.K.; Lucarini, M.; et al. Innovative and Sustainable Technologies to Enhance the Oxidative Stability of Vegetable Oils. Sustainability 2022, 14, 849. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Pateiro, M.; Fontán, M.C.G.; Carballo, J. Effect of fat content on physical, microbial, lipid and protein changes during chill storage of foal liver pâté. Food Chem. 2014, 155, 57–63. [Google Scholar] [CrossRef]
- Shramko, V.S.; Polonskaya, Y.V.; Kashtanova, E.V.; Stakhneva, E.M.; Ragino, Y.I. The short overview on the relevance of fatty acids for human cardiovascular disorders. Biomolecules 2020, 10, 1127. [Google Scholar] [CrossRef]
- Mińkowski, K.; Grześkiewicz, S.; Jerzewska, M. Assessment of nutritive value of plant oils with high content of linolenic acids based on the composition of fatty acids, tocopherols, and sterols. Zywn. Nauk. Technol. Jakosc/Food Sci. Technol. Qual. 2011, 18, 124–135. [Google Scholar] [CrossRef]
- Awogbemi, O.; Onuh, E.I.; Inambao, F.L. Comparative study of properties and fatty acid composition of some neat vegetable oils and waste cooking oils. Int. J. Low-Carbon Technol. 2019, 14, 417–425. [Google Scholar] [CrossRef]
- Makała, H. The influence of the level of plant oil additives in model ground meat products on the dynamics of oxidative transformations. In The Role of Technological Processes in Shaping Food Quality; Duda-Chodak, A., Najgebauer-Lejko, D., Drożdż, I., Tarko, T., Eds.; PTTŻ: Kraków, Poland, 2016; pp. 89–97. ISBN 978-83-937001-6-5. (In Polish) [Google Scholar]
- Mariamenatu, A.H.; Abdu, E.M. Overconsumption of Omega-6 Polyunsaturated Fatty Acids (PUFAs) versus Deficiency of Omega-3 PUFAs in Modern-Day Diets: The Disturbing Factor for Their “Balanced Antagonistic Metabolic Functions” in the Human Body. J. Lipids 2021, 2021, 8848161. [Google Scholar] [CrossRef] [PubMed]
- Ponnampalam, E.N.; Sinclair, A.J.; Holman, B.W.B. The sources, synthesis and biological actions of omega-3 and omega-6 fatty acids in red meat: An overview. Foods 2021, 10, 1358. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Colmenero, F. Healthier lipid formulation approaches in meat-based functional foods. Technological options for replacement of meat fats by non-meat fats. Trends Food Sci. Technol. 2007, 18, 567–578. [Google Scholar] [CrossRef]
- Kris-Etherton, P.M.; Grieger, J.A.; Etherton, T.D. Dietary reference intakes for DHA and EPA. Prostaglandins Leukot. Essent. Fat. Acids 2009, 81, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Briggs, M.A.; Petersen, K.S.; Kris-Etherton, P.M. Saturated fatty acids and cardiovascular disease: Replacements for saturated fat to reduce cardiovascular risk. Healthc. 2017, 5, 29. [Google Scholar] [CrossRef] [PubMed]
- Piccinin, E.; Cariello, M.; De Santis, S.; Ducheix, S.; Sabbà, C.; Ntambi, J.M.; Moschetta, A. Role of oleic acid in the gut-liver axis: From diet to the regulation of its synthesis via Stearoyl-CoA desaturase 1 (SCD1). Nutrients 2019, 11, 2283. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.D. Dietary n-6 polyunsaturated fatty acids and cardiovascular disease: Epidemiologic evidence. Prostaglandins Leukot. Essent. Fat. Acids 2018, 135, 5–9. [Google Scholar] [CrossRef]
- Huerta-Yépez, S.; Tirado-Rodriguez, A.B.; Hankinson, O. Role of diets rich in omega-3 and omega-6 in the development of cancer. Bol. Med. Hosp. Infant. Mex. 2016, 73, 446–456. [Google Scholar] [CrossRef] [PubMed]
- Mińkowski, K.; Grześkiewicz, S.; Jerzewska, M.; Ropelewska, M. Chemical composition profile of plant oils with high content of linolenic acids. Zywn. Nauka Technol. Jakosc 2010, 6, 146–157. (In Polish) [Google Scholar] [CrossRef]
- Rodríguez-Carpena, J.G.; Morcuende, D.; Estévez, M. Avocado, sunflower and olive oils as replacers of pork back-fat in burger patties: Effect on lipid composition, oxidative stability and quality traits. Meat Sci. 2012, 90, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.; Pickova, J.; Ahmad, T.; Liaquat, M.; Farid, A.; Jahangir, M. Oxidation of Lipids in Foods. Sarhad J. Agric. 2016, 32, 230–238. [Google Scholar] [CrossRef]
- Kumar, Y.; Yadav, D.N.; Ahmad, T.; Narsaiah, K. Recent trends in the use of natural antioxidants for meat and meat products. Compr. Rev. Food Sci. Food Saf. 2015, 14, 796–812. [Google Scholar] [CrossRef]
- Saini, R.K.; Prasad, P.; Sreedhar, R.V.; Akhilender Naidu, K.; Shang, X.; Keum, Y.-S. Omega−3 Polyunsaturated Fatty Acids (PUFAs): Emerging Plant and Microbial Sources, Oxidative Stability, Bioavailability, and Health Benefits—A Review. Antioxidants 2021, 10, 1627. [Google Scholar] [CrossRef] [PubMed]
- Saini, R.K.; Keum, Y.S. Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance—A review. Life Sci. 2018, 203, 255–267. [Google Scholar] [CrossRef] [PubMed]
- Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell. Longev. 2014, 2014, 360438. [Google Scholar] [CrossRef] [PubMed]
- Bilska, A.; Kowalski, R.; Kalinowska, A. Changes of the lipids fraction in liver sausage with the addition of oil. Med. Weter. 2014, 70, 232–236. (In Polish) [Google Scholar]
- Wenjiao, F.; Yongkui, Z.; Yunchuan, C.; Junxiu, S.; Yuwen, Y. TBARS predictive models of pork sausages stored at different temperatures. Meat Sci. 2014, 96, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Bilska, A.; Waszkowiak, K.; Błaszyk, M.; Rudzińska, M.; Kowalski, R. Effect of liver pâté enrichment with flaxseed oil and flaxseed extract on lipid composition and stability. J. Sci. Food Agric. 2018, 98, 4112–4120. [Google Scholar] [CrossRef]
- Kahraman, T.; Issa, G.; Bingol, E.B.; Kahraman, B.B.; Dumen, E. Effect of rosemary essential oil and modified-atmosphere packaging (MAP) on meat quality and survival of pathogens in poultry fillets. Brazilian J. Microbiol. 2015, 46, 591–599. [Google Scholar] [CrossRef] [PubMed]
- Gahruie, H.H.; Hosseini, S.M.H.; Taghavifard, M.H.; Eskandari, M.H.; Golmakani, M.-T.; Shad, E. Lipid oxidation, color changes, and microbiological quality of frozen beef burgers incorporated with shirazi thyme, cinnamon, and rosemary extracts. J. Food Qual. 2017, 2017, 6350156. [Google Scholar] [CrossRef]
- Bianchin, M.; Pereira, D.; dos Reis, S.A.; Almeida, J.D.F.; do Silva, L.D.; de Moura, C.; Carpes, S.T. Rosemary essential oil and lyophilized extract as natural antioxidant source to prevent lipid oxidation in pork sausage. Adv. J. Food Sci. Technol. 2017, 13, 210–217. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects-A review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Xu, L.; Zhu, M.-J.; Liu, X.-M.; Cheng, J.-R. Inhibitory effect of mulberry (Morus alba) polyphenol on the lipid and protein oxidation of dried minced pork slices during heat processing and storage. LWT-Food Sci. Technol. 2018, 91, 222–228. [Google Scholar] [CrossRef]
- Dzudie, T.; Kouebou, C.P.; Essia-Ngang, J.J.; Mbofung, C.M.F. Lipid sources and essential oils effects on quality and stability of beef patties. J. Food Eng. 2004, 65, 67–72. [Google Scholar] [CrossRef]
- Martin, D.; Ruiz, J.; Kivikari, R.; Puolanne, E. Partial replacement of pork fat by conjugated linoleic acid and/or olive oil in liver pâtés: Effect on physicochemical characteristics and oxidative stability. Meat Sci. 2008, 80, 496–504. [Google Scholar] [CrossRef] [PubMed]
- Boesveldt, S.; Bobowski, N.; McCrickerd, K.; Maître, I.; Sulmont-Rossé, C.; Forde, C.G. The changing role of the senses in food choice and food intake across the lifespan. Food Qual. Prefer. 2018, 68, 80–89. [Google Scholar] [CrossRef]
- Ruiz-Capillas, C.; Herrero, A.M. Sensory analysis and consumer research in new product development. Foods 2021, 10, 582. [Google Scholar] [CrossRef]
- Sharif, M.K.; Butt, M.S.; Sharif, H.R.; Nasir, M. Sensory Evaluation and Consumer Research. In Handbook of Food Science and Technology; IFT Press: Macao, China, 2017; pp. 362–386. [Google Scholar]
- Doulgeraki, A.I.; Ercolini, D.; Villani, F.; Nychas, G.J.E. Spoilage microbiota associated to the storage of raw meat in different conditions. Int. J. Food Microbiol. 2012, 157, 130–141. [Google Scholar] [CrossRef] [PubMed]
- Nychas, G.J.E.; Skandamis, P.N.; Tassou, C.C.; Koutsoumanis, K.P. Meat spoilage during distribution. Meat Sci. 2008, 78, 77–89. [Google Scholar] [CrossRef]
- Kim, T.K.; Yong, H.I.; Jung, S.; Kim, H.W.; Choi, Y.S. Effect of reducing sodium chloride based on the sensory properties of meat products and the improvement strategies employed: A review. J. Anim. Sci. Technol. 2021, 63, 725–739. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.K.; Yong, H.I.; Jung, S.; Kim, H.W.; Choi, Y.S. Technologies for the production of meat products with a low sodium chloride content and improved quality characteristics—A review. Foods 2021, 10, 957. [Google Scholar] [CrossRef] [PubMed]
- Kurćubić, V.; Stajić, S.; Miletić, N.; Stanišić, N. Healthier Meat Products Are Fashionable—Consumers Love Fashion. Appl. Sci. 2022, 12, 10129. [Google Scholar] [CrossRef]
- Olmedilla-Alonso, B.; Jiménez-Colmenero, F.; Sánchez-Muniz, F.J. Development and assessment of healthy properties of meat and meat products designed as functional foods. Meat Sci. 2013, 95, 919–930. [Google Scholar] [CrossRef]
- Grasso, S.; Brunton, N.P.; Lyng, J.G.; Lalor, F.; Monahan, F.J. Healthy processed meat products-Regulatory, reformulation and consumer challenges. Trends Food Sci. Technol. 2014, 39, 4–17. [Google Scholar] [CrossRef]
- World Health Organization; Food and Agriculture Organization UN. Diet, Nutrition and the Prevention of Chronic Diseases: Report of a Joint WHO/FAO Expert Consultation 2002; World Health Organization: Geneva, Switzerland, 2003; ISBN 924120916X. [Google Scholar]
- Desmond, E. Reducing salt: A challenge for the meat industry. Meat Sci. 2006, 74, 188–196. [Google Scholar] [CrossRef]
- Rezler, R.; Krzywdzińska-Bartkowiak, M.; Piątek, M. The influence of the substitution of fat with modified starch on the quality of pork liver pâtés. LWT 2021, 135, 110264. [Google Scholar] [CrossRef]
- Wright, A.J.; Scanlon, M.G.; Hartel, R.W.; Marangoni, A.G. Rheological Properties of Milkfat and Butter. J. Food Sci. 2001, 66, 1056–1071. [Google Scholar] [CrossRef]
- Županjac, M.; Ikonić, P.; Šojić, B.; Đermanović, B. Physicochemical and sensory properties of pork liver pâté formulated with sunflower oleogel as fat substituent. Meat Technol. 2023, 64, 416–421. [Google Scholar] [CrossRef]
- Baek, K.H.; Utama, D.T.; Lee, S.G.; An, B.K.; Lee, S.K. Effects of replacing pork back fat with canola and flaxseed oils on physicochemical properties of emulsion sausages from spent layer meat. Asian-Australas. J. Anim. Sci. 2016, 29, 865–871. [Google Scholar] [CrossRef] [PubMed]
Oil | % of Replacement | Ingredients [g/kg] | ||||
---|---|---|---|---|---|---|
Pork Meat (Class II) | Pork Fatback | Oil | Pork Liver | Mix of Spices | ||
Control sample (Test without oil) | 0 | 430 | 420 | - | 150 | 21 |
Corn oil (CO) | 20 | 430 | 336 | 84 | 150 | 21 |
40 | 430 | 252 | 168 | 150 | 21 | |
Linseed oil (LO) | 20 | 430 | 336 | 84 | 150 | 21 |
40 | 430 | 252 | 168 | 150 | 21 | |
Rapeseed oil (RO) | 20 | 430 | 336 | 84 | 150 | 21 |
40 | 430 | 252 | 168 | 150 | 21 | |
Sunflower oil (SunO) | 20 | 430 | 336 | 84 | 150 | 21 |
40 | 430 | 252 | 168 | 150 | 21 | |
Soybean oil (SO) | 20 | 430 | 336 | 84 | 150 | 21 |
40 | 430 | 252 | 168 | 150 | 21 |
Fatty Acids | Types of Edible Fats | |||||
---|---|---|---|---|---|---|
Animal Fat | Corn Oil (CO) | Linseed Oil (LO) | Rapeseed Oil (RO) | Sunflower Oil (Suno) | Soybean Oil (SO) | |
C12:0 | 0.12 ± 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
C14:0 | 1.80 ± 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
C16:0 | 25.89 f± 0.08 | 12.50 e ± 0.02 | 5.82 c ± 0.07 | 4.44 b ± 0.02 | 6.34 d ± 0.04 | 10.62 a ± 0.01 |
C16:1 | 2.73 c ± 0.04 | 0.00 | 0.17 b ± 0.00 | 0.20 b ± 0.00 | 0.07 a ± 0.00 | 0.09 a ± 0.00 |
C17:0 | 0.00 | 0.05 a ± 0.04 | 0.00 | 0.00 | 0.00 | 0.10 b ± 0.00 |
C18:0 | 13.98 f ± 0.05 | 2.90 b ± 0.02 | 3.83 e ± 0.05 | 1.58 a ± 0.02 | 3.35 c ± 0.05 | 3.53 d ± 0.03 |
C18:1 | 45.91 e± 0.08 | 27.55 d ± 0.14 | 21.66 a ± 0.23 | 61.95 ± 0.12 | 24.23 c ± 0.13 | 23.54 b ± 0.17 |
C18:2 | 7.63 a ± 0.04 | 55.65 d ± 1.05 | 16.12 b ± 0.15 | 19.26 c ± 0.01 | 63.91 f ± 0.15 | 56.84 e ± 0.09 |
C18:3 | 1.61 b ± 0.02 | 1.10 b ± 0.01 | 51.82 e ± 1.11 | 11.30 d ± 0.00 | 0.33 a ± 0.00 | 4.05 c ± 0.07 |
C20:0 | 0.19 a ± 0.01 | 0.25 b ± 0.00 | 0.25 b ± 0.00 | 0.55 d ± 0.06 | 0.21 a ± 0.00 | 0.40 c ± 0.00 |
C20:1 | 0.00 | 0.00 | 0.33 d ± 0.01 | 0.21 b ± 0.02 | 0.16 a ± 0.00 | 0.24 c ± 0.00 |
C22:0 | 0.00 | 0.00 | 0.00 | 0.32 a ± 0.01 | 0.81 c ± 0.01 | 0.45 b ± 0.01 |
C22:1 | 0.17 a ± 0.01 | 0.00 | 0.00 | 0.21 b ± 0.00 | 0.00 | 0.00 |
C24:0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.15 ± 0.00 |
∑SFA | 41.96 e ± 11.36 | 15.70 d ± 4.97 | 9.90 b ± 2.54 | 6.88 a ± 1.71 | 10.70 c ± 2.57 | 15.25 d ± 4.17 |
∑MUFA | 48.81 e ± 25.70 | 27.55 d ± 13.85 | 22.16 a ± 10.75 | 62.56 f ± 30.87 | 25.07 c ± 12.37 | 23.87 b ± 11.71 |
∑PUFA | 9.24 a ± 4.26 | 56.75 c ± 38.57 | 67.94 f ± 25.24 | 30.56 b ± 5.62 | 64.24 e ± 44.95 | 60.88 d ± 37.25 |
PUFA/SFA | 0.22 | 3.61 | 6.86 | 4.44 | 6.00 | 3.99 |
n-6/n-3 | 4.75:1 | 50.59:1 | 0.31:1 | 1.70:1 | 191.46:1 | 14.05:1 |
Fatty Acids | Control Sample | Percentage of Animal Fat Replaced with Vegetable Oil | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Corn Oil | Linseed Oil | Rapeseed Oil | Sunflower Oil | Soybean Oil | |||||||
20 | 40 | 20 | 40 | 20 | 40 | 20 | 40 | 20 | 40 | ||
∑SFA | 39.83 j ± 10.38 | 38.54 i ± 9.98 | 34.28 c ± 8.94 | 35.55 e ± 9.22 | 33.19 b ± 8.58 | 37.05 f ± 9.57 | 34.70 d ± 9.11 | 37.71 g ± 9.68 | 32.66 a ± 8.28 | 37.83 h ± 9.66 | 34.65 d ± 8.77 |
∑MUFA | 46.69 f ± 18.41 | 45.59 c ± 18.01 | 45.83 d ± 18.41 | 41.88 a± 16.99 | 43.65 b ± 17.49 | 52.40 h ± 21.14 | 54.42 i ± 21.83 | 46.44 ef ± 18.38 | 46.42 e ± 18.92 | 46.90 g ± 18.55 | 46.30 e ± 18.67 |
∑PUFA | 13.48 c ± 5.64 | 15.87 e ± 7.83 | 19.89 g ± 9.84 | 22.57 i ± 6.47 | 23.16 j ± 6.65 | 10.55 a ± 3.62 | 10.95 b ± 3.75 | 15.85 e ± 7.78 | 20.92 h ± 10.30 | 15.27 d ± 6.88 | 19.05 f ± 8.76 |
PUFA/SFA | 0.34 | 0.41 | 0.58 | 0.63 | 0.70 | 0.28 | 0.31 | 0.42 | 0.64 | 0.40 | 0.55 |
Fatty Acids | Control Sample | Percentage of Animal Fat Replaced with Vegetable Oil | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Corn Oil | Linseed Oil | Rapeseed Oil | Sunflower Oil | Soybean Oil | |||||||
20 | 40 | 20 | 40 | 20 | 40 | 20 | 40 | 20 | 40 | ||
C18:2 | 11.80 e ± 0.87 | 15.71 g ± 0.94 | 19.73 i ± 1.02 | 10.49 c ± 1.09 | 10.80 d ± 0.76 | 7.96 a ± 0.07 | 8.25 b ± 0.67 | 15.63 g ± 0.59 | 20.68 j ± 1.01 | 14.11 f ± 0.82 | 17.88 h ± 0.46 |
C18:3 | 1.16 c ± 0.02 | 0.16 a ± 0.00 | 0.16 a ± 0.01 | 11.96 e ± 0.97 | 12.26 f ± 0.65 | 1.85 d ± 0.45 | 1.88 d± 0.23 | 0.21 b ± 0.00 | 0.23 b ± 0.00 | 1.16 c ± 0.04 | 1.17 c ± 0.07 |
n6/n3 | 10.2:1 | 98.2:1 | 123.3:1 | 0.9:1 | 0.9:1 | 4.3:1 | 4.4:1 | 74.4:1 | 89.9:1 | 12.2:1 | 15.3:1 |
Storage Time (Days) | Control Sample | Corn Oil (CO) | Linseed Oil (LO) | Rapeseed Oil (RO) | Sunflower Oil (Suno) | Soybean Oil (SO) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Percentage of Animal Fat Replaced with Vegetable Oil | |||||||||||
20 | 40 | 20 | 40 | 20 | 40 | 20 | 40 | 20 | 40 | ||
1 | 0.23 cA ± 0.01 | 0.22 cA± 0.01 | 0.24 cA ± 0.04 | 0.31 hA ± 0.08 | 0.38 iA ± 0.01 | 0.18 aA ± 0.01 | 0.20 bA ± 0.02 | 0.25 dA ± 0.01 | 0.30 fgA ± 0.01 | 0.27 eA ± 0.01 | 0.29 fA ± 0.03 |
5 | 0.34 efC ± 0.02 | 0.27 aB ± 0.01 | 0.31 bcB ± 0.02 | 0.44 gB ± 0.04 | 0.62 hB ± 0.02 | 0.26 aB ± 0.03 | 0.27 aB ± 0.03 | 0.33 deB ± 0.02 | 0.35 fB ± 0.01 | 0.30 bB ± 0.03 | 0.32 cdB ± 0.02 |
8 | 0.42 eD ± 0.01 | 0.30 aC ± 0.02 | 0.34 bC ± 0.01 | 0.61 hC ± 0.03 | 0.60 hB ± 0.01 | 0.40 dC ± 0.02 | 0.49 fD ± 0.06 | 0.37 cC ± 0.03 | 0.52 gC ± 0.03 | 0.52 gC ± 0.04 | 0.51 gC ± 0.01 |
12 | 0.42 aD ± 0.04 | 0.48 cD ± 0.04 | 0.60 fD ± 0.02 | 0.72 gD ± 0.04 | 0.73 gC ± 0.04 | 0.48 cD ± 0.01 | 0.56 dE ± 0.05 | 0.45 bD ± 0.02 | 0.61 fD ± 0.01 | 0.58 eD ± 0.02 | 0.57 deD ± 0.01 |
15 | 0.29 aB ± 0.02 | 0.53 dE ± 0.05 | 0.65 gE ± 0.02 | 0.76 iE ± 0.03 | 0.81 jD ± 0.02 | 0.40 bC ± 0.04 | 0.43 cC ± 0.04 | 0.57 eE ± 0.03 | 0.69 hE ± 0.02 | 0.59 fD ± 0.06 | 0.77 iE ± 0.04 |
coeff. A × 10−3/24 h | 6 | 23 | 32 | 34 | 28 | 19 | 22 | 22 | 29 | 27 | 34 |
R2 | 0.17 | 0.93 | 0.92 | 0.97 | 0.92 | 0.76 | 0.62 | 0.97 | 0.96 | 0.87 | 0.93 |
Storage Time (Days) | Control Sample | Corn Oil (CO) | Linseed Oil (LO) | Rapeseed Oil (RO) | Sunflower Oil (Suno) | Soybean Oil (SO) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Percentage of Animal Fat Replaced with Vegetable Oil | |||||||||||
20 | 40 | 20 | 40 | 20 | 40 | 20 | 40 | 20 | 40 | ||
1 | 1.99 fA ± 0.03 | 1.40 cA ± 0.01 | 1.26 bA ± 0.04 | 1.83 dA ± 0.09 | 1.88 eA ± 0.04 | 1.20 aA ± 0.03 | 1.18 aA ± 0.07 | 1.27 bA ± 0.08 | 1.27 bA ± 0.03 | 1.84 dA ± 0.06 | 1.81 dA ± 0.07 |
5 | 2.13 hB ± 0.06 | 1.56 dB ± 0.04 | 1.53 cdB ± 0.04 | 1.95 fB ± 0.11 | 2.04 gB ± 0.07 | 1.51 cB ± 0.02 | 1.51 cB ± 0.03 | 1.31 aA ± 0.05 | 1.36 bB ± 0.03 | 1.77 eB ± 0.04 | 1.80 eB ± 0.01 |
8 | 2.51 gC ± 0.10 | 2.21 dC ± 0.05 | 2.18 dC ± 0.02 | 2.74 hC ± 0.15 | 2.49 fC ± 0.06 | 1.92 aC ± 0.02 | 1.95 aC ± 0.02 | 2.14 cB ± 0.06 | 2.05 bC ± 0.05 | 2.31 eC ± 0.02 | 2.20 dC ± 0.01 |
12 | 2.66 fD ± 0.03 | 2.38 deD ± 0.05 | 2.35 dD ± 0.02 | 2.89 hD ± 0.06 | 2.81 gD ± 0.05 | 2.02 aD ± 0.05 | 2.29 cD ± 0.05 | 2.33 dC ± 0.09 | 2.30 cD ± 0.02 | 2.41 eD ± 0.17 | 2.24 bC ± 0.04 |
15 | 2.52 fC ± 0.07 | 2.33 dD ± 0.03 | 2.33 dD ± 0.04 | 2.86 gD ± 0.05 | 2.88 gE ± 0.04 | 1.99 aD ± 0.09 | 2.13 bE ± 0.03 | 2.33 dC ± 0.17 | 2.30 dD ± 0.01 | 2.41 eD ± 0.02 | 2.22 cC ± 0.05 |
coeff. A × 10−3/24 h | 45 | 76 | 85 | 86 | 79 | 60 | 77 | 89 | 85 | 50 | 36 |
R2 | 0.77 | 0.84 | 0.87 | 0.83 | 0.95 | 0.85 | 0.87 | 0.83 | 0.87 | 0.77 | 0.75 |
Sample | Percentage of Animal Fat Replaced with Vegetable Oil | Firmness [N] | Work of Shear [N*s] | Stickiness [N] | Adhesion [N*s] |
---|---|---|---|---|---|
Control sample | 0 | 27.273 f ± 1.938 | 47.381 d ± 3.539 | −28.370 e ± 1.165 | −2.805 cd ± 0.355 |
Corn oil (CO) | 20 | 14.701 bd ± 0.903 | 25.003 a ± 0.822 | −14.563 a ± 1.665 | −1.837 ab ± 0.211 |
40 | 8.486 a ± 0.090 | 15.192 bc ± 0.092 | −10.673 b ± 0.268 | −2.039 a ± 0.030 | |
Linseed oil (LO) | 20 | 14.288 bd ± 0.757 | 24.161 a ± 1.587 | −13.807 ac ± 1.946 | −1.695 ab ± 0.313 |
40 | 8.353 a ± 0.459 | 12.813 c ± 0.460 | −6.102 f ± 0.342 | −1.345 b ± 0.086 | |
Rapeseed oil (RO) | 20 | 15.903 d ± 1.554 | 25.743 a ± 0.645 | −15.377 ac ± 1.507 | −1.879 a ± 0.159 |
40 | 10.992 ce ± 0.965 | 17.223 b ± 0.751 | −10.349 b ± 0.429 | −1.828 ab ± 1.828 | |
Sunflower oil (SunO) | 20 | 9.971 ac ± 0.470 | 17.877 b ± 1.211 | −10.908 b ± 0.160 | −1.652 ab ± 0.116 |
40 | 9.395 ac ± 0.383 | 14.734 bc ± 0.276 | −11.562 bd ± 0.424 | −3.322 d ± 0.073 | |
Soybean oil (SO) | 20 | 13.348 b ± 0.205 | 24.568 a ± 0.607 | −17.078 c ± 0.450 | −2.702 c ± 0.072 |
40 | 13.053 be ± 0.091 | 22.579 a ± 0.774 | −16.061 ac ± 0.359 | −2.770 c ± 0.390 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bilska, A.; Krzywdzińska-Bartkowiak, M. The Influence of Vegetable Oil Addition Levels on the Fatty Acid Profile and Oxidative Transformation Dynamics in Liver Sausage-Type Processed Meats. Foods 2025, 14, 380. https://doi.org/10.3390/foods14030380
Bilska A, Krzywdzińska-Bartkowiak M. The Influence of Vegetable Oil Addition Levels on the Fatty Acid Profile and Oxidative Transformation Dynamics in Liver Sausage-Type Processed Meats. Foods. 2025; 14(3):380. https://doi.org/10.3390/foods14030380
Chicago/Turabian StyleBilska, Agnieszka, and Mirosława Krzywdzińska-Bartkowiak. 2025. "The Influence of Vegetable Oil Addition Levels on the Fatty Acid Profile and Oxidative Transformation Dynamics in Liver Sausage-Type Processed Meats" Foods 14, no. 3: 380. https://doi.org/10.3390/foods14030380
APA StyleBilska, A., & Krzywdzińska-Bartkowiak, M. (2025). The Influence of Vegetable Oil Addition Levels on the Fatty Acid Profile and Oxidative Transformation Dynamics in Liver Sausage-Type Processed Meats. Foods, 14(3), 380. https://doi.org/10.3390/foods14030380