Slight Water Loss Combined with Methyl Jasmonate Treatment Improves Actinidia arguta Resistance to Gray Mold by Modulating Reactive Oxygen Species and Phenylpropanoid Metabolism
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Preparation of B. cinerea and Spore Suspensions
2.3. Experimental Design and Sample Collection
2.4. Determination of Disease Severity Index
2.5. Assay of POD, PPO, SOD Activities
2.6. Assay of Lignin and Total Phenol Contents
2.7. Assay of PAL, 4CL, and C4H Activities
2.8. Assay of the Expression of Genes Corresponding to Key Enzymes in Phenylalanoid Metabolism
2.9. Statistical Analyses
3. Results
3.1. Effects of Different Treatments on the Disease Severity Index
3.2. Effects of Different Treatments on the POD, PPO, and SOD Activities
3.3. Effects of Different Treatments on the Total Phenol and Lignin Contents
3.4. Effects of Different Treatments on PAL, 4CL, and C4H Activities
3.5. Effects of Different Treatments on the Expression of Genes Related to Key Enzymes of Phenylpropanoid Metabolism
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Latocha, P.; Łata, B.; Stasiak, A. Phenolics, Ascorbate and the Antioxidant Potential of Kiwiberry vs. Common Kiwifruit: The Effect of Cultivar and Tissue Type. J. Funct. Foods 2015, 19, 155–163. [Google Scholar] [CrossRef]
- Baranowska-Wójcik, E.; Dominik, S. Characteristics and Pro-Health Properties of Mini Kiwi (Actinidia arguta). Hortic. Environ. Biotechnol. 2019, 60, 217–225. [Google Scholar] [CrossRef]
- Lu, X.M.; Yu, X.F.; Li, G.Q.; Qu, M.H.; Wang, H.; Liu, C.; Man, Y.P.; Jiang, X.H.; Li, M.Z.; Wang, J.; et al. Genome Assembly of Autotetraploid Actinidia arguta Highlights Adaptive Evolution and Enables Dissection of Important Economic Traits. Plant Commun. 2024, 5, 100856. [Google Scholar] [CrossRef]
- Wu, Y.Y.; Zhang, S.; Wang, J.Y.; He, F.; Wei, H.; Chen, D.; Wang, Y. Efficacy and Molecular Mechanisms of Nystatin Against Botrytis Cinerea on Postharvest Table Grape. Foods 2024, 13, 3624. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Puentes, A.; Björkman, C.; Brosset, A.; Bylund, H. Comparing Exogenous Methods to Induce Plant-Resistance Against a Bark-Feeding Insect. Front. Plant Sci. 2021, 12, 695867. [Google Scholar] [CrossRef]
- Sui, Y.; Li, Z.; Xiao, X.M.; Deng, W.; Duan, B. The Role of Induced Resistance in Mitigating Postharvest Fungal Diseases in Fruits and Vegetables. J. Adv. Res. 2025; ahead of print. [Google Scholar] [CrossRef]
- Liang, L.Y.; Zhao, C.L.; Li, L.; Ning, Y.; Luo, Y.; He, X.N.; Guang, D. Sodium Silicate Enhance Induced Resistance by Regulating DNA Methylation in Postharvest Muskmelon. Eur. J. Plant Pathol. 2025, 173, 73–87. [Google Scholar] [CrossRef]
- Lv, J.Y.; Zhang, M.Y.; Zhang, J.H.; Ge, Y.H.; Li, C.Y.; Meng, K.; Li, J.R. Effects of Methyl Jasmonate on Expression of Genes Involved in Ethylene Biosynthesis and Signaling Pathway during Postharvest Ripening of Apple Fruit. Sci. Hortic. 2018, 229, 157–166. [Google Scholar] [CrossRef]
- Li, T.T.; Shi, D.D.; Wu, Q.X.; Zhang, Z.K.; Qu, H.X.; Jiang, Y.M. Sodium Para-Aminosalicylate Delays Pericarp Browning of Litchi Fruit by Inhibiting ROS-Mediated Senescence during Postharvest Storage. Food Chem. 2019, 278, 552–559. [Google Scholar] [CrossRef] [PubMed]
- Jin, P.; Wang, H.Y.; Zhang, Y.; Huang, Y.P.; Wang, L.; Zheng, Y.H. UV-C Enhances Resistance against Gray Mold Decay Caused by Botrytis cinerea in Strawberry Fruit. Sci. Hortic. 2017, 225, 106–111. [Google Scholar] [CrossRef]
- Li, J.H.; Azam, M.; Noreen, A.; Umer, M.A.; Ilahy, R.; Akram, M.T.; Qadri, R.; Khan, M.A.; Rehman, S.U.; Hussain, I.; et al. Application of Methyl Jasmonate to Papaya Fruit Stored at Lower Temperature Attenuates Chilling Injury and Enhances the Antioxidant System to Maintain Quality. Foods 2023, 12, 2743. [Google Scholar] [CrossRef]
- Wang, Q.X.; Yu, X.Y.; Wang, J.Y.; Wei, B.D.; Zhou, Q.; Cheng, S.C.; Sun, Y.; Li, B. Slight Water Loss Affects the Quality of ‘Longcheng 2’ Kiwiberry Fruit Infected with Gray Mold Disease. Sci. Hortic. 2024, 328, 112932. [Google Scholar] [CrossRef]
- Wang, K.T.; Jin, P.; Han, L.; Shang, H.T.; Tang, S.S.; Rui, H.J.; Duan, Y.F.; Kong, F.Y.; Kai, X.; Zheng, Y.H. Methyl Jasmonate Induces Resistance against Penicillium Citrinum in Chinese Bayberry by Priming of Defense Responses. Postharvest Biol. Technol. 2014, 98, 90–97. [Google Scholar] [CrossRef]
- Ge, Y.H.; Wei, M.L.; Li, C.Y.; Chen, Y.R.; Lv, J.Y.; Meng, K.; Wang, W.H.; Li, J.R. Reactive Oxygen Species Metabolism and Phenylpropanoid Pathway Involved in Disease Resistance against Penicillium expansum in Apple Fruit Induced by ϵ-poly-l-lysine. J. Sci. Food Agric. 2018, 98, 5082–5088. [Google Scholar] [CrossRef]
- Ghasemnezhad, M.; Sherafati, M.; Payvast, G.A. Variation in Phenolic Compounds, Ascorbic Acid and Antioxidant Activity of Five Coloured Bell Pepper (Capsicum annum) Fruits at Two Different Harvest Times. J. Funct. Foods 2011, 3, 44–49. [Google Scholar] [CrossRef]
- Liu, H.G.; Jiang, W.B.; Bi, Y.; Luo, Y.B. Postharvest BTH Treatment Induces Resistance of Peach (Prunus persica L. Cv. Jiubao) Fruit to Infection by Penicillium expansum and Enhances Activity of Fruit Defense Mechanisms. Postharvest Biol. Technol. 2005, 35, 263–269. [Google Scholar] [CrossRef]
- Voo, K.S.; Whetten, R.W.; O’Malley, D.M.; Sederoff, R.R. 4-Coumarate: Coenzyme A Ligase from Loblolly Pine Xylem (Isolation, Characterization, and Complementary DNA Cloning). Plant Physiol. 1995, 108, 85–97. [Google Scholar] [CrossRef]
- Elad, Y.; Pertot, I.; Cotes Prado, A.M.; Stewart, A. Plant Hosts of Botrytis spp. In Botrytis—The Fungus, the Pathogen and Its Management in Agricultural Systems; Springer International Publishing: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Xu, Y.; Tong, Z.; Zhang, X.; Wang, Y.; Fang, W.; Li, L.; Luo, Z. Unveiling the Mechanisms for the Plant Volatile Organic Compound Linalool to Control Gray Mold on Strawberry Fruits. J. Agric. Food Chem. 2019, 67, 9265–9276. [Google Scholar] [CrossRef]
- Pan, L.Y.; Zhao, X.Y.; Chen, M.; Fu, Y.Q.; Xiang, M.L.; Chen, J.Y. Effect of Exogenous Methyl Jasmonate Treatment on Disease Resistance of Postharvest Kiwifruit. Food Chem. 2020, 305, 125483. [Google Scholar] [CrossRef]
- Jiang, L.L.; Jin, P.; Wang, L.; Yu, X.; Wang, H.Y.; Zheng, Y.H. Methyl Jasmonate Primes Defense Responses against Botrytis Cinerea and Reduces Disease Development in Harvested Table Grapes. Sci. Hortic. 2015, 192, 218–223. [Google Scholar] [CrossRef]
- Cao, S.F.; Zheng, Y.H.; Yang, Z.F.; Tang, S.S.; Jin, P.; Wang, K.; Wang, S. Effect of Methyl Jasmonate on the Inhibition of Colletotrichum Acutatum Infection in Loquat Fruit and the Possible Mechanisms. Postharvest Biol. Technol. 2008, 49, 301–307. [Google Scholar] [CrossRef]
- Tao, X.Y.; Wu, Q.; Li, J.Y.; Huang, S.Q.; Cai, L.Y.; Mao, L.C.; Luo, Z.S.; Li, L.; Ying, T.J. Exogenous Methyl Jasmonate Regulates Phenolic Compounds Biosynthesis during Postharvest Tomato Ripening. Postharvest Biol. Technol. 2022, 184, 111760. [Google Scholar] [CrossRef]
- Walters, D.; Walsh, D.; Newton, A.; Lyon, G. Induced Resistance for Plant Disease Control: Maximizing the Efficacy of Resistance Elicitors. Phytopathology 2005, 95, 1368–1373. [Google Scholar] [CrossRef]
- Li, M.; Qu, X.X.; Gong, D.Q.; Huang, T.Y.; Wang, Y.; Yang, Y.; Gao, Z.Y.; Zhang, Z.K.; Sun, J.H.; Hu, M.J. Induced Resistance to Control Postharvest Stem-End Rot by Methyl Jasmonate in Mango Fruit. Physiol. Mol. Plant Pathol. 2024, 134, 102426. [Google Scholar] [CrossRef]
- Lin, Y.X.; Lin, Y.F.; Lin, M.S.; Chen, L.; Li, H.; Lin, H.T. Propyl Gallate Postharvest Treatment Improves the Storability of Longans by Regulating the Metabolisms of Respiratory and Disease-Resistance Substances. Postharvest Biol. Technol. 2023, 206, 112556. [Google Scholar] [CrossRef]
- He, F.T.; Zhao, L.N.; Zheng, X.F.; Abdelhai, M.H.; Boateng, N.S.; Zhang, X.H.; Zhang, H.Y. Investigating the Effect of Methyl Jasmonate on the Biocontrol Activity of Meyerozyma guilliermondii against Blue Mold Decay of Apples and the Possible Mechanisms Involved. Physiol. Mol. Plant Pathol. 2020, 109, 101454. [Google Scholar] [CrossRef]
- Wang, Y.; Ji, D.C.; Chen, T.; Li, B.Q.; Zhang, Z.Q.; Qin, G.Z.; Tian, S.P. Production, Signaling, and Scavenging Mechanisms of Reactive Oxygen Species in Fruit–Pathogen Interactions. Int. J. Mol. Sci. 2019, 20, 2994. [Google Scholar] [CrossRef]
- Maya, M.A.; Matsubara, Y. Tolerance to Fusarium Wilt and Anthracnose Diseases and Changes of Antioxidative Activity in Mycorrhizal Cyclamen. Crop Prot. 2013, 47, 41–48. [Google Scholar] [CrossRef]
- Zheng, F.L.; Zheng, W.W.; Li, L.M.; Pan, S.M.; Liu, M.C.; Zhang, W.W.; Liu, H.S.; Zhu, C.Y. Chitosan Controls Postharvest Decay and Elicits Defense Response in Kiwifruit. Food Bioprocess Technol. 2017, 10, 1937–1945. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Zhou, Y.; Li, J.; Gu, X.Y.; Zhao, L.N.; Li, B.; Wang, K.L.; Yang, Q.Y.; Zhang, H.Y. Pichia Caribbica Improves Disease Resistance of Cherry Tomatoes by Regulating ROS Metabolism. Biol. Control 2022, 169, 104870. [Google Scholar] [CrossRef]
- Han, J.J.; Zhao, L.N.; Zhu, H.M.; Dhanasekaran, S.; Zhang, X.Y.; Zhang, H.Y. Study on the Effect of Alginate Oligosaccharide Combined with Meyerozyma guilliermondii against Penicillium expansum in Pears and the Possible Mechanisms Involved. Physiol. Mol. Plant Pathol. 2021, 115, 101654. [Google Scholar] [CrossRef]
- Sui, Y.; Wang, Z.S.; Zhang, D.F.; Wang, Q. Oxidative Stress Adaptation of the Antagonistic Yeast, Debaryomyces Hansenii, Increases Fitness in the Microenvironment of Kiwifruit Wound and Biocontrol Efficacy against Postharvest Diseases. Biol. Control 2021, 152, 104428. [Google Scholar] [CrossRef]
- Jiang, B.; Liu, R.L.; Fang, X.J.; Wu, W.J.; Han, Y.C.; Chen, H.J.; Xu, F.; Gao, H.Y. Botrytis cinerea Infection Affects Wax Composition, Content and Gene Expression in Blueberry Fruit. Postharvest Biol. Technol. 2022, 192, 112020. [Google Scholar] [CrossRef]
- Hu, M.J.; Yang, D.P.; Huber, D.J.; Jiang, Y.M.; Li, M.; Gao, Z.Y.; Zhang, Z.K. Reduction of Postharvest Anthracnose and Enhancement of Disease Resistance in Ripening Mango Fruit by Nitric Oxide Treatment. Postharvest Biol. Technol. 2014, 97, 115–122. [Google Scholar] [CrossRef]
- Wang, L.Y.; Hu, J.P.; Li, D.S.; Reymick, O.O.; Tan, X.L.; Tao, N.G. Isolation and Control of Botrytis cinerea in Postharvest Green Pepper Fruit. Sci. Hortic. 2022, 302, 111159. [Google Scholar] [CrossRef]
- Wang, H.B.; Kou, X.H.; Wu, C.; Fan, G.J.; Li, T.T. Methyl Jasmonate Induces the Resistance of Postharvest Blueberry to Gray Mold Caused by Botrytis cinerea. J. Sci. Food Agric. 2020, 100, 4272–4281. [Google Scholar] [CrossRef]
- Wang, Y.; Qiao, Y.H.; Zhang, M.W.; Ma, Z.Q.; Xue, Y.J.; Mi, Q.Q.; Wang, A.; Feng, J.Y. Potential Value of Small-Molecule Organic Acids for the Control of Postharvest Gray Mold Caused by Botrytis cinerea. Pestic. Biochem. Physiol. 2021, 177, 104884. [Google Scholar] [CrossRef]
- Li, Z.B.; Wei, Y.Y.; Cao, Z.D.; Jiang, S.; Chen, Y.; Shao, X.F. The Jasmonic Acid Signaling Pathway Is Associated with Terpinen-4-Ol-Induced Disease Resistance against Botrytis cinerea in Strawberry Fruit. J. Agric. Food Chem. 2021, 69, 10678–10687. [Google Scholar] [CrossRef]





| Treatment | Control | Treatment 1 | Treatment 2 | Treatment 3 |
|---|---|---|---|---|
| 4% water loss | √ | √ | ||
| MeJA | √ | √ | ||
| pathogen | √ | √ | √ | √ |
| Gene | Primer Sequence 5′ → 3′ |
|---|---|
| Actin | F: GTGCTCAGTGGTGGTTCAA |
| R: GACGCTGTATTTCCTCTCAG | |
| AaPAL | F: AACCGGATTAAGGAGTGCCG |
| R: GGTGACTGCACCTTCTCTCC | |
| Aa4CL | F: AGTCGAAATCAGCCCAGACG |
| R: GTCGCTGTGCATGTAGAGGT | |
| AaC4H | F: GACACCCAAAAGCTCCCGTA |
| R: CTCTGCGGGGATGTCGTATC | |
| AaC3′H | F: ACCGAATGGTCTCAAGCCAG |
| R: TCCACAGGCACACGTTTGTA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Wang, Q.; Wang, F.; Wei, B.; Zhou, Q.; Cheng, S.; Sun, Y. Slight Water Loss Combined with Methyl Jasmonate Treatment Improves Actinidia arguta Resistance to Gray Mold by Modulating Reactive Oxygen Species and Phenylpropanoid Metabolism. Foods 2025, 14, 4311. https://doi.org/10.3390/foods14244311
Liu X, Wang Q, Wang F, Wei B, Zhou Q, Cheng S, Sun Y. Slight Water Loss Combined with Methyl Jasmonate Treatment Improves Actinidia arguta Resistance to Gray Mold by Modulating Reactive Oxygen Species and Phenylpropanoid Metabolism. Foods. 2025; 14(24):4311. https://doi.org/10.3390/foods14244311
Chicago/Turabian StyleLiu, Xinqi, Qingxuan Wang, Feiyang Wang, Baodong Wei, Qian Zhou, Shunchang Cheng, and Yang Sun. 2025. "Slight Water Loss Combined with Methyl Jasmonate Treatment Improves Actinidia arguta Resistance to Gray Mold by Modulating Reactive Oxygen Species and Phenylpropanoid Metabolism" Foods 14, no. 24: 4311. https://doi.org/10.3390/foods14244311
APA StyleLiu, X., Wang, Q., Wang, F., Wei, B., Zhou, Q., Cheng, S., & Sun, Y. (2025). Slight Water Loss Combined with Methyl Jasmonate Treatment Improves Actinidia arguta Resistance to Gray Mold by Modulating Reactive Oxygen Species and Phenylpropanoid Metabolism. Foods, 14(24), 4311. https://doi.org/10.3390/foods14244311

