Quality Characteristics of Poultry Products Containing Plant Components with Enhanced Health Benefits
Abstract
1. Introduction
2. Materials and Methods
2.1. Ingredients and Recipe Composition
2.2. Preparation of Poultry Products Containing Plant Components
2.3. Assessment of Physical Properties
Assessment of Chemical Traits
2.4. Sensory Evaluation
2.5. Statistical Analysis
3. Results and Discussion
4. Conclusions
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Galanakis, C.M. The future of food. Foods 2024, 13, 506. [Google Scholar] [CrossRef]
- Gabdukaeva, L.Z.; Gumerov, T.Y.; Nurgalieva, A.R.; Abdullina, L.V. Current trends in the development of functional meat products to improve the nutritional status of the population. In Proceedings of the International Conference on World Technological Trends in Agribusiness, Omsk, Russia, 4–5 July 2020; IOP Conference Series: Earth and Environmental Science. IOP Publishing: Bristol, UK, 2021; Volume 624, p. 012196. [Google Scholar] [CrossRef]
- Salejda, A.M.; Olender, K.; Zielińska-Dawidziak, M.; Mazur, M.; Szperlik, J.; Miedzianka, J.; Szmaja, A. Frankfurter-type sausage enriched with buckwheat by-product as a source of bioactive compounds. Foods 2022, 11, 674. [Google Scholar] [CrossRef]
- Inguglia, E.S.; Song, Z.; Kerry, J.P.; O’Sullivan, M.G.; Hamill, R.M. Addressing clean label trends in commercial meat processing: Strategies, challenges and insights from consumer perspectives. Foods 2023, 12, 2062. [Google Scholar] [CrossRef]
- Ruiz-Capillas, C.; Herrero, A.M.; Pintado, T.; Delgado-Pando, G. Sensory analysis and consumer research in new meat products development. Foods 2021, 10, 429. [Google Scholar] [CrossRef] [PubMed]
- Barone, A.M.; Banovic, M.; Asioli, D.; Wallace, E.; Ruiz-Capillas, C.; Grasso, S. The usual suspect: How to co-create healthier meat products. Food Res. Int. 2021, 143, 110304. [Google Scholar] [CrossRef]
- Pasińska, D. Economic Determinants of Poultry Market Development in Poland. Probl. Agric. Econ. 2024, 380, 48–65. [Google Scholar] [CrossRef]
- Barbut, S.; Leishman, E.M. Quality and processability of modern poultry meat. Animals 2022, 12, 2766. [Google Scholar] [CrossRef] [PubMed]
- Gasimova, H. Nutritional and Biological Value of Poultry Products. Nat. Sci. 2024, 6, 30–33. [Google Scholar] [CrossRef] [PubMed]
- Ismail, I.; Joo, S.T. Poultry meat quality in relation to muscle growth and muscle fiber characteristics. Korean J. Food Sci. Anim. Resour. 2017, 37, 873. [Google Scholar] [CrossRef]
- Andreani, G.; Sogari, G.; Marti, A.; Froldi, F.; Dagevos, H.; Martini, D. Plant-based meat alternatives: Technological, nutritional, environmental, market, and social challenges and opportunities. Nutrients 2023, 15, 452. [Google Scholar] [CrossRef]
- Khajavi, M.Z.; Abhari, K.; Barzegar, F.; Hosseini, H. Functional meat products: The new consumer’s demand. Curr. Nutr. Food Sci. 2020, 16, 260–267. [Google Scholar] [CrossRef]
- Grasso, S.; Jaworska, S. Part meat and part plant: Are hybrid meat products fad or future? Foods 2020, 9, 1888. [Google Scholar] [CrossRef] [PubMed]
- Pathiraje, D.; Carlin, J.; Der, T.; Wanasundara, J.P.; Shand, P.J. Generating multi-functional pulse ingredients for processed meat products-Scientific evaluation of infrared-treated lentils. Foods 2023, 12, 1722. [Google Scholar] [CrossRef] [PubMed]
- Kasaiyan, S.A.; Caro, I.; Ramos, D.D.; Salvá, B.K.; Carhuallanqui, A.; Dehnavi, M.; Mateo, J. Effects of the use of raw or cooked chickpeas and the sausage cooking time on the quality of a lamb-meat, olive-oil emulsion-type sausage. Meat Sci. 2023, 202, 109217. [Google Scholar] [CrossRef]
- Röös, E.; Carlsson, G.; Ferawati, F.; Hefni, M.; Stephan, A.; Tidåker, P.; Witthöft, C. Less meat, more legumes: Prospects and challenges in the transition toward sustainable diets in Sweden. Renew. Agr. Food Syst. 2020, 35, 192–205. [Google Scholar] [CrossRef]
- Yanni, A.E.; Iakovidi, S.; Vasilikopoulou, E.; Karathanos, V.T. Legumes: A vehicle for transition to sustainability. Nutrients 2023, 16, 98. [Google Scholar] [CrossRef]
- Kaartinen, N.E.; Tapanainen, H.; Maukonen, M.; Päivärinta, E.; Valsta, L.M.; Itkonen, S.T.; Männistö, S. Partial replacement of red and processed meat with legumes: A modelling study of the impact on nutrient intakes and nutrient adequacy on the population level. Public Health Nutr. 2023, 26, 303–314. [Google Scholar] [CrossRef] [PubMed]
- Aziz, M.; Karboune, S. Natural antimicrobial/antioxidant agents in meat and poultry products as well as fruits and vegetables: A review. Crit. Rev. Food Sci. Nutr. 2018, 58, 486–511. [Google Scholar] [CrossRef]
- Kenijz, N.; Dautova, A.; Fedoseeva, N.; Rebezov, M.; Radchenko, E.; Myshkina, M.; Ilmushkin, A. Nutritional and biological properties of chickpea. Alkhas 2023, 5, 1–5. [Google Scholar] [CrossRef]
- Raza, H.; Zaaboul, F.; Shoaib, M.; Zhang, L. An overview of physicochemical composition and methods used for chickpeas processing. Int. J. Agric. Innov. Res. 2019, 7, 495–500. [Google Scholar]
- Boukid, F. Chickpea (Cicer arietinum L.) protein as a prospective plant-based ingredient: A review. Int. J. Food Sci. Technol. 2021, 56, 5435–5444. [Google Scholar] [CrossRef]
- Xu, Y.; Obielodan, M.; Sismour, E.; Arnett, A.; Alzahrani, S.; Zhang, B. Physicochemical, functional, thermal and structural properties of isolated Kabuli chickpea proteins as affected by processing approaches. Int. J. Food Sci. Technol. 2017, 52, 1147–1154. [Google Scholar] [CrossRef]
- Kaur, R.; Prasad, K. Nutritional characteristics and value-added products of Chickpea (Cicer arietinum)—A review. J. Postharvest Technol. 2021, 9, 1–13. [Google Scholar]
- Motamedi, A.; Vahdani, M.; Baghaei, H.; Borghei, M.A. Considering the physicochemical and sensorial properties of momtaze hamburgers containing lentil and chickpea seed flour. Nutr. Food Sci. Res. 2015, 2, 55–62. Available online: http://nfsr.sbmu.ac.ir/article-1-100-en.html (accessed on 10 December 2025).
- Dobón-Suárez, A.; Zapata, P.J.; García-Pastor, M.E. A Comprehensive Review on Characterization of Pepper Seeds: Unveiling Potential Value and Sustainable Agrifood Applications. Foods 2025, 14, 1969. [Google Scholar] [CrossRef]
- Sanatombi, K. Antioxidant potential and factors influencing the content of antioxidant compounds of pepper: A review with current knowledge. Compr. Rev. Food Sci. Food Saf. 2023, 22, 3011–3052. [Google Scholar] [CrossRef]
- Mohd Hassan, N.; Yusof, N.A.; Yahaya, A.F.; Mohd Rozali, N.N.; Othman, R. Carotenoids of capsicum fruits: Pigment profile and health-promoting functional attributes. Antioxidants 2019, 8, 469. [Google Scholar] [CrossRef]
- Anaya-Esparza, L.M.; Mora, Z.V.D.L.; Vázquez-Paulino, O.; Ascencio, F.; Villarruel-López, A. Bell peppers (Capsicum annum L.) losses and wastes: Source for food and pharmaceutical applications. Molecules 2021, 26, 5341. [Google Scholar] [CrossRef]
- Felföldi, Z.; Ranga, F.; Roman, I.A.; Sestras, A.F.; Vodnar, D.C.; Prohens, J.; Sestras, R.E. Analysis of physico-chemical and organoleptic fruit parameters relevant for tomato quality. Agronomy 2022, 12, 1232. [Google Scholar] [CrossRef]
- Collins, E.J.; Bowyer, C.; Tsouza, A.; Chopra, M. Tomatoes: An extensive review of the associated health impacts of tomatoes and factors that can affect their cultivation. Biology 2022, 11, 239. [Google Scholar] [CrossRef]
- Domínguez, R.; Gullón, P.; Pateiro, M.; Munekata, P.E.; Zhang, W.; Lorenzo, J.M. Tomato as potential source of natural additives for meat industry. A review. Antioxidants 2020, 9, 73. [Google Scholar] [CrossRef]
- Mitsanis, C.; Aktsoglou, D.C.; Koukounaras, A.; Tsouvaltzis, P.; Koufakis, T.; Gerasopoulos, D.; Siomos, A.S. Functional, flavor and visual traits of hydroponically produced tomato fruit in relation to substrate, plant training system and harvesting time. Horticulturae 2021, 7, 311. [Google Scholar] [CrossRef]
- Bhatkar, N.S.; Shirkole, S.S.; Mujumdar, A.S.; Thorat, B.N. Drying of tomatoes and tomato processing waste: A critical review of the quality aspects. Dry. Technol. 2021, 39, 1720–1744. [Google Scholar] [CrossRef]
- Verma, T.; Aggarwal, A.; Dey, P.; Chauhan, A.K.; Rashid, S.; Chen, K.T.; Sharma, R. Medicinal and therapeutic properties of garlic, garlic essential oil, and garlic-based snack food: An updated review. Front. Nutr. 2023, 10, 1120377. [Google Scholar] [CrossRef] [PubMed]
- Bar, M.; Binduga, U.E.; Szychowski, K.A. Methods of isolation of active substances from garlic (Allium sativum L.) and its impact on the composition and biological properties of garlic extracts. Antioxidants 2022, 11, 1345. [Google Scholar] [CrossRef]
- Sunanta, P.; Kontogiorgos, V.; Pankasemsuk, T.; Jantanasakulwong, K.; Rachtanapun, P.; Seesuriyachan, P.; Sommano, S.R. The nutritional value, bioactive availability and functional properties of garlic and its related products during processing. Front. Nutr. 2023, 10, 1142784. [Google Scholar] [CrossRef] [PubMed]
- Melguizo-Rodríguez, L.; García-Recio, E.; Ruiz, C.; De Luna-Bertos, E.; Illescas-Montes, R.; Costela-Ruiz, V.J. Biological properties and therapeutic applications of garlic and its components. Food Funct. 2022, 13, 2415–2426. [Google Scholar] [CrossRef]
- Stępień, A.E.; Trojniak, J.; Tabarkiewicz, J. Anti-cancer and anti-inflammatory properties of black garlic. Int. J. Mol. Sci. 2024, 25, 1801. [Google Scholar] [CrossRef]
- Afzaal, M.; Saeed, F.; Rasheed, R.; Hussain, M.; Aamir, M.; Hussain, S.; Anjum, F.M. Nutritional, biological, and therapeutic properties of black garlic: A critical review. Int. J. Food Prop. 2021, 24, 1387–1402. [Google Scholar] [CrossRef]
- Ríos-Ríos, K.L.; Montilla, A.; Olano, A.; Villamiel, M. Physicochemical changes and sensorial properties during black garlic elaboration: A review. Trends Food Sci. Technol. 2019, 88, 459–467. [Google Scholar] [CrossRef]
- Ahmed, T.; Wang, C.K. Black garlic and its bioactive compounds on human health diseases: A review. Molecules 2021, 26, 5028. [Google Scholar] [CrossRef]
- Al-Madhagy, S.; Ashmawy, N.S.; Mamdouh, A.; Eldahshan, O.A.; Farag, M.A. A comprehensive review of the health benefits of flaxseed oil in relation to its chemical composition and comparison with other omega-3-rich oils. Eur. J. Med. Res. 2023, 28, 240. [Google Scholar] [CrossRef] [PubMed]
- Dąbrowski, G.; Tańska, M.; Czaplicki, S.; Sadowski, T.; Rychcik, B.; Kostrzewska, M.K.; Konopka, I. Variation in Linseed Oil Composition: Impact of Cultivar, Cultivation System, and Year of Cultivation. Molecules 2025, 30, 875. [Google Scholar] [CrossRef]
- Mueed, A.; Shibli, S.; Korma, S.A.; Madjirebaye, P.; Esatbeyoglu, T.; Deng, Z. Flaxseed bioactive compounds: Chemical composition, functional properties, food applications and health benefits-related gut microbes. Foods 2022, 11, 3307. [Google Scholar] [CrossRef]
- Nowak, W.; Jeziorek, M. The role of flaxseed in improving human health. Healthcare 2023, 11, 395. [Google Scholar] [CrossRef]
- Tănase Apetroaei, V.; Pricop, E.M.; Istrati, D.I.; Vizireanu, C. Hemp seeds (Cannabis sativa L.) as a valuable source of natural ingredients for functional foods—A review. Molecules 2024, 29, 2097. [Google Scholar] [CrossRef]
- Golimowski, W.; Teleszko, M.; Marcinkowski, D.; Kmiecik, D.; Grygier, A.; Kwaśnica, A. Quality of oil pressed from hemp seed varieties: ‘Earlina 8FC’, ‘Secuieni Jubileu’ and ‘Finola’. Molecules 2022, 27, 3171. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, G.; Storz, M.A.; Calapai, G. The role of hemp (Cannabis sativa L.) as a functional food in vegetarian nutrition. Foods 2023, 12, 3505. [Google Scholar] [CrossRef] [PubMed]
- Heck, R.T.; Fagundes, M.B.; Cichoski, A.J.; de Menezes, C.R.; Barin, J.S.; Lorenzo, J.M.; Wagner, R.; Campagnol, P.C.B. Volatile compounds and sensory profile of burgers with 50% fat replacement by microparticles of chia oil enriched with rosemary. Meat Sci. 2019, 148, 164–170. [Google Scholar] [CrossRef]
- Ursachi, C.Ș.; Perța-Crișan, S.; Munteanu, F.D. Strategies to improve meat products’ quality. Foods 2020, 9, 1883. [Google Scholar] [CrossRef]
- 52. REG(EC) 152/2009, IV, B: 2009-02. Regulations Commission (EC) No 152/2009 of 27 January 2009 Regulation (EC) No 152/2009 of 27 January 2009 laying down the methods of sampling and analysis for the official control of feed. Official Journal of the European Union. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32009R0152 (accessed on 12 July 2023).
- PN-EN ISO 8589:2010/A1:2014–07; Sensory Analysis. General Guidance for the Design of Test Laboratory. International Organization for Standardization (ISO): Geneva, Switzerland, 2014.
- StatSoft. Electronic Statistics Textbook; Data Analysis Software System, version 13.3; StatSoft, Inc.: Kraków, Poland, 2018.
- Abdullah, Q.S.A.; Sakran Abass, K. Effect of the Partial Replacement of Meat with Some Legumes such as (Chickpeas) on Some of the Chemical and Sensory Characteristics of the Manufactured Burger. Food Sci. Qual. Manag. 2016, 56, 91–96. [Google Scholar]
- Güzel, D.; Sayar, S. Effect of cooking methods on selected physicochemical and nutritional properties of barlotto bean, chickpea, faba bean, and white kidney bean. J. Food Sci. Technol. 2012, 49, 89–95. [Google Scholar] [CrossRef]
- Yıldırım, A.; Öner, M.D. Electrical conductivity, water absorption, leaching, and color change of chickpea (Cicer arietinum L.) during soaking with ultrasound treatment. Int. J. Food Prop. 2015, 18, 1359–1372. [Google Scholar] [CrossRef]
- Makhloufi, L.; Yamani, M.I. A study of physical, chemical, and sensory characteristics of novel Legume dips. Int. J. Food Sci. 2024, 2024, 2875348. [Google Scholar] [CrossRef]
- Østerlie, M.; Lerfall, J. Lycopene from tomato products added minced meat: Effect on storage quality and colour. Food Res. Int. 2005, 38, 925–929. [Google Scholar] [CrossRef]
- Castro, T.A.; Leite, B.S.; Assunção, L.S.; de Jesus Freitas, T.; Colauto, N.B.; Linde, G.A.; Ferreira Ribeiro, C.D. Red tomato products as an alternative to reduce synthetic dyes in the food industry: A review. Molecules 2021, 26, 7125. [Google Scholar] [CrossRef]
- Raziuddin, M.; Babu, R.N.; Appa Rao, V.; Ramesh, S.; Karuna-Karan, R. Impact of paprika (Capsicum annuum) addition on quality of value-added goat meat spread. Int. J. Livest. Res. 2020, 10, 230–238. [Google Scholar] [CrossRef]
- Stantiall, S.E.; Dale, K.J.; Calizo, F.S.; Serventi, L. Application of pulses cooking water as functional ingredients: The foaming and gelling abilities. Eur. Food Res. Technol. 2018, 244, 97–104. [Google Scholar] [CrossRef]
- Jouki, M.; Rabbani, M.; Shakouri, M.J. Effects of pectin and tomato paste as a natural antioxidant on inhibition of lipid oxidation and production of functional chicken breast sausage. Food Sci. Technol. 2020, 40, 521–527. [Google Scholar] [CrossRef]
- Kasaiyan, S.; Ferreira, I.; Villalobos-Delgado, L.H.; Rigueiro, S.; Caro, I.; Bermúdez, R.; Mateo, J. Oxidative effects of raw chickpea in reformulated pork patties: Level of chickpea, temperature, and use of selected natural antioxidants. Processes 2023, 11, 2062. [Google Scholar] [CrossRef]
- Asmare, H.; Admassu, S. Development and evaluation of dry fermented sausages processed from blends of chickpea flour and beef. East Afr. J. Sci. 2013, 7, 17–30. [Google Scholar]
- Skwarek, P.; Karwowska, M. Fatty acids profile and antioxidant properties of raw fermented sausages with the addition of tomato pomace. Biomolecules 2022, 12, 1695. [Google Scholar] [CrossRef]
- Karslıoğlu, B.; Soncu, E.D.; Nekoyu, B.; Karakuş, E.; Bekdemir, G.; Şahin, B. From Waste to Consumption: Tomato Peel Flour in Hamburger Patty Production. Foods 2024, 13, 2218. [Google Scholar] [CrossRef] [PubMed]
- Stanišić, N.; Kurćubić, V.S.; Stajić, S.B.; Tomasevic, I.D.; Tomasevic, I. Integration of Dietary Fibre for Health Benefits, Improved Structure, and Nutritional Value of Meat Products and Plant-Based Meat Alternatives. Foods 2025, 14, 2090. [Google Scholar] [CrossRef] [PubMed]
- Rab, G.E.; Zeinab, A.S.; Youssef, M.K.E.; Khalifa, A.H.; Limam, S.A.; Mostafa, B.M.D. Quality attributes of beef sausage supplemented by flaxseeds and chickpea. J. Food Dairy Sci. 2019, 10, 201–207. [Google Scholar] [CrossRef]
- Augustyńska-Prejsnar, A.; Kačániová, M.; Ormian, M.; Topczewska, J.; Sokołowicz, Z.; Hanus, P. Quality Assessment of Minced Poultry Products Including Black Fermented Garlic. Foods 2023, 13, 70. [Google Scholar] [CrossRef]
- Marczak, A.; Mendes, A.C. Dietary fibers: Shaping textural and functional properties of processed meats and plant-based meat alternatives. Foods 2024, 13, 1952. [Google Scholar] [CrossRef]
- Ryadinskaya, A.A.; Chuev, S.A.; Ordina, N.B.; Mezinova, K.V.; Koshchaev, I.A.; Zakharova, D.A. Development of a recipe composition for canned meat and vegetables based on chicken meat with a legume component. In Proceeding of the IOP Conference Series: Earth and Environmental Science, Michurinsk, Russia, 12–14 April 2021; IOP Publishing: Bristol, UK, 2022; Volume 979, No. 1; p. 012038. [Google Scholar]
- Cocan, I.; Cadariu, A.I.; Negrea, M.; Alexa, E.; Obistioiu, D.; Radulov, I.; Poiana, M.A. Investigating the antioxidant potential of bell pepper processing by-products for the development of value-added sausage formulations. Appl. Sci. 2022, 12, 12421. [Google Scholar] [CrossRef]
- Mahros, M.; Eltanahy, A.; Abd-Elghany, S.; Sallam, K. The antimicrobial effect of fresh garlic and garlic oil supplemented with ground beef. Mansoura Vet. Med. J. 2021, 22, 48–51. [Google Scholar] [CrossRef]
- Javed, M.; Ahmed, W. Black garlic: A review of its biological significance. J. Food Biochem. 2022, 2022, e14394. [Google Scholar] [CrossRef] [PubMed]
- PN-EN ISO 8586:2023; Sensory Analysis—Selection and Training of Sensory Assessors. The Polish Committee for Standardization (PKN): Warsaw, Poland, 2023.
| Ingredients | Test Groups | |||
|---|---|---|---|---|
| Group PM | Group P1 | Group P2 | ||
| Meat-based raw material: | ||||
| Breast meat of slaughter turkey | 60.00 | 50.00 | 30.00 | |
| Pork jowl | 15.00 | 0.00 | 0.00 | |
| Plant-based components | Wheat roll | 10.00 | 0.00 | 0.00 |
| Onion | 3.00 | 3.00 | 3.00 | |
| Garlic | 2.00 | 2.00 | 2.00 | |
| Chickpeas | 0.00 | 20.00 | 40.00 | |
| Red pepper | 0.00 | 7.00 | 7.00 | |
| Flaxseed oil | 0.00 | 4.00 | 4.00 | |
| Hemp oil | 0.00 | 3.00 | 3.00 | |
| Dried tomatoes | 0.00 | 0.50 | 0.50 | |
| Fermented black garlic | 0.00 | 0.50 | 0.50 | |
| Black pepper | 0.20 | 0.20 | 0.20 | |
| Non-iodised salt | 0.80 | 0.80 | 0.80 | |
| Ice water | 9.00 | 9.00 | 9.00 | |
| Parameter | Poultry Products | |||
|---|---|---|---|---|
| Group PM | Group P1 | Group P2 | p Value | |
| pH | 5.86 a ± 0.01 | 6.12 b ± 0.02 | 6.18 b ± 0.01 | 0.0023 |
| Color cross-section: | ||||
| L*—lightness | 79.03 a ± 1.89 | 66.82 b ± 3.24 | 62.46 c ± 4.67 | 0.000 |
| a*—redness | 6.26 b ± 0.23 | 13.60 a ± 0.68 | 14.07 a ± 0.77 | 0.001 |
| b*—yellowness | 16.27 c ± 0.48 | 29.39 b ± 1.93 | 32.79 a ± 1.54 | 0.000 |
| Parameter | Poultry Products | p Value | ||
|---|---|---|---|---|
| Group PM | Group P1 | Group P2 | ||
| Protein (N × 6.25) | 17.70 ± 2.20 | 16.72 ± 1.60 | 15.07 ± 2.40 | 0.051 |
| Fat (%) | 13.06 a ± 2.06 | 8.86 b ± 1.56 | 8.16 b ± 1.36 | 0.033 |
| Total ash (%) | 1.17 c ± 0.45 | 1.22 b ± 0.20 | 1.48 a ± 0.32 | 0.014 |
| Fiber (%) | 1.01 c ± 0.15 | 3.08 b ± 0.13 | 4.44 a ± 0.10 | 0.002 |
| Tocopherol content dl alfa-tokoferol mg/100 g | 0.26 b ± 0.06 | 1.20 a ± 0.05 | 1.21 a ± 0.50 | 0.004 |
| Cholesterol mg/100 g | 58.70 a ± 3.12 | 27.98 b ± 1.86 | 20.56 c ± 2.15 | 0.000 |
| Total number of bacteria (log cfu·g−1) | 3.34 a ± 0.04 | 3.12 b ± 0.02 | 3.16 b ± 0.01 | 0.003 |
| Pseudomonas Spp. | <0.10 | <0.10 | <0.10 | - |
| Parameter (%) | Poultry products | p Value | ||
|---|---|---|---|---|
| Grupa PM | Grupa P1 | Grupa P2 | ||
| SFA | ||||
| Lauric acid C 12:0 | 0.08 ± 0.02 | <0.05 | <0.05 | |
| Tetradecanoic acid C 14:0 | 0.83 a ± 0.03 | 0.08 b ± 0.01 | 0.07 b ± 0.01 | 0.000 |
| Pentadecanoic acid C 15:0 | 0.05 ± 0.01 | <0.05 | <0.05 | |
| Hexadecanoic acid C 16:0 | 19.41 a ± 0.25 | 7.18 b ± 0.35 | 6.76 c ± 0.63 | 0.000 |
| Heptadecanoic acid C 17:0 | 0.19 a ± 0.02 | 0.08 b ± 0.01 | 0.07 b ± 0.01 | 0.001 |
| Octadecanoic acid C 18:0 | 8.82 a ± 0.14 | 4.42 b ± 0.26 | 4.00 b ± 0.28 | 0.002 |
| Eicosanoic acid C 20:0 | 0.35 c ± 0.02 | 0.51 a ± 0.03 | 0.44 b ± 0.02 | 0.021 |
| Heneicosanoic acid C 21:0 | <0.05 | <0.05 | <0.05 | - |
| Tricosanoic acid C 23:0 | <0.05 | <0.05 | <0.05 ± | - |
| Tetracosanoic acid C 24:0 | 0.12 ± 0.01 | 0.15 ± 0.01 | 0.14 ± 0.01 | 0.165 |
| Σ saturated acids | 2.49 a ± 0.03 | 1.27 b ± 0.10 | 1.29 b ± 0.22 | 0.021 |
| MUFA | ||||
| Oleomyristic acid C 14:1 | <0.05 | <0.05 | <0.05 | - |
| Hexadecanoic acid C 16:1 | 1.97 a ± 0.02 | 0.25 b ± 0.01 | 0.23 b ± 0.01 | 0.022 |
| Heptadecenoic acid C 17:1 | 0.16 a ± 0.01 | 0.05 b ± 0.05 | 0.06 b ± 0.01 | 0.005 |
| Cis-9-octadecenoic acid C 18:1 | 46.29 a ± 0.56 | 27.74 c ± 1.41 | 29.15 b ± 0.94 | 0.000 |
| Eicozenic acid C 20:1 | 0.97 a ± 0.01 | 0.31 b ± 0.01 | 0.32 b ± 0.02 | 0.001 |
| Tetracosoic acid C 24:1 | 0.09 a ± 0.01 | 0.11 b ± 0.00 | 0.09 b ± 0.00 | 0.011 |
| Σ monounsaturated fatty acids | 4.35 a ± 0.14 | 2.99 c ± 0.21 | 3.40 b ± 0.75 | 0.000 |
| PUFA | ||||
| Eicosadienoic acid C 20:2 | 0.39 a ± 0.01 | 0.06 b ± 0.01 | 0.05 b ± 0.00 | 0.002 |
| Eicosatrienic acid C20:3 n-3 | 0.06 ± 0.01 | <0.05 | <0.05 | |
| Σ polyunsaturated fatty acids | 1.42 c ± 0.10 | 5.90 b ± 0.12 | 6.43 a ± 1.88 | 0.000 |
| Fatty acids N-3 | 0.20 c ± 0.01 | 2.39 b ± 0.20 | 3.19 a ± 1.09 | 0.000 |
| Fatty acids N-6 | 1.66 b ± 0.03 | 3.25 a ± 0.01 | 3.20 a ± 0.78 | 0.000 |
| TRANS | ||||
| Trans-hexadecenoic acid C 16: 1 trans | ||||
| Σ trans fatty acids | <0.10 | <0.10 | <0.10 | - |
| Parameter (mg/kg) | Poultry Products | p Value | ||
|---|---|---|---|---|
| Group M | Group P1 | Group P2 | ||
| Phosphorous | 1658.00 a ± 45.52 | 1283.80 b ± 42.72 | 1133.80 c ± 64.63 | 0.002 |
| Magnesium | 204.00 c ± 21.12 | 259.20 b ± 7.12 | 271.40 a ± 13.15 | 0.006 |
| Manganese | 0.31 c ± 0.15 | 3.75 b ± 0.09 | 5.08 a ± 0.25 | 0.000 |
| Potassium | 1949.00 c ± 62.10 | 2077.60 a ± 67.92 | 1989.40 b ± 92.57 | 0.011 |
| Sodium | 2378.20 c ± 75.59 | 2428.00 b ± 78.92 | 3046.20 a ± 96.46 | 0.003 |
| Calcium | 102.00 c ± 12.24 | 315.00 b ± 5.48 | 364.80 a ± 15.34 | 0.000 |
| Iron | 6.92 b ± 1.01 | 9.56 a ± 1.56 | 9.24 a ± 1.04 | 0.000 |
| Zinc | 11.12 b ± 0.11 | 11.60 b ± 0.46 | 12.88 a ± 1.81 | 0.033 |
| Parameter | Poultry Products | p Value | ||
|---|---|---|---|---|
| Group PM | Group P1 | Group P2 | ||
| Odor | 3.60 b ± 0.52 | 4.65 a ± 0.41 | 4.75 a ± 0.42 | 0.032 |
| Flavor | 3.80 c ± 0.48 | 4.40 b ± 0.39 | 4.85 a ± 0.34 | 0.021 |
| Desirability of color | 3.00 c ± 0.33 | 4.60 b ± 0.39 | 4.75 a ± 0.42 | 0.041 |
| Connection | 4.00 b± 0.41 | 4.65 a ± 0.34 | 4.70 a ± 0.42 | 0.036 |
| Juiciness/moisture | 3.00 b ± 0.47 | 4.50 a ± 0.47 | 4.65 a ± 0.63 | 0.002 |
| Consistency/structure | 4.40 ± 0.39 | 4.35 ± 0.41 | 4.15 ± 0.24 | 0.052 |
| Spreadability | 3.00 c ± 0.53 | 4.40 b ± 0.46 | 4.85 a ± 0.34 | 0.004 |
| General acceptability | 3.85 c ± 0.67 | 4.50 b ± 0.47 | 4.70 a ± 0.42 | 0.011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Augustyńska-Prejsnar, A.; Ormian, M.; Topczewska, J.; Sokołowicz, Z.; Tobiasz-Salach, R. Quality Characteristics of Poultry Products Containing Plant Components with Enhanced Health Benefits. Foods 2025, 14, 4307. https://doi.org/10.3390/foods14244307
Augustyńska-Prejsnar A, Ormian M, Topczewska J, Sokołowicz Z, Tobiasz-Salach R. Quality Characteristics of Poultry Products Containing Plant Components with Enhanced Health Benefits. Foods. 2025; 14(24):4307. https://doi.org/10.3390/foods14244307
Chicago/Turabian StyleAugustyńska-Prejsnar, Anna, Małgorzata Ormian, Jadwiga Topczewska, Zofia Sokołowicz, and Renata Tobiasz-Salach. 2025. "Quality Characteristics of Poultry Products Containing Plant Components with Enhanced Health Benefits" Foods 14, no. 24: 4307. https://doi.org/10.3390/foods14244307
APA StyleAugustyńska-Prejsnar, A., Ormian, M., Topczewska, J., Sokołowicz, Z., & Tobiasz-Salach, R. (2025). Quality Characteristics of Poultry Products Containing Plant Components with Enhanced Health Benefits. Foods, 14(24), 4307. https://doi.org/10.3390/foods14244307

