Plant Proteins as Alternative Natural Emulsifiers in Food Emulsions
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Determination of Water Absorption Capacity (WAC)
2.2.2. Determination of Oil Absorption Capacity (OAC) and Water–Oil Absorption Index (WOAI)
2.2.3. Determination of Foaming Capacity (FC) and Foam Stability (FS)
2.2.4. Determination of Emulsification Activity (EA) and Emulsion Stability (ES)
2.2.5. Determination of Storage Stability of Emulsions (SP)
2.2.6. Color Determination of Plant Emulsions Using the CIE L*a*b* Model
2.2.7. Determination of the Viscosity of Protein Solutions
2.2.8. Surface Tension Determination
2.2.9. Zeta Potential Determination
2.2.10. Statistical Analysis
3. Results and Discussion
3.1. Determination of Water Absorption Capacity (WAC) and Oil Absorption Capacity (OAC)
3.2. Foaming Properties
3.3. Emulsifying Properties
3.4. Storage Stability of Emulsions (SP)
3.5. Color Determination of Plant Emulsions Using the CIE L*a*b* Model
3.6. Determination of the Viscosity of Protein Solutions
3.7. Determination of Surface Tension
3.8. Zeta Potential Determination
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| RP | Rice protein |
| PP | Pea protein |
| HP | Hemp protein |
| CP | Chickpea protein |
| SP | Sunflower protein |
| OP | Oat protein |
| WAC | Water absorption capacity |
| OAC | Oil absorption capacity |
| WOAI | Water–oil absorption index |
| FC | Foaming capacity |
| FS | Foam stability |
| EA | Emulsification activity |
| ES | Emulsification stability |
| SP | Storage stability |
References
- Alexandri, M.; Kachrimanidou, V.; Papapostolou, H.; Papadaki, A.; Kopsahelis, N. Sustainable Food Systems: The Case of Functional Compounds towards the Development of Clean Label Food Products. Foods 2022, 11, 2796. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, Q.; Zhang, J.; Yan, W.; Mao, X. Food Emulsions Stabilized by Proteins and Emulsifiers: A Review of the Mechanistic Explorations. Int. J. Biol. Macromol. 2024, 261, 129795. [Google Scholar] [CrossRef]
- Zhang, H.; Deng, L. Emulsifying Properties. In Food Hydrocolloids; Springer: Singapore, 2021; pp. 171–206. [Google Scholar]
- Jin, Y.; Adhikari, A. Recent Developments and Applications of Food-Based Emulsifiers from Plant and Animal Sources. Colloids Interfaces 2025, 9, 61. [Google Scholar] [CrossRef]
- Sellem, L.; Srour, B.; Javaux, G.; Chazelas, E.; Chassaing, B.; Viennois, E.; Debras, C.; Salamé, C.; Druesne-Pecollo, N.; Esseddik, Y.; et al. Food Additive Emulsifiers and Risk of Cardiovascular Disease in the NutriNet-Santé Cohort: Prospective Cohort Study. BMJ 2023, 382, e076058. [Google Scholar] [CrossRef]
- Ferreira, G.F.; Pessoa, J.G.B.; Ríos Pinto, L.F.; Maciel Filho, R.; Fregolente, L.V. Mono- and Diglyceride Production from Microalgae: Challenges and Prospects of High-Value Emulsifiers. Trends Food Sci. Technol. 2021, 118, 589–600. [Google Scholar] [CrossRef]
- Gumus, C.E.; Decker, E.A.; McClements, D.J. Formation and Stability of ω-3 Oil Emulsion-Based Delivery Systems Using Plant Proteins as Emulsifiers: Lentil, Pea, and Faba Bean Proteins. Food Biophys. 2017, 12, 186–197. [Google Scholar] [CrossRef]
- Lapčíková, B.; Lapčík, L.; Valenta, T.; Chvatíková, M. Plant-Based Emulsions as Dairy Cream Alternatives: Comparison of Viscoelastic Properties and Colloidal Stability of Various Model Products. Foods 2024, 13, 1225. [Google Scholar] [CrossRef] [PubMed]
- Zakki, A.; Aryanti, N.; Hadiyanto, H. Functional and Structural Characteristic of Plant Protein Isolates as Emulsifier by Ultrasound-Assisted Extraction: A Review. Bioact. Carbohydr. Diet. Fibre 2024, 32, 100449. [Google Scholar] [CrossRef]
- Kim, W.; Wang, Y.; Selomulya, C. Dairy and Plant Proteins as Natural Food Emulsifiers. Trends Food Sci. Technol. 2020, 105, 261–272. [Google Scholar] [CrossRef]
- Lima, R.R.; Stephani, R.; Perrone, Í.T.; de Carvalho, A.F. Plant-Based Proteins: A Review of Factors Modifying the Protein Structure and Affecting Emulsifying Properties. Food Chem. Adv. 2023, 3, 100397. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Q.; Liu, Z.; Zhi, L.; Jiao, B.; Hu, H.; Ma, X.; Agyei, D.; Shi, A. Plant Protein-Based Emulsifiers: Mechanisms, Techniques for Emulsification Enhancement and Applications. Food Hydrocoll. 2023, 144, 109008. [Google Scholar] [CrossRef]
- Hu, S.; Chen, Y.; Tao, X.; He, R.; Ju, X.; Wang, Z. Enhanced Emulsification Performance and Interfacial Properties of Janus-like Rapeseed Cruciferin through Asymmetric Acylation Modification. Int. J. Biol. Macromol. 2024, 260, 129467. [Google Scholar] [CrossRef]
- Chen, W.; Ding, Y.; Zhao, Y.-M.; Ma, H. Strategies to Improve the Emulsification Properties of Rice Proteins as a Promising Source of Plant-Based Emulsifiers: An Updated Mini-Review. Food Biosci. 2023, 53, 102697. [Google Scholar] [CrossRef]
- Bekiroglu, H.; Acar, Z.D.; Sagdic, O. Sustainable Plant-Based Protein Hydrolysates: Utilization of Waste Proteins Modified by Enzymatic Hydrolysis in Techno-Functional Applications. Int. J. Biol. Macromol. 2025, 333, 148823. [Google Scholar] [CrossRef]
- Rutkowski, A.K.H. Preparaty Żywnościowe z Białka Roślinnego; Wydawnictwo Naukowo—Techniczne: Warszawa, Poland, 1981. [Google Scholar]
- Sosulski, F.W. The Centrifuge Method for Determining Flour Absorption in Hard Red Spring Wheat. Cereal Chem. 1962, 39, 344–350. [Google Scholar]
- Lin, M.J.Y.; Humbert, E.S.; Sosulski, F.W. Certain Functional Properties of Sunflower Meal Products. J. Food Sci. 1974, 39, 368–370. [Google Scholar] [CrossRef]
- Zhang, Q.-T.; Tu, Z.-C.; Wang, H.; Huang, X.-Q.; Fan, L.-L.; Bao, Z.-Y.; Xiao, H. Functional Properties and Structure Changes of Soybean Protein Isolate after Subcritical Water Treatment. J. Food Sci. Technol. 2014, 52, 3412–3421. [Google Scholar] [CrossRef]
- Yasumatsu, K.; Sawada, K.; Moritaka, S.; Misaki, M.; Toda, J.; Wada, T.; Ishii, K. Whipping and Emulsifying Properties of Soybean Products. Agric. Biol. Chem. 1972, 36, 719–727. [Google Scholar] [CrossRef]
- Rawdkuen, S.; D’Amico, S.; Schoenlechner, R. Physicochemical, Functional, and In Vitro Digestibility of Protein Isolates from Thai and Peru Sacha Inchi (Plukenetia volubilis L.) Oil Press-Cakes. Foods 2022, 11, 1869. [Google Scholar] [CrossRef]
- Jakobson, K.; Kaleda, A.; Adra, K.; Tammik, M.-L.; Vaikma, H.; Kriščiunaite, T.; Vilu, R. Techno-Functional and Sensory Characterization of Commercial Plant Protein Powders. Foods 2023, 12, 2805. [Google Scholar] [CrossRef]
- Jamróz, E.; Janik, M.; Marangoni, L.; Vieira, R.P.; Tkaczewska, J.; Kawecka, A.; Szuwarzyński, M.; Mazur, T.; Jasińska, J.M.; Krzyściak, P.; et al. Double-Layered Films Based on Furcellaran, Chitosan, and Gelatin Hydrolysates Enriched with AgNPs in Yerba Mate Extract, Montmorillonite, and Curcumin with Rosemary Essential Oil. Polymers 2022, 14, 4283. [Google Scholar] [CrossRef]
- Illingworth, K.A.; Lee, Y.Y.; Siow, L.F. Functional Properties of Moringa Oleifera Protein Isolates as Influenced by Different Isolation Techniques, PH, and Ionic Strength. Food Bioprocess Technol. 2024, 17, 3060–3073. [Google Scholar] [CrossRef]
- Schumacher, T.; Steinmacher, T.; Köster, E.; Wagemans, A.; Weiss, J.; Gibis, M. Physico-Chemical Characterization of Ten Commercial Pea Protein Isolates. Food Hydrocoll. 2025, 162, 110996. [Google Scholar] [CrossRef]
- Boukid, F. Oat Proteins as Emerging Ingredients for Food Formulation: Where We Stand? Eur. Food Res. Technol. 2021, 247, 535–544. [Google Scholar] [CrossRef]
- Patil, N.D.; Bains, A.; Sridhar, K.; Bhaswant, M.; Kaur, S.; Tripathi, M.; Lanterbecq, D.; Chawla, P.; Sharma, M. Extraction, Modification, Biofunctionality, and Food Applications of Chickpea (Cicer arietinum) Protein: An Up-to-Date Review. Foods 2024, 13, 1398. [Google Scholar] [CrossRef]
- Yang, J.; Meng, D.; Wu, Z.; Chen, J.; Xue, L. Modification and Solubility Enhancement of Rice Protein and Its Application in Food Processing: A Review. Molecules 2023, 28, 4078. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, C.; Chen, Y.; Chen, Y. Effect of Rice Protein on the Water Mobility, Water Migration and Microstructure of Rice Starch during Retrogradation. Food Hydrocoll. 2019, 91, 136–142. [Google Scholar] [CrossRef]
- Islam, S.; Hasan, B. An Overview of the Effects of Water and Moisture Absorption on the Performance of Hemp Fiber and Its Composites. SPE Polym. 2025, 6, e10167. [Google Scholar] [CrossRef]
- Pejic, B.M.; Kostic, M.M.; Skundric, P.D.; Praskalo, J.Z. The Effects of Hemicelluloses and Lignin Removal on Water Uptake Behavior of Hemp Fibers. Bioresour. Technol. 2008, 99, 7152–7159. [Google Scholar] [CrossRef] [PubMed]
- Xiong, T.; Ye, X.; Su, Y.; Chen, X.; Sun, H.; Li, B.; Chen, Y. Identification and Quantification of Proteins at Adsorption Layer of Emulsion Stabilized by Pea Protein Isolates. Colloids Surf. B Biointerfaces 2018, 171, 1–9. [Google Scholar] [CrossRef]
- Zhu, G.; Li, Y.; Xie, L.; Sun, H.; Zheng, Z.; Liu, F. Effects of Enzymatic Cross-Linking Combined with Ultrasound on the Oil Adsorption Capacity of Chickpea Protein. Food Chem. 2022, 383, 132641. [Google Scholar] [CrossRef]
- De Kanterewicz, R.J.; Elizalde, B.E.; Pilosof, A.M.R.; Bartholomai, G.B. Water-Oil Absorption Index (WOAI): A Simple Method for Predicting the Emulsifying Capacity of Food Proteins. J. Food Sci. 1987, 52, 1381–1383. [Google Scholar] [CrossRef]
- Stamatie, G.D.; Duță, D.E.; Zoani, C.; Roming, F.I. Nutritional and Functional Properties of Some Protein Sources. AgroLife Sci. J. 2021, 10, 214–220. [Google Scholar] [CrossRef]
- Shevkani, K.; Singh, N.; Kaur, A.; Rana, J.C. Structural and Functional Characterization of Kidney Bean and Field Pea Protein Isolates: A Comparative Study. Food Hydrocoll. 2015, 43, 679–689. [Google Scholar] [CrossRef]
- Rouimi, S.; Schorsch, C.; Valentini, C.; Vaslin, S. Foam Stability and Interfacial Properties of Milk Protein? Surfactant Systems. Food Hydrocoll. 2005, 19, 467–478. [Google Scholar] [CrossRef]
- Yang, J.; Kornet, R.; Diedericks, C.F.; Yang, Q.; Berton-Carabin, C.C.; Nikiforidis, C.V.; Venema, P.; van der Linden, E.; Sagis, L.M.C. Rethinking Plant Protein Extraction: Albumin—From Side Stream to an Excellent Foaming Ingredient. Food Struct. 2022, 31, 100254. [Google Scholar] [CrossRef]
- Cho, S.-J.; Lee, S.-D.; Han, S.-W. Functional Properties of Rice Bran Proteins Extracted from Low-Heat-Treated Defatted Rice Bran. Molecules 2022, 27, 7212. [Google Scholar] [CrossRef] [PubMed]
- Ajibola, C.F.; Aluko, R.E. Physicochemical and Functional Properties of 2S, 7S, and 11S Enriched Hemp Seed Protein Fractions. Molecules 2022, 27, 1059. [Google Scholar] [CrossRef] [PubMed]
- Brückner-Gühmann, M.; Heiden-Hecht, T.; Sözer, N.; Drusch, S. Foaming Characteristics of Oat Protein and Modification by Partial Hydrolysis. Eur. Food Res. Technol. 2018, 244, 2095–2106. [Google Scholar] [CrossRef]
- Kaur, R.; Ghoshal, G. Sunflower Protein Isolates-Composition, Extraction and Functional Properties. Adv. Colloid. Interface Sci. 2022, 306, 102725. [Google Scholar] [CrossRef] [PubMed]
- Ho, T.M.; Bhandari, B.; Bansal, N. Influence of Milk Fat on Foam Formation, Foam Stability and Functionality of Aerated Dairy Products. In Dairy Fat Products and Functionality; Springer International Publishing: Cham, Germany, 2020; pp. 583–606. [Google Scholar]
- Gimeno-Martínez, D.; Igual, M.; García-Segovia, P.; Martínez-Monzó, J.; Navarro-Rocha, J. Characterisation of the Fat Profile of Different Varieties of Hemp Seeds (Cannabis sativa L.) for Food Use. Biol. Life Sci. Forum 2023, 26, 89. [Google Scholar] [CrossRef]
- Qi, X.; Li, Y.; Li, J.; Rong, L.; Pan, W.; Shen, M.; Xie, J. Fibrillation Modification to Improve the Viscosity, Emulsifying, and Foaming Properties of Rice Protein. Food Res. Int. 2023, 166, 112609. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, W.; Li, L.; Zhang, H.; Feng, W.; Wang, R. Protein Networks and Starch Nanocrystals Jointly Stabilizing Liquid Foams via Pickering-Type Coverages and Steric Hindrance. Food Chem. 2022, 370, 131014. [Google Scholar] [CrossRef]
- Gupta, A.; Keast, R.; Liem, D.G.; Jadhav, S.R.; Mahato, D.K.; Gamlath, S. Barista-Quality Plant-Based Milk for Coffee: A Comprehensive Review of Sensory and Physicochemical Characteristics. Beverages 2025, 11, 24. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, S.; Xie, F.; Han, L.; Li, L.; Jiang, L.; Qi, B.; Li, Y. Soy/Whey Protein Isolates: Interfacial Properties and Effects on the Stability of Oil-in-water Emulsions. J. Sci. Food Agric. 2021, 101, 262–271. [Google Scholar] [CrossRef]
- Poirier, A.; Stocco, A.; Kapel, R.; In, M.; Ramos, L.; Banc, A. Sunflower Proteins at Air–Water and Oil–Water Interfaces. Langmuir 2021, 37, 2714–2727. [Google Scholar] [CrossRef]
- Dapčević-Hadnađev, T.; Dizdar, M.; Pojić, M.; Krstonošić, V.; Zychowski, L.M.; Hadnađev, M. Emulsifying Properties of Hemp Proteins: Effect of Isolation Technique. Food Hydrocoll. 2019, 89, 912–920. [Google Scholar] [CrossRef]
- Stone, A.K.; Karalash, A.; Tyler, R.T.; Warkentin, T.D.; Nickerson, M.T. Functional Attributes of Pea Protein Isolates Prepared Using Different Extraction Methods and Cultivars. Food Res. Int. 2015, 76, 31–38. [Google Scholar] [CrossRef]
- Hinderink, E.B.A.; Kaade, W.; Sagis, L.; Schroën, K.; Berton-Carabin, C.C. Microfluidic Investigation of the Coalescence Susceptibility of Pea Protein-Stabilised Emulsions: Effect of Protein Oxidation Level. Food Hydrocoll. 2020, 102, 105610. [Google Scholar] [CrossRef]
- Ladjal-Ettoumi, Y.; Boudries, H.; Chibane, M.; Romero, A. Pea, Chickpea and Lentil Protein Isolates: Physicochemical Characterization and Emulsifying Properties. Food Biophys. 2016, 11, 43–51. [Google Scholar] [CrossRef]
- Mota da Silva, A.M.; Souza Almeida, F.; Kawazoe Sato, A.C. Functional Characterization of Commercial Plant Proteins and Their Application on Stabilization of Emulsions. J. Food Eng. 2021, 292, 110277. [Google Scholar] [CrossRef]
- Gultekin Subasi, B.; Yildirim-Elikoğlu, S.; Altay, İ.; Jafarpour, A.; Casanova, F.; Mohammadifar, M.A.; Capanoglu, E. Influence of Non-Thermal Microwave Radiation on Emulsifying Properties of Sunflower Protein. Food Chem. 2022, 372, 131275. [Google Scholar] [CrossRef]
- Li, N.; Wang, T.; Yang, X.; Qu, J.; Wang, N.; Wang, L.; Yu, D.; Han, C. Effect of High-Intensity Ultrasonic Treatment on the Emulsion of Hemp Seed Oil Stabilized with Hemp Seed Protein. Ultrason. Sonochem. 2022, 86, 106021. [Google Scholar] [CrossRef] [PubMed]
- Karp, S.; Wyrwisz, J.; Kurek, M.A. Comparative Analysis of the Physical Properties of o/w Emulsions Stabilised by Cereal β-Glucan and Other Stabilisers. Int. J. Biol. Macromol. 2019, 132, 236–243. [Google Scholar] [CrossRef]
- Ladjal Ettoumi, Y.; Chibane, M.; Romero, A. Emulsifying Properties of Legume Proteins at Acidic Conditions: Effect of Protein Concentration and Ionic Strength. LWT Food Sci. Technol. 2016, 66, 260–266. [Google Scholar] [CrossRef]
- Palazolo, G.; Sorgentini, D.; Wagner, J. Coalescence and Flocculation in o/w Emulsions of Native and Denatured Whey Soy Proteins in Comparison with Soy Protein Isolates. Food Hydrocoll. 2005, 19, 595–604. [Google Scholar] [CrossRef]
- Xu, T.; Gu, Z.; Cheng, L.; Li, C.; Li, Z.; Hong, Y. Destabilization of Oil-in-Water Emulsions: Influences of Interfacial Assembly of Octenyl Succinic Anhydride Starch and Chitosan. Food Hydrocoll. 2023, 142, 108832. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Y.; He, Y.; Xu, X.; Zhao, X. Oil Density and Viscosity Affect Emulsion Stability and Destabilization Mechanism. J. Food Eng. 2024, 366, 111864. [Google Scholar] [CrossRef]
- Gültekin Subaşı, B.; Vahapoğlu, B.; Capanoglu, E.; Mohammadifar, M.A. A Review on Protein Extracts from Sunflower Cake: Techno-Functional Properties and Promising Modification Methods. Crit. Rev. Food Sci. Nutr. 2022, 62, 6682–6697. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Gálvez, R.; Maldonado-Valderrama, J.; Jones, N.C.; Hoffmann, S.V.; Guadix, E.; García-Moreno, P.J. Influence of the Enzymatic Treatment and PH on the Interfacial and Emulsifying Properties of Sunflower and Olive Protein Hydrolysates. Food Hydrocoll. 2024, 154, 110135. [Google Scholar] [CrossRef]
- Tang, S.; Yang, X.; Wang, C.; Wang, C. Effects of Polyphenols on the Structure, Interfacial Properties, and Emulsion Stability of Pea Protein: Different Polyphenol Structures and Concentrations. Molecules 2025, 30, 1674. [Google Scholar] [CrossRef]
- Ho, K.K.H.Y.; Schroën, K.; San Martín-González, M.F.; Berton-Carabin, C.C. Physicochemical Stability of Lycopene-Loaded Emulsions Stabilized by Plant or Dairy Proteins. Food Struct. 2017, 12, 34–42. [Google Scholar] [CrossRef]
- Feng, J.; Schroën, K.; Fogliano, V.; Berton-Carabin, C. Antioxidant Potential of Non-Modified and Glycated Soy Proteins in the Continuous Phase of Oil-in-Water Emulsions. Food Hydrocoll. 2021, 114, 106564. [Google Scholar] [CrossRef]
- Ma, K.K.; Grossmann, L.; Nolden, A.A.; McClements, D.J.; Kinchla, A.J. Functional and Physical Properties of Commercial Pulse Proteins Compared to Soy Derived Protein. Future Foods 2022, 6, 100155. [Google Scholar] [CrossRef]
- Kurek, M.A.; Pratap-Singh, A. Plant-Based (Hemp, Pea and Rice) Protein–Maltodextrin Combinations as Wall Material for Spray-Drying Microencapsulation of Hempseed (Cannabis sativa) Oil. Foods 2020, 9, 1707. [Google Scholar] [CrossRef] [PubMed]
- Pennells, J.; Trigona, L.; Patel, H.; Ying, D. Ingredient Functionality of Soy, Chickpea, and Pea Protein before and after Dry Heat Pretreatment and Low Moisture Extrusion. Foods 2024, 13, 2168. [Google Scholar] [CrossRef]
- Liu, X.; Xue, F.; Adhikari, B. Production of Hemp Protein Isolate-Polyphenol Conjugates through Ultrasound and Alkali Treatment Methods and Their Characterization. Future Foods 2023, 7, 100210. [Google Scholar] [CrossRef]
- Pihlanto, A.; Nurmi, M.; Pap, N.; Mäkinen, J.; Mäkinen, S. The Effect of Processing of Hempseed on Protein Recovery and Emulsification Properties. Int. J. Food Sci. 2021, 2021, 8814724. [Google Scholar] [CrossRef]
- González-Tello, P.; Camacho, F.; Guadix, E.M.; Luzón, G.; González, P.A. Density, Viscosity and Surface Tension of Whey Protein Concentrate Solutions. J. Food Process Eng. 2009, 32, 235–247. [Google Scholar] [CrossRef]
- Krstonošić, V.S.; Kalić, M.D.; Dapčević-Hadnađev, T.R.; Lončarević, I.S.; Hadnađev, M.S. Physico-Chemical Characterization of Protein Stabilized Oil-in-Water Emulsions. Colloids Surf. A Physicochem. Eng. Asp. 2020, 602, 125045. [Google Scholar] [CrossRef]
- Tang, Q.; Roos, Y.H.; Miao, S. Plant Protein versus Dairy Proteins: A PH-Dependency Investigation on Their Structure and Functional Properties. Foods 2023, 12, 368. [Google Scholar] [CrossRef] [PubMed]
- Olatunde, O.O.; Bachu, J.; Makila, F.; Janzen, M.C.; Aluko, R.E.; Bandara, N. Structural and Functional Properties of Isolated Yellow Field Pea Protein Treated with Different Modification Methods. Food Hydrocoll. 2026, 170, 111631. [Google Scholar] [CrossRef]








| Protein Type | Code | Company | Type | Protein (g/100 g) * | Fat (g/100 g) * | Carbohydrate (g/100 g) * | Fiber (g/100 g) * |
|---|---|---|---|---|---|---|---|
| Rice protein (RP) ![]() | RP1 | Kerry Group (Tralee, Ireland) | isolate | about 80 | 3 | 12.5 | n.a ** |
| RP2 | Falken Trade (Olsztyn, Poland) | isolate | ≥80 | 6 | n.a. | n.a. | |
| Pea protein (PP) ![]() | PP1 | Kerry Group (Tralee, Ireland) | isolate | about 80 | 4.6 | 3 | n.a. |
| PP2 | Falken Trade (Olsztyn, Poland) | isolate | ≥80 | ≤10 | n.a. | ≤0.5 | |
| PP3 | Roquette Frères (Lestrem, France) | isolate | ≥83 | n.a. | n.a. | 10 | |
| PP4 | Ingredion (Hamburg, Germany) | isolate | ≥84 | 7.5 | 0.3 | 2.6 | |
| Hemp protein (HP) ![]() | HP1 | ProAgro GmbH (Wien, Austria) | concentrate | 56 | 4.5 | 8.2 | 16 |
| HP2 | BioPlanet S.A. (Wilkowa Wieś, Poland) | concentrate | 49 | 11 | 4.2 | 24 | |
| Chickpea protein (CP) ![]() | CP1 | Innovopro (Ra’anana, Israel) | concentrate | 70 | 10.6 | 5.7 | 5.1 |
| Sunflower protein (SP) ![]() | SP1 | BioGol (Trzebiatów, Poland) | concentrate | 50 | 19 | 4.6 | 11 |
| Oat protein (OP) ![]() | OP1 | Helhetshälsa (Borghamn, Sweden) | concentrate | 53 | 13 | 21.7 | 4.6 |
| Sample | Water Absorption Capacity, WAC [g H2O/g Protein] | Oil Absorption Capacity, OAC [mL Oil/g Protein] | Water–Oil Absorption Index, WOAI Index g H2O/mL Oil |
|---|---|---|---|
| RP1 | 2.97 ± 0.20 b | 2.10 ± 0.01 D | 1.41 |
| RP2 | 3.18 ± 0.24 b | 2.10 ± 0.01 D | 1.51 |
| PP1 | 6.81 ± 1.03 c | 2.10 ± 0.75 D | 3.24 |
| PP2 | 3.97 ± 0.01 b | 2.00 ± 0.28 C | 1.99 |
| PP3 | 4.66 ± 0.16 c | 2.40 ± 0.01 E | 1.94 |
| PP4 | 5.50 ± 0.76 c | 2.15 ± 0.07 D | 2.56 |
| HP1 | 2.44 ± 0.25 a | 1.90 ± 0.01 C | 1.28 |
| HP2 | 2.44 ± 0.02 a | 1.70 ± 0.01 A | 1.44 |
| CP1 | 3.39 ± 0.13 b | 2.45 ± 0.07 E | 1.38 |
| SP1 | 3.87 ± 0.58 b | 1.80 ± 0.01 B | 2.15 |
| OP1 | 3.67 ± 0.54 b | 1.95 ± 0.07 C | 1.88 |
| Code | L* | a* | b* | ΔE | Appearance |
|---|---|---|---|---|---|
| RP1 | 69.80 ± 0.34 d | 2.70 ± 0.56 cd | 17.88 ± 0.52 d | 22.95 | ![]() |
| RP2 | 73.22 ± 0.57 e | 0.63 ± 0.41 b | 13.02 ± 0.77 b | 16.93 | ![]() |
| PP1 | 70.32 ± 0.20 d | 0.08 ± 0.24 b | 11.34 ± 0.76 ab | 18.16 | ![]() |
| PP2 | 70.49 ± 0.25 d | −0.35 ± 0.27 ab | 9.95 ± 0.64 a | 17.29 | ![]() |
| PP3 | 69.05 ± 0.59 d | −0.74 ± 0.12 a | 11.98 ± 0.62 ab | 19.58 | ![]() |
| PP4 | 69.03 ± 0.24 d | −0.57 ± 0.01 a | 12.44 ± 0.30 ab | 19.85 | ![]() |
| HP1 | 51.09 ± 0.17 b | 2.02 ± 0.03 c | 16.16 ± 0.17 c | 37.52 | ![]() |
| HP2 | 48.07 ± 0.15 a | 2.80 ± 0.07 d | 15.68 ± 0.19 c | 40.18 | ![]() |
| CP1 | 70.45 ± 0.10 d | −0.74 ± 0.01 a | 11.92 ± 0.27 ab | 18.38 | ![]() |
| SP1 | 66.83 ± 0.44 c | 0.21 ± 0.01 b | 11.35 ± 0.10 ab | 21.17 | ![]() |
| OP1 | 67.24 ± 0.64 c | 0.74 ± 0.23 b | 12.56 ± 0.28 ab | 21.43 | ![]() |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaczmarek, D.; Pokora-Carzynska, M.; Juszczak, L.; Jamroz, E.; Kapusniak, J. Plant Proteins as Alternative Natural Emulsifiers in Food Emulsions. Foods 2025, 14, 4291. https://doi.org/10.3390/foods14244291
Kaczmarek D, Pokora-Carzynska M, Juszczak L, Jamroz E, Kapusniak J. Plant Proteins as Alternative Natural Emulsifiers in Food Emulsions. Foods. 2025; 14(24):4291. https://doi.org/10.3390/foods14244291
Chicago/Turabian StyleKaczmarek, Dominika, Marta Pokora-Carzynska, Leslaw Juszczak, Ewelina Jamroz, and Janusz Kapusniak. 2025. "Plant Proteins as Alternative Natural Emulsifiers in Food Emulsions" Foods 14, no. 24: 4291. https://doi.org/10.3390/foods14244291
APA StyleKaczmarek, D., Pokora-Carzynska, M., Juszczak, L., Jamroz, E., & Kapusniak, J. (2025). Plant Proteins as Alternative Natural Emulsifiers in Food Emulsions. Foods, 14(24), 4291. https://doi.org/10.3390/foods14244291


















