Environmental and Rhizosphere Microbiome Drivers of Metabolic Profiles in Gastrodia elata: An Integrative Analysis of Soil, Metabolomics and Anti-Inflammatory Readouts
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and Processing
2.2. Retrieval of Climate Data for Different Sampling Locations
2.3. Analysis of Soil Physicochemical Properties
2.4. Soil Microbiome Analysis
2.4.1. Genomic DNA Extraction and PCR Amplification
2.4.2. PCR Product Purification, Library Construction, and Sequencing
2.5. Non-Targeted Metabolomics Analysis
2.5.1. Equipment and Reagents
2.5.2. Sample Preparation and Extraction
2.5.3. HPLC Conditions
2.5.4. Mass Spectrometry (MS) Conditions (AB)
2.5.5. Quality Control and Data Processing
2.6. Biological Potency Assays
2.6.1. Determination of RAW264.7 Cell Viability Using the CCK-8 Assay
2.6.2. The Anti-Inflammatory Effects of G. elata Extracts on RAW264.7 Cells Were Evaluated Using Enzyme-Linked Immunosorbent Assay (ELISA) Kits
2.7. Data Statistical Analysis
3. Results
3.1. Soil Microbial Diversity and Community Differentiation
3.2. Soil Microbial Community Composition and Dominant Taxa
3.3. Environmental Drivers Shaping Soil Microbial Community Assembly
3.4. Geographical Discrimination of G. elata Based on Metabolite Profiling
3.5. Microbe–Metabolite Co-Functional Modules Associated with Food Functionality
3.6. Interaction Network of Microorganisms, Metabolites, and Anti-Inflammatory Activity
4. Discussion
4.1. Environmental Gradients Shaping Rhizosphere Microbial Community Differentiation
4.2. Microbially Mediated Remodeling of the Metabolic Network in Quality Formation
4.3. Integrated Mechanisms Underlying the Microbe-Metabolite-Pharmacology Interplay
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| Gastrodia elata Bl | G. elata |
| National Medical Products Administration of China | NMPA |
| East longitude | E |
| North latitude | N |
| traditional Chinese medicinal | TCM |
| Tengchong City | MB |
| Ludian | DX |
| Yiliang | XCB |
| Yongshan | YS |
| Zhenxiong | ZX |
| Luquan | LQ |
| Hezhang | HZ |
| Cell Counting Kit-8 | CCK-8 |
| Cetyltrimethyl Ammonium Bromide | CTAB |
| annual maximum | MXAT |
| minimum temperatures | MIAT |
| annual mean temperature | MMT |
| mean monthly temperature difference | MMTD |
| annual precipitation | APP |
| annual average humidity | AAH |
| soil organic matter | SOM |
| total nitrogen | TN |
| total phosphorus | TP |
| total potassium | TK |
| available phosphorus | AP |
| available potassium | AK |
| nitrate nitrogen | NO3−-N |
| ammonium nitrogen | NH4+-N |
| temperature | T |
| Information-Dependent Acquisition | IDA |
| k-nearest neighbors | KNN |
| support vector regression | SVR |
| coefficient of variation | CV |
| enzyme-linked immunosorbent assay | ELISA |
| one-way analysis of variance | ANOVA |
| Bray–Curtis | BC |
| weighted UniFrac | WU |
| unweighted UniFrac | UU |
References
- Gong, M.Q.; Lai, F.F.; Chen, J.Z.; Li, X.H.; Chen, Y.J.; He, Y. Traditional uses, phytochemistry, pharmacology, applications, and quality control of Gastrodia elata Blume: A comprehensive review. J. Ethnopharmacol. 2024, 319, 117128. [Google Scholar] [CrossRef]
- Yang, Y.; Hai, Y.; Yang, Y.; Wen, R.; Wang, L.; Qian, Y.; Zhang, J.; Li, Y.; Shi, Z.; Zhang, H. Extraction, Purification, Structural Characteristics, Biological Activities, and Applications of Polysaccharides from Gastrodia elata: A Review. Molecules 2025, 30, 262. [Google Scholar] [CrossRef] [PubMed]
- Ahn, E.; Jeon, H.; Lim, E.; Jung, H.; Park, E. Anti-inflammatory and anti-angiogenic activities of Gastrodia elata Blume. J. Ethnopharmacol. 2007, 110, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, J.; He, Z.; Liu, X.; Liu, H.; Wang, X. Analgesic and Anxiolytic Effects of Gastrodin and Its Influences on Ferroptosis and Jejunal Microbiota in Complete Freund’s Adjuvant-Injected Mice. Front. Microbiol. 2022, 13, 841662. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.S.; Lin, Y.E.; Panyod, S.; Chen, R.A.; Lin, Y.C.; Chai, L.; Hsu, C.C.; Wu, W.K.; Lu, K.H.; Huang, Y.J.; et al. Anti-depressive-like and cognitive impairment alleviation effects of Gastrodia elata Blume water extract is related to gut microbiome remodeling in ApoE(-/-) mice exposed to unpredictable chronic mild stress. J. Ethnopharmacol. 2023, 302, 115872. [Google Scholar] [CrossRef]
- Lin, Y.E.; Lin, S.H.; Chen, W.C.; Ho, C.T.; Lai, Y.S.; Panyod, S.; Sheen, L.Y. Antidepressant-like effects of water extract of Gastrodia elata Blume in rats exposed to unpredictable chronic mild stress via modulation of monoamine regulatory pathways. J. Ethnopharmacol. 2016, 187, 57–65. [Google Scholar] [CrossRef]
- Matias, M.; Silvestre, S.; Falcao, A.; Alves, G. Gastrodia elata and epilepsy: Rationale and therapeutic potential. Phytomedicine 2016, 23, 1511–1526. [Google Scholar] [CrossRef]
- Wang, S.; Zhu, C.; Zhang, S.; Ma, S.; Li, B.; Zhao, S.; Zhang, W.; Sun, Z. The Combination of Gastrodin and Gallic Acid Synergistically Attenuates AngII-Induced Apoptosis and Inflammation via Regulation of Sphingolipid Metabolism. J. Inflamm. Res. 2024, 17, 6971–6988. [Google Scholar] [CrossRef]
- Tan, Y.; Zhao, A.; Sheng, B.; Liu, L.; Li, S.; Tang, S.; Tan, Z. Comparison of bioactive ingredient contents and antioxidant capacitiesof Gastrodia elata Bl. cultivated with different woods. J. Li-Shizhen Tradit. Chin. Med. 2025, 36, 2500–2508. [Google Scholar]
- Sun, G.X.; Wang, Z. Overall qualitative and overall quantitative authentic quality control of rhizoma gastrodiae by hplc fingerprints. Cent. South Pharm. 2009, 7, 216–219. [Google Scholar]
- Guo, J.X.; Xie, J.; Jiang, L.S.; Gao, J.H.; Rao, C.L.; Zuo, L.L. Analysis on development status of gastrodiae rhizoma health food. Chin. Tradit. Herbal Drugs. 2022, 53, 2247–2254. [Google Scholar]
- Duan, H.; Zhou, Y.; Zhou, S.; Yan, W. Science and Technology of Food Industry. Sci. Technol. Food Ind. 2023, 44, 403–412. [Google Scholar]
- Bai, B.; Liu, W.; Qiu, X.; Zhang, J.; Zhang, J.; Bai, Y. The root microbiome: Community assembly and its contributions to plant fitness. J. Integr. Plant Biol. 2022, 64, 230–243. [Google Scholar] [CrossRef] [PubMed]
- Waldor, M.K.; Tyson, G.; Borenstein, E.; Ochman, H.; Moeller, A.; Finlay, B.B.; Kong, H.H.; Gordon, J.I.; Nelson, K.E.; Dabbagh, K.; et al. Where next for microbiome research? PLoS Biol. 2015, 13, e1002050. [Google Scholar] [CrossRef]
- Afridi, M.S.; Kumar, A.; Javed, M.A.; Dubey, A.; de Medeiros, F.; Santoyo, G. Harnessing root exudates for plant microbiome engineering and stress resistance in plants. Microbiol. Res. 2024, 279, 127564. [Google Scholar] [CrossRef] [PubMed]
- Elhamouly, N.A.; Hewedy, O.A.; Zaitoon, A.; Miraples, A.; Elshorbagy, O.T.; Hussien, S.; El-Tahan, A.; Peng, D. The hidden power of secondary metabolites in plant-fungi interactions and sustainable phytoremediation. Front. Plant Sci. 2022, 13, 1044896. [Google Scholar] [CrossRef]
- Hassani, M.A.; Duran, P.; Hacquard, S. Microbial interactions within the plant holobiont. Microbiome 2018, 6, 58. [Google Scholar] [CrossRef]
- Lemanceau, P.; Corberand, T.; Gardan, L.; Latour, X.; Laguerre, G.; Boeufgras, J.; Alabouvette, C. Effect of Two Plant Species, Flax (Linum usitatissinum L.) and Tomato (Lycopersicon esculentum Mill.), on the Diversity of Soilborne Populations of Fluorescent Pseudomonads. Appl. Environ. Microbiol. 1995, 61, 1004–1012. [Google Scholar] [CrossRef]
- Berendsen, R.L.; Pieterse, C.M.; Bakker, P.A. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012, 17, 478–486. [Google Scholar] [CrossRef]
- Bais, H.P.; Weir, T.L.; Perry, L.G.; Gilroy, S.; Vivanco, J.M. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 2006, 57, 233–266. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Y.C.; Qin, L.Y.; He, H.Y.; Yu, X.L.; Yang, M.Z.; Zhang, H.B. Dynamics of fungal communities during Gastrodia elata growth. BMC Microbiol. 2019, 19, 158. [Google Scholar] [CrossRef]
- Liu, J.; Yang, X.; Li, Z.; Miao, J.; Li, S.; Zhang, W.; Lin, Y.; Lin, L. The role of symbiotic fungi in the life cycle of Gastrodia elata Blume (Orchidaceae): A comprehensive review. Front. Plant Sci. 2024, 14, 1309038. [Google Scholar] [CrossRef]
- Wang, Y.; Zhong, L.; Fang, H.; Liu, Z.; Wang, P.; Li, L.; Chen, L.; Ding, G. Bioactive Metabolites from the Dusty Seeds of Gastrodia elata Bl., Based on Metabolomics and UPLC-Q-TOF-MS Combined with Molecular Network Strategy. Plants 2025, 14, 916. [Google Scholar] [CrossRef]
- Chen, J.; Liu, H.; Chang, P.; Yuan, Y.; Dai, Y. Insight into the Gastrodia elata microbiome and its relationship with secondary metabolites. Ind. Crops Prod. 2025, 223, 120248. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, L.; Yue, F.; Li, D. Dynamics of carbon and nitrogen storage in two typical plantation ecosystems of different stand ages on the Loess Plateau of China. PeerJ 2019, 7, e7708. [Google Scholar] [CrossRef]
- Li, Y.; Fang, F.; Wei, J.; Wu, X.; Cui, R.; Li, G.; Zheng, F.; Tan, D. Humic Acid Fertilizer Improved Soil Properties and Soil Microbial Diversity of Continuous Cropping Peanut: A Three-Year Experiment. Sci. Rep. 2019, 9, 12014. [Google Scholar] [CrossRef]
- Li, L.; Wei, C.; Cai, S.; Fang, L. TRPM7 modulates macrophage polarization by STAT1/STAT6 pathways in RAW264.7 cells. Biochem. Biophys. Res. Commun. 2020, 533, 692–697. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glockner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids. Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jiao, P.; Guo, W.; Du, D.; Hu, Y.; Tan, X.; Liu, X. Changes in Bulk and Rhizosphere Soil Microbial Diversity and Composition Along an Age Gradient of Chinese Fir (Cunninghamia lanceolate) Plantations in Subtropical China. Front. Microbiol. 2021, 12, 777862. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Fu, T.; He, G.; Zhong, Z.; Yang, M.; Lou, F.; He, T. Characteristics of rhizosphere and bulk soil microbial community of Chinese cabbage (Brassica campestris) grown in Karst area. Front. Microbiol. 2023, 14, 1241436. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Deng, Z.; Jiang, Z.; Sun, J.; Meng, F.; Zuo, X.; Wu, L.; Cao, G.; Cao, S. Variations of rhizosphere and bulk soil microbial community in successive planting of Chinese fir (Cunninghamia lanceolata). Front. Plant Sci. 2022, 13, 954777. [Google Scholar] [CrossRef] [PubMed]
- Yu, E.; Liu, Q.; Gao, Y.; Li, Y.; Zang, P.; Zhao, Y.; He, Z. An exploration of mechanism of high quality and yield of Gastrodia elata Bl. f. glauca by the isolation, identification, and evaluation of Mycena. Front. Microbiol. 2023, 14, 1220670. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Hua, Z.; Han, P.; Zhao, Y.; Zhou, J.; Jin, Y.; Li, X.; Huang, L.; Yuan, Y. Mycorrhizosphere Bacteria, Rahnella sp. HPDA25, Promotes the Growth of Armillaria gallica and Its Parasitic Host Gastrodia elata. Front. Microbiol. 2022, 13, 842893. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, D.S.; Lebeis, S.L.; Paredes, S.H.; Yourstone, S.; Gehring, J.; Malfatti, S.; Tremblay, J.; Engelbrektson, A.; Kunin, V.; Del, R.T.; et al. Defining the core Arabidopsis thaliana root microbiome. Nature 2012, 488, 86–90. [Google Scholar] [CrossRef]
- Floudas, D.; Binder, M.; Riley, R.; Barry, K.; Blanchette, R.A.; Henrissat, B.; Martinez, A.T.; Otillar, R.; Spatafora, J.W.; Yadav, J.S.; et al. The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 2012, 336, 1715–1719. [Google Scholar] [CrossRef]
- Peiffer, J.A.; Spor, A.; Koren, O.; Jin, Z.; Tringe, S.G.; Dangl, J.L.; Buckler, E.S.; Ley, R.E. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc. Natl. Acad. Sci. USA 2013, 110, 6548–6553. [Google Scholar] [CrossRef]
- Bahram, M.; Hildebrand, F.; Forslund, S.K.; Anderson, J.L.; Soudzilovskaia, N.A.; Bodegom, P.M.; Bengtsson-Palme, J.; Anslan, S.; Coelho, L.P.; Harend, H.; et al. Structure and function of the global topsoil microbiome. Nature 2018, 560, 233–237. [Google Scholar] [CrossRef]
- Fierer, N.; Bradford, M.A.; Jackson, R.B. Toward an ecological classification of soil bacteria. Ecology 2007, 88, 1354–1364. [Google Scholar] [CrossRef]
- Zhou, J.; Deng, Y.; Shen, L.; Wen, C.; Yan, Q.; Ning, D.; Qin, Y.; Xue, K.; Wu, L.; He, Z.; et al. Temperature mediates continental-scale diversity of microbes in forest soils. Nat. Commun. 2016, 7, 12083. [Google Scholar] [CrossRef]
- Aqeel, M.; Khalid, N.; Noman, A.; Ran, J.; Manan, A.; Hou, Q.; Dong, L.; Sun, Y.; Deng, Y.; Lee, S.S.; et al. Interplay between edaphic and climatic factors unravels plant and microbial diversity along an altitudinal gradient. Environ. Res. 2024, 242, 117711. [Google Scholar] [CrossRef]
- Xie, L.; Li, W.; Pang, X.; Liu, Q.; Yin, C. Soil properties and root traits are important factors driving rhizosphere soil bacterial and fungal community variations in alpine Rhododendron nitidulum shrub ecosystems along an altitudinal gradient. Sci. Total Environ. 2023, 864, 161048. [Google Scholar] [CrossRef] [PubMed]
- Wan, W.; Tan, J.; Wang, Y.; Qin, Y.; He, H.; Wu, H.; Zuo, W.; He, D. Responses of the rhizosphere bacterial community in acidic crop soil to pH: Changes in diversity, composition, interaction, and function. Sci. Total Environ. 2020, 700, 134418. [Google Scholar] [CrossRef] [PubMed]
- Korenblum, E.; Massalha, H.; Aharoni, A. Plant-microbe interactions in the rhizosphere via a circular metabolic economy. Plant Cell 2022, 34, 3168–3182. [Google Scholar] [CrossRef] [PubMed]
- Jacoby, R.P.; Koprivova, A.; Kopriva, S. Pinpointing secondary metabolites that shape the composition and function of the plant microbiome. J. Exp. Bot. 2021, 72, 57–69. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, J.; Lu, X.; Bai, Y.; Wang, G. Two diversities meet in the rhizosphere: Root specialized metabolites and microbiome. J. Genet. Genom. 2024, 51, 467–478. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, H.; Kang, Y.; Wen, T. Small molecule metabolites drive plant rhizosphere microbial community assembly patterns. Front. Microbiol. 2025, 16, 1503537. [Google Scholar] [CrossRef]
- Li, K.; Wan, M.; Han, M.; Yang, L. The response of Panax ginseng root microbial communities and metabolites to nitrogen addition. BMC Plant Biol. 2025, 25, 969. [Google Scholar] [CrossRef]
- Tong, Q.; Zhang, C.; Tu, Y.; Chen, J.; Li, Q.; Zeng, Z.; Wang, F.; Sun, L.; Huang, D.; Li, M.; et al. Biosynthesis-based spatial metabolome of Salvia miltiorrhiza Bunge by combining metabolomics approaches with mass spectrometry-imaging. Talanta 2022, 238, 123045. [Google Scholar] [CrossRef]
- Berendsen, R.; Schlaeppi, K. Editorial overview: Environmental microbiology: #PlantMicrobiome. Curr. Opin. Microbiol. 2019, 49, iii–v. [Google Scholar]
- Liu, Q.; Cheng, L.; Nian, H.; Jin, J.; Lian, T. Linking plant functional genes to rhizosphere microbes: A review. Plant Biotechnol. J. 2023, 21, 902–917. [Google Scholar] [CrossRef]
- Hiruma, K.; Gerlach, N.; Sacristan, S.; Nakano, R.T.; Hacquard, S.; Kracher, B.; Neumann, U.; Ramirez, D.; Bucher, M.; O’Connell, R.J.; et al. Root Endophyte Colletotrichum tofieldiae Confers Plant Fitness Benefits that Are Phosphate Status Dependent. Cell 2016, 165, 464–474. [Google Scholar] [CrossRef]
- Pieterse, C.M.; Zamioudis, C.; Berendsen, R.L.; Weller, D.M.; Van Wees, S.C.; Bakker, P.A. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 2014, 52, 347–375. [Google Scholar] [CrossRef] [PubMed]
- Tedersoo, L.; Bahram, M.; Polme, S.; Koljalg, U.; Yorou, N.S.; Wijesundera, R.; Villarreal, R.L.; Vasco-Palacios, A.M.; Thu, P.Q.; Suija, A.; et al. Fungal biogeography. Global diversity and geography of soil fungi. Science 2014, 346, 1256688. [Google Scholar] [CrossRef] [PubMed]
- Barbi, F.; Martinovic, T.; Odriozola, I.; Machac, A.; Moravcova, A.; Algora, C.; Ballian, D.; Barthold, S.; Brabcova, V.; Awokunle, H.S.; et al. Disentangling drivers behind fungal diversity gradients along altitude and latitude. New Phytol. 2025, 247, 295–308. [Google Scholar] [CrossRef] [PubMed]
- Hacquard, S.; Spaepen, S.; Garrido-Oter, R.; Schulze-Lefert, P. Interplay Between Innate Immunity and the Plant Microbiota. Annu. Rev. Phytopathol. 2017, 55, 565–589. [Google Scholar] [CrossRef]
- Hou, S.; Thiergart, T.; Vannier, N.; Mesny, F.; Ziegler, J.; Pickel, B.; Hacquard, S. A microbiota-root-shoot circuit favours Arabidopsis growth over defence under suboptimal light. Nat. Plants 2021, 7, 1078–1092. [Google Scholar] [CrossRef]
- Lebeis, S.L.; Paredes, S.H.; Lundberg, D.S.; Breakfield, N.; Gehring, J.; McDonald, M.; Malfatti, S.; Glavina, D.R.T.; Jones, C.D.; Tringe, S.G.; et al. PLANT MICROBIOME. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 2015, 349, 860–864. [Google Scholar] [CrossRef]
- Vismans, G.; van Bentum, S.; Spooren, J.; Song, Y.; Goossens, P.; Valls, J.; Snoek, B.L.; Thiombiano, B.; Schilder, M.; Dong, L.; et al. Coumarin biosynthesis genes are required after foliar pathogen infection for the creation of a microbial soil-borne legacy that primes plants for SA-dependent defenses. Sci. Rep. 2022, 12, 22473. [Google Scholar] [CrossRef]
- Stringlis, I.A.; Yu, K.; Feussner, K.; de Jonge, R.; Van Bentum, S.; Van Verk, M.C.; Berendsen, R.L.; Bakker, P.; Feussner, I.; Pieterse, C. MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health. Proc. Natl. Acad. Sci. USA 2018, 115, E5213–E5222. [Google Scholar] [CrossRef]
- Pang, Z.; Chen, J.; Wang, T.; Gao, C.; Li, Z.; Guo, L.; Xu, J.; Cheng, Y. Linking Plant Secondary Metabolites and Plant Microbiomes: A Review. Front. Plant Sci. 2021, 12, 621276. [Google Scholar] [CrossRef]
- Duran, P.; Thiergart, T.; Garrido-Oter, R.; Agler, M.; Kemen, E.; Schulze-Lefert, P.; Hacquard, S. Microbial Interkingdom Interactions in Roots Promote Arabidopsis Survival. Cell 2018, 175, 973–983. [Google Scholar] [CrossRef]






| MXAT (°C) | MIAT (°C) | MMT (°C) | MMTD (°C) | APP (mm) | AAH (RH) | Altitude (m) | E | N | |
|---|---|---|---|---|---|---|---|---|---|
| MB | 24.30 | 11.16 | 16.00 | 20.25 | 1635.00 | 0.90 | 1493.00 | 98°40′ | 24°56′ |
| DX | 23.00 | 11.00 | 16.60 | 11.41 | 810.80 | 0.84 | 1779.00 | 104°15′ | 27°42′ |
| XCB | 18.00 | 7.50 | 12.75 | 10.18 | 631.00 | 0.68 | 1840.00 | 104°15′ | 27°46′ |
| YS | 22.00 | 12.00 | 15.00 | 10.10 | 1077.00 | 0.72 | 735.00 | 103°38′ | 28°16′ |
| ZX | 19.80 | 9.60 | 14.70 | 10.16 | 840.50 | 0.80 | 1682.00 | 104°52′ | 27°27′ |
| LQ | 22.00 | 11.00 | 16.50 | 12.75 | 664.10 | 0.70 | 1995.00 | 102°52′ | 25°54′ |
| HZ | 19.50 | 10.50 | 15.00 | 12.75 | 985.50 | 0.77 | 1659.00 | 104°53′ | 27°9′ |
| MB | DX | XCB | YS | ZX | LQ | HZ | Significant | |
|---|---|---|---|---|---|---|---|---|
| pH | 4.97 ± 0.03 d | 4.54 ± 0.03 f | 4.7 ± 0.00 e | 4.64 ± 0.015 e | 6.27 ± 0.00 a | 5.32 ± 0.02 c | 5.44 ± 0.05 b | *** |
| SOM | 35.35 ± 0.17 c | 41.24 ± 1.47 b | 62.28 ± 1.24 a | 24.58 ± 0.29 d | 4.44 ± 0.14 f | 21.54 ± 1.29 e | 60.08 ± 1.29 a | *** |
| TN | 0.88 ± 0.02 de | 1.24 ± 0.05 b | 1.49 ± 0.05 a | 1.07 ± 0.00 c | 0.82 ± 0.09 e | 0.95 ± 0.02 d | 1.55 ± 0.02 a | *** |
| TP | 1.22 ± 0.02 a | 0.77 ± 0.07 d | 0.10 ± 0.04 c | 1.04 ± 0.06 bc | 1.09 ± 0.11 bc | 1.14 ± 0.05 ab | 0.84 ± 0.03 d | *** |
| TK | 1.15 ± 0.05 c | 0.53 ± 0.02 d | 2.43 ± 0.05 b | 0.97 ± 0.04 c | 0.65 ± 0.04 d | 5.16 ± 0.40 a | 0.53 ± 0.00 d | *** |
| AP | 21.68 ± 0.09 b | 161.85 ± 1.48 a | 12.87 ± 0.32 d | 10.42 ± 0.30 e | 20.30 ± 0.17 c | 13.42 ± 0.22 d | 9.21 ± 0.25 e | *** |
| AK | 4.51 ± 0.01 f | 75.10 ± 1.02 b | 114.02 ± 2.30 a | 47.70 ± 0.25 d | 43.22 ± 3.23 e | 46.09 ± 0.57 de | 51.56 ± 1.14 c | *** |
| NO3−-N | 3.33 ± 0.29 e | 18.27 ± 1.42 a | 7.45 ± 0.02 c | 2.94 ± 0.18 e | 7.12 ± 0.25 c | 10.10 ± 0.64 b | 4.77 ± 0.22 d | *** |
| NH4+-N | 58.68 ± 0.42 e | 574.74 ± 9.34 b | 931.60 ± 64.05 a | 93.90 ± 2.08 de | 302.00 ± 7.71 c | 328.79 ± 1.55 c | 108.87 ± 0.91 d | *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Guo, L.; Li, Y.; Ji, M.; He, T.; Hou, K.; Li, J.; Zhang, H.; Shi, Z.; Zhang, H. Environmental and Rhizosphere Microbiome Drivers of Metabolic Profiles in Gastrodia elata: An Integrative Analysis of Soil, Metabolomics and Anti-Inflammatory Readouts. Foods 2025, 14, 4265. https://doi.org/10.3390/foods14244265
Yang Y, Guo L, Li Y, Ji M, He T, Hou K, Li J, Zhang H, Shi Z, Zhang H. Environmental and Rhizosphere Microbiome Drivers of Metabolic Profiles in Gastrodia elata: An Integrative Analysis of Soil, Metabolomics and Anti-Inflammatory Readouts. Foods. 2025; 14(24):4265. https://doi.org/10.3390/foods14244265
Chicago/Turabian StyleYang, Yan, Longxing Guo, Yongguo Li, Miaomiao Ji, Tingting He, Kaiming Hou, Jian Li, Haonan Zhang, Zhilong Shi, and Haizhu Zhang. 2025. "Environmental and Rhizosphere Microbiome Drivers of Metabolic Profiles in Gastrodia elata: An Integrative Analysis of Soil, Metabolomics and Anti-Inflammatory Readouts" Foods 14, no. 24: 4265. https://doi.org/10.3390/foods14244265
APA StyleYang, Y., Guo, L., Li, Y., Ji, M., He, T., Hou, K., Li, J., Zhang, H., Shi, Z., & Zhang, H. (2025). Environmental and Rhizosphere Microbiome Drivers of Metabolic Profiles in Gastrodia elata: An Integrative Analysis of Soil, Metabolomics and Anti-Inflammatory Readouts. Foods, 14(24), 4265. https://doi.org/10.3390/foods14244265

