Time-Dependent Modulation of Phenolics, Polysaccharides, and Bioactivities in Artemisia argyi Leaves During Solid-State Fermentation with Rhizopus oryzae
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and Fermentation Substrate Preparation
2.2. Inoculum Development for R. oryzae
2.3. Extraction of Bioactive Compounds
2.4. Quantification of Active Ingredients
2.5. Assessment of Antioxidant Capacity
2.6. Enzyme Inhibitory Activity Evaluations
2.7. Essential Oil Profiling
2.8. Data Processing and Statistical Evaluation
3. Results
3.1. Dynamics of Active Component Accumulation During SSF
3.2. Temporal Evolution of Antioxidant Capacity During SSF
3.3. Progressive Enhancement of Enzyme Inhibitory Activities During SSF
3.4. Fungal-Induced Modulation of Volatile Compounds in A. argyi Essential Oils
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| SSF | Solid-state fermentation |
| LSF | Liquid-state fermentation |
| GC-MS | Gas Chromatography-Mass Spectrometry |
| IC50 | Half maximal inhibitory concentration |
| DW | Dry weight |
| MT | Monoterpene |
| OMT | Oxygenated monoterpene |
| ST | Sesquiterpene |
| OST | Oxygenated sesquiterpene |
| AC | Aromatic compound |
| OD | Olefin and derivative |
References
- Hayes, M.; García-Vaquero, M. Bioactive compounds from fermented food products. In Novel Food Fermentation Technologies; Ojha, K.S., Tiwari, B.K., Eds.; Springer: Heidelberg, Germany, 2016; pp. 293–310. [Google Scholar] [CrossRef]
- Künili, İ.E.; Akdeniz, V.; Akpınar, A.; Budak, Ş.Ö.; Curiel, J.A.; Guzel, M.; Karagözlü, C.; Kasikci, M.B.; Caruana, G.P.M.; Starowicz, M.; et al. Bioactive compounds in fermented foods: A systematic narrative review. Front. Nutr. 2025, 12, 1625816. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Dong, M.; Liu, J.; Guo, N.; Li, J.; Shi, Y.; Yang, Y. Fermentation: Improvement of pharmacological effects and applications of botanical drugs. Front. Pharmacol. 2024, 15, 1430238. [Google Scholar] [CrossRef] [PubMed]
- Shiby, V.K.; Mishra, H.N. Fermented milks and milk products as functional foods—A review. Crit. Rev. Food Sci. Nutr. 2013, 53, 482–496. [Google Scholar] [CrossRef] [PubMed]
- Sawant, S.S.; Park, H.Y.; Sim, E.Y.; Kim, H.S.; Choi, H.S. Microbial Fermentation in Food: Impact on Functional Properties and Nutritional Enhancement–A Review of Recent Developments. Fermentation 2025, 11, 15. [Google Scholar] [CrossRef]
- Munekata, P.E.; Pateiro, M.; Tomasevic, I.; Domínguez, R.; da Silva Barretto, A.C.; Santos, E.M.; Lorenzo, J.M. Functional fermented meat products with probiotics—A review. J. Appl. Microbiol. 2022, 133, 91–103. [Google Scholar] [CrossRef]
- Murooka, Y.; Yamshita, M. Traditional healthful fermented products of Japan. J. Ind. Microbiol. Biotechnol. 2008, 35, 791. [Google Scholar] [CrossRef]
- Macori, G.; Cotter, P.D. Novel insights into the microbiology of fermented dairy foods. Curr. Opin. Biotechnol. 2018, 49, 172–178. [Google Scholar] [CrossRef]
- Elhalis, H.; Chin, X.H.; Chow, Y. Soybean fermentation: Microbial ecology and starter culture technology. Crit. Rev. Food Sci. Nutr. 2024, 64, 7648–7670. [Google Scholar] [CrossRef]
- Tamang, J.P.; Cotter, P.D.; Endo, A.; Han, N.S.; Kort, R.; Liu, S.Q.; Mayo, B.; Westerik, N.; Hutkins, R. Fermented foods in a global age: East meets West. Compr. Rev. Food Sci. Food Saf. 2020, 19, 184–217. [Google Scholar] [CrossRef]
- Zhang, L.S.; Davies, S.S. Microbial metabolism of dietary components to bioactive metabolites: Opportunities for new therapeutic interventions. Genome Med. 2016, 8, 46. [Google Scholar] [CrossRef]
- Fang, H.; Kang, J.; Zhang, D. Microbial production of vitamin B12: A review and future perspectives. Microb. Cell Factories 2017, 16, 15. [Google Scholar] [CrossRef]
- Graham, A.E.; Ledesma-Amaro, R. The microbial food revolution. Nat. Commun. 2023, 14, 2231. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Erol, Z.; Rugji, J.; Taşçı, F.; Kahraman, H.A.; Toppi, V.; Musa, L.; Giacinto, G.D.; Bahmid, N.A.; Mehdizadeh, M.; et al. An overview of fermentation in the food industry-looking back from a new perspective. Bioresour. Bioprocess. 2023, 10, 85. [Google Scholar] [CrossRef]
- Madeira Junior, J.V.; Teixeira, C.B.; Macedo, G.A. Biotransformation and bioconversion of phenolic compounds obtainment: An overview. Crit. Rev. Biotechnol. 2015, 35, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Li, Y.; Smolke, C.D. Strategies for microbial synthesis of high-value phytochemicals. Nat. Chem. 2018, 10, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Bamidele, M.O.; Bamikale, M.B.; Cárdenas-Hernández, E.; Bamidele, M.A.; Castillo-Olvera, G.; Sandoval-Cortes, J.; Aguilar, C.N. Bioengineering in solid-state fermentation for next sustainable food bioprocessing. Next Sustain. 2025, 6, 100105. [Google Scholar] [CrossRef]
- Liu, N.; Song, M.; Wang, N.; Wang, Y.; Wang, R.; An, X.; Qi, J. The effects of solid-state fermentation on the content, composition and in vitro antioxidant activity of flavonoids from dandelion. PLoS ONE 2020, 15, e0239076. [Google Scholar] [CrossRef] [PubMed]
- Hölker, U.; Lenz, J. Solid-state fermentation—Are there any biotechnological advantages? Curr. Opin. Microbiol. 2005, 8, 301–306. [Google Scholar] [CrossRef]
- Barrios-González, J. Solid-state fermentation: Physiology of solid medium, its molecular basis and applications. Process Biochem. 2012, 47, 175–185. [Google Scholar] [CrossRef]
- Martins, S.; Mussatto, S.I.; Martínez-Avila, G.; Montañez-Saenz, J.; Aguilar, C.N.; Teixeira, J.A. Bioactive phenolic compounds: Production and extraction by solid-state fermentation. A review. Biotechnol. Adv. 2011, 29, 365–373. [Google Scholar] [CrossRef]
- Catalán, E.; Sánchez, A. Solid-state fermentation (SSF) versus submerged fermentation (SmF) for the recovery of cellulases from coffee husks: A life cycle assessment (LCA) based comparison. Energies 2020, 13, 2685. [Google Scholar] [CrossRef]
- Wang, Q.; Zhu, C.; Song, Z.; Qiao, Y.; Hu, Y.; Hu, L.; Li, S.; Wang, R. Anti-oxidative effect of Salvia miltiorrhiza Bunge fermented with Shiraia bambusicola Henn. against H2O2-induced injury in PC12 cells. BMC Complement. Med. Ther. 2025, 25, 208. [Google Scholar] [CrossRef] [PubMed]
- Moon, K.; Cha, J. Enhancement of antioxidant and antibacterial activities of Salvia miltiorrhiza roots fermented with Aspergillus oryzae. Foods 2020, 9, 34. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, Y.; Yang, Q.; Wu, J.; Zahng, Z. Comparisons of the changes of compositions and antioxidant capacities of Smilax glabra sclerotium dregs before and after fermentation by Monascus. China Food Addit. 2025, 36, 1–8. [Google Scholar] [CrossRef]
- Koul, B.; Taak, P.; Kumar, A.; Khatri, T.; Sanyal, I. The Artemisia genus: A review on traditional uses, phytochemical constituents, pharmacological properties and germplasm conservation. J. Glycom. Lipidom. 2017, 7, 142. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.; Yu, D.; Li, Y.; Ding, Y.; He, Y.; Sun, L. A review of the research progress on Artemisia argyi Folium: Botany, phytochemistry, pharmacological activities, and clinical application. Naunyn Schmiedebergs Arch. Pharmacol. 2024, 397, 7473–7500. [Google Scholar] [CrossRef]
- Shi, L.; Wu, J.; Wang, X.; Yang, X. Mechanism of Artemisia argyi Levl. et Vant. aqueous extract in alleviating dextran sulfate sodium-induced ulcerative colitis. Sci. Rep. 2025, 15, 36809. [Google Scholar] [CrossRef]
- Wang, K.; Yang, A.; Li, Y.; Han, Q.; Yin, Z.; Xia, S.; Chen, J.; Mo, J.; Bin, P. Artemisia argyi essential oil modulates lipid metabolism via linoleic acid and glycerophospholipid pathways in high-fat diet-induced obese mice. Front. Nutr. 2025, 12, 1650976. [Google Scholar] [CrossRef] [PubMed]
- Guan, X.; Ge, D.; Li, S.; Huang, K.; Liu, J.; Li, F. Chemical composition and antimicrobial activities of Artemisia argyi Lévl. et Vant essential oils extracted by simultaneous distillation-extraction, subcritical extraction and hydrodistillation. Molecules 2019, 24, 483. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.J.; Guo, T.; Xue, G.M.; Ma, R.; Wang, Y.; Chen, Z.S. Artemisia argyi H. Lév. & Vaniot: A comprehensive review on traditional uses, phytochemistry, and pharmacological activities. Phytochem. Rev. 2024, 23, 821–862. [Google Scholar] [CrossRef]
- Lee, J.Y.; Kim, J.H.; Choi, J.M.; Kim, H.; Seo, W.T.; Cho, E.J.; Kim, H.Y. Anti-oxidant and immune enhancement effects of Artemisia argyi H. fermented with lactic acid bacteria. J. Appl. Biol. Chem. 2023, 66, 492–502. [Google Scholar] [CrossRef]
- Zhan, H.; Xu, W.; Zhao, X.; Tian, L.; Zhang, F.; Wei, H.; Tao, X. Effects of Lactiplantibacillus plantarum WLPL01 fermentation on antioxidant activities, bioactive compounds, and flavor profile of Artemisia argyi. Food Biosci. 2022, 49, 101908. [Google Scholar] [CrossRef]
- Kang, J.Y.; Lee, D.S.; Park, S.K.; Ha, J.S.; Kim, J.M.; Ha, G.J.; Seo, W.T.; Heo, H.J. Cognitive function of Artemisia argyi H. fermented by Monascus purpureus under TMT-induced learning and memory deficits in ICR mice. Evid. Based Complement. Altern. Med. 2017, 2017, 5809370. [Google Scholar] [CrossRef] [PubMed]
- Tao, A.; Feng, X.; Sheng, Y.; Song, Z. Optimization of the Artemisia polysaccharide fermentation process by Aspergillus niger. Front. Nutr. 2022, 9, 842766. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.Y.; Zhou, Y.Z.; Wang, Y.F.; Shu, T.Y.; Feng, Y.; Xu, M.; Su, L.H.; Li, H.Z. Sesquiterpenoids from aged Artemisia argyi and their 3D-QSAR for anti-HBV activity. Phytochemistry 2024, 217, 113912. [Google Scholar] [CrossRef]
- Vellozo-Echevarría, T.; Barrett, K.; Vuillemin, M.; Meyer, A.S. Mini-Review: The distinct carbohydrate active enzyme secretome of Rhizopus spp. represents fitness for mycelium remodeling and solid-state plant food fermentation. ACS Omega 2024, 9, 34185–34195. [Google Scholar] [CrossRef]
- Dey, T.B.; Kuhad, R.C. Enhanced production and extraction of phenolic compounds from wheat by solid-state fermentation with Rhizopus oryzae RCK2012. Biotechnol. Rep. 2014, 4, 120–127. [Google Scholar] [CrossRef]
- Liu, H.; Song, Y.; Zhang, X. Determination of total flavonoids in leek by AlCl3 colorimetric assay. Chem. Eng. Trans. 2017, 59, 775–780. [Google Scholar] [CrossRef]
- Martins, G.R.; Monteiro, A.F.; do Amaral, F.R.L.; da Silva, A.S.A. A validated Folin-Ciocalteu method for total phenolics quantification of condensed tannin-rich açaí (Euterpe oleracea Mart.) seeds extract. J. Food Sci. Technol. 2021, 58, 4693–4702. [Google Scholar] [CrossRef] [PubMed]
- Souza, C.P.; Pereira, A.D.S.; Aguieiras, É.C.; Amaral, P.F. Sequential solid-state and submerged fermentation to increase Yarrowia lipolytica lipase production from palm oil production chain by-products. Fermentation 2024, 11, 3. [Google Scholar] [CrossRef]
- Sheikh, H.; Anand, G.G.; Shivanna, G.B. Fermentation: A potential strategy for microbial metabolite production [Internet]. In Food Science and Nutrition; IntechOpen: London, UK, 2024. [Google Scholar] [CrossRef]
- El-Gendi, H.; Saleh, A.K.; Badierah, R.; Redwan, E.M.; El-Maradny, Y.A.; El-Fakharany, E.M. A comprehensive insight into fungal enzymes: Structure, classification, and their role in mankind’s challenges. J. Fungi 2021, 8, 23. [Google Scholar] [CrossRef]
- López-Gómez, J.P.; Venus, J. Potential role of sequential solid-state and submerged-liquid fermentations in a circular bioeconomy. Fermentation 2021, 7, 76. [Google Scholar] [CrossRef]
- Matsuzawa, T. Plant polysaccharide degradation-related enzymes in Aspergillus oryzae. Biosci. Biotechnol. Biochem. 2024, 88, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Nguyen Thai, H.; Van Camp, J.; Smagghe, G.; Raes, K. Improved release and metabolism of flavonoids by steered fermentation processes: A review. Int. J. Mol. Sci. 2014, 15, 19369–19388. [Google Scholar] [CrossRef]
- Singh, V.; Haque, S.; Niwas, R.; Srivastava, A.; Pasupuleti, M.; Tripathi, C. Strategies for fermentation medium optimization: An in-depth review. Front. Microbiol. 2017, 7, 2087. [Google Scholar] [CrossRef]
- Simonetti, S.; Saptoro, A.; Fernández Martín, C.; Dionisi, D. Product concentration, yield and productivity in anaerobic digestion to produce short chain organic acids: A critical analysis of literature data. Processes 2020, 8, 1538. [Google Scholar] [CrossRef]
- Dwivedi, A.; Chaudhary, M.; Awasthi, A. Solid-state fermentation of plant-based food to enhance bioactive components. In Fermentative Nutraceuticals; John Wiley & Sons: Hoboken, NJ, USA, 2025; pp. 29–61. [Google Scholar] [CrossRef]
- Ain, N.U. Advancing sustainable agriculture: Bioinputs and solid-state fermentation innovations for eco-friendly farming. Int. J. Agric. Sustain. Dev. 2024, 6, 90–101. [Google Scholar]
- Subramaniyam, R.; Vimala, R. Solid state and submerged fermentation for the production of bioactive substances: A comparative study. Int. J. Sci. Nat. 2012, 3, 480–486. [Google Scholar]
- Singhania, R.R.; Patel, A.K.; Soccol, C.R.; Pandey, A. Recent advances in solid-state fermentation. Biochem. Eng. J. 2009, 44, 13–18. [Google Scholar] [CrossRef]
- Chakraborty, S.; Yadav, G.; Saini, J.K.; Kuhad, R.C. Comparative study of cellulase production using submerged and solid-state fermentation. In New and Future Developments in Microbial Biotechnology and Bioengineering; Srivastava, N., Srivastava, M., Mishra, P.K., Ramteke, P.W., Singh, R.L., Eds.; Elsevier B.V.: Amsterdam, The Netherlands, 2019; pp. 99–113. [Google Scholar] [CrossRef]
- Ungerfeld, E.M.; Cancino-Padilla, N.; Vera-Aguilera, N.; Scorcione, M.C.; Saldivia, M.; Lagos-Pailla, L.; Vera, M.; Cerda, C.; Muñoz, C.; Urrutia, N.; et al. Effects of type of substrate and dilution rate on fermentation in serial rumen mixed cultures. Front. Microbiol. 2024, 15, 1356966. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiong, H.; Chen, Z.; Fu, Y.; Xu, Q.; Chen, N. Effect of fed-batch and chemostat cultivation processes of C. glutamicum CP for L-leucine production. Bioengineered 2021, 12, 426–439. [Google Scholar] [CrossRef]
- Van der Hauwaert, L.; Regueira, A.; Selder, L.; Zeng, A.P.; Mauricio-Iglesias, M. Optimising bioreactor processes with in-situ product removal using mathematical programming: A case study for propionate production. Comput. Chem. Eng. 2022, 168, 108059. [Google Scholar] [CrossRef]
- Brenna, E.; Parmeggiani, F. Biotechnological production of flavors. In Industrial Biotechnology: Products and Processes; Wittmann, C., Liao, J.C., Eds.; Wiley-VCH: Weinheim, Germany, 2016; pp. 271–308. [Google Scholar]
- Martin-Miguelez, J.M.; Bross, J.; Prado, D.; Merino, E.; More, R.P.; Otero, J.; Aduriz, A.L.; Delgado, J. Rhizopus sp. beyond tempeh. An occidental approach to mold-based fermentations. Int. J. Gastron. Food Sci. 2025, 39, 101090. [Google Scholar] [CrossRef]
- Shahidi, F.; Yeo, J. Insoluble-bound phenolics in food. Molecules 2016, 21, 1216. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Ahluwalia, V.; Saran, S.; Kumar, J.; Patel, A.K.; Singhania, R.R. Recent developments on solid-state fermentation for production of microbial secondary metabolites: Challenges and solutions. Bioresour. Technol. 2021, 323, 124566. [Google Scholar] [CrossRef]
- Espinoza-Gil, M.; Loera-Corral, O.; Cañizares-Villanueva, R.O.; Medina-Mendoza, G.G.; Ortega-López, J.; del Carmen Montes-Horcasitas, M. Comparison of four fermentation systems for conversion of pretreated lignocellulose to microbial biomass and subsequent production of biocrude. Heliyon 2025, 11, e43113. [Google Scholar] [CrossRef]
- Singhania, R.R.; Sukumaran, R.K.; Patel, A.K.; Larroche, C.; Pandey, A. Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzym. Microb. Technol. 2010, 46, 541–549. [Google Scholar] [CrossRef]
- Domizio, P.; Liu, Y.; Bisson, L.F.; Barile, D. Cell wall polysaccharides released during the alcoholic fermentation by Schizosaccharomyces pombe and S. japonicus: Quantification and characterization. Food Microbiol. 2017, 61, 136–149. [Google Scholar] [CrossRef]
- Chen, H.; Shi, X.; Cen, L.; Zhang, L.; Dai, Y.; Qiu, S.; Zeng, X.; Wei, C. Effect of yeast fermentation on the physicochemical properties and bioactivities of polysaccharides of Dendrobium officinale. Foods 2022, 12, 150. [Google Scholar] [CrossRef]
- Wang, G.; Xie, L.; Huang, Z.; Xie, J. Recent advances in polysaccharide biomodification by microbial fermentation: Production, properties, bioactivities, and mechanisms. Crit. Rev. Food Sci. Nutr. 2024, 64, 12999–13023. [Google Scholar] [CrossRef]
- Lyu, Y.; Wang, M.; Zhang, Y.; Zhang, X.; Liu, X.; Li, F.; Wang, D.; Wei, M.; Yu, X. Antioxidant properties of water-soluble polysaccharides prepared by co-culture fermentation of straw and shrimp shell. Front. Nutr. 2022, 9, 1047932. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Li, F.; Zhang, X.; Li, P.; Zhang, X.; Wu, Z.; Li, D. In Vitro synergistic antioxidant activity and identification of antioxidant components from Astragalus membranaceus and Paeonia lactiflora. PLoS ONE 2014, 9, e96780. [Google Scholar] [CrossRef] [PubMed]
- Hassanpour, S.H.; Doroudi, A. Review of the antioxidant potential of flavonoids as a subgroup of polyphenols and partial substitute for synthetic antioxidants. Avicenna J. Phytomed. 2023, 13, 354. [Google Scholar] [CrossRef] [PubMed]
- Siller-Sánchez, A.; Aguilar, C.N.; Chávez-González, M.L.; Ascacio-Valdés, J.A.; Kumar Verma, D.; Aguilar-González, M. Solid-state fermentation-assisted extraction of flavonoids from grape pomace using co-cultures. Processes 2024, 12, 2027. [Google Scholar] [CrossRef]
- Dey, T.B.; Chakraborty, S.; Jain, K.K.; Sharma, A.; Kuhad, R.C. Antioxidant phenolics and their microbial production by submerged and solid state fermentation process: A review. Trends Food Sci. Technol. 2016, 53, 60–74. [Google Scholar] [CrossRef]
- Green, S.; Eyres, G.T.; Agyei, D.; Kebede, B. Solid-state fermentation: Bioconversions and impacts on bioactive and nutritional compounds in oats. Compr. Rev. Food Sci. Food Saf. 2024, 23, e70070. [Google Scholar] [CrossRef]
- Couto, S.R.; Sanromán, M.A. Application of solid-state fermentation to food industry—A review. J. Food Eng. 2006, 76, 291–302. [Google Scholar] [CrossRef]
- Leadbeater, D.R.; Setchfield, A.T.; Dowle, A.A.; Bruce, N.C. Comparative exo-proteomics of solid and submerged state fermentation using the lignocellulose degrading Ascomycete Parascedosporium putredinis NO1. Bioresour. Technol. 2025, 435, 132864. [Google Scholar] [CrossRef]
- Salgado-Bautista, D.; Volke-Sepúlveda, T.; Figueroa-Martínez, F.; Carrasco-Navarro, U.; Chagolla-López, A.; Favela-Torres, E. Solid-state fermentation increases secretome complexity in Aspergillus brasiliensis. Fungal Biol. 2020, 124, 723–734. [Google Scholar] [CrossRef]
- Salvatori, E.S.; Morgan, L.V.; Ferrarini, S.; Zilli, G.A.; Rosina, A.; Almeida, M.O.; Hackbart, H.C.; Rezende, R.S.; Albeny-Simões, D.; Oliveira, J.V.; et al. Anti-inflammatory and antimicrobial effects of Eucalyptus spp. essential oils: A potential valuable use for an industry byproduct. Evid. Based Complement. Altern. Med. 2023, 2023, 2582698. [Google Scholar] [CrossRef]
- Juergens, U.R. Anti-inflammatory properties of the monoterpene 1.8-cineole: Current evidence for co-medication in inflammatory airway diseases. Drug Res. 2014, 64, 638–646. [Google Scholar] [CrossRef]
- Iqbal, U.; Malik, A.; Sial, N.T.; Uttra, A.M.; Rehman, M.F.U.; Mehmood, M.H. Molecular insights of Eucalyptol (1, 8-Cineole) as an anti-arthritic agent: In vivo and in silico analysis of IL-17, IL-10, NF-κB, 5-LOX and COX-2. Inflammopharmacology 2024, 32, 1941–1959. [Google Scholar] [CrossRef] [PubMed]
- Kalaiselvan, P.; Devi, N.C.; Deepti, M.; Devi, A.A.; Akamad, K.; Dheeran, P.; Debbarma, S.; Vadivel, D.; Rajesh, D. Solid-State Fermentation (SSF)-A Sustainable Future Technology in Aquafeeds? Front. Mar. Sci. 2025, 12, 1669719. [Google Scholar] [CrossRef]
- Sánchez, A.; Oiza, N.; Artola, A.; Font, X.; Barrena, R.; Moral-Vico, J.; Gea, T. Solid-state fermentation: A review of its opportunities and challenges in the framework of circular bioeconomy. Afinidad 2024, 81, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Abu Yazid, N.; Barrena, R.; Komilis, D.; Sánchez, A. Solid-state fermentation as a novel paradigm for organic waste valorization: A review. Sustainability 2017, 9, 224. [Google Scholar] [CrossRef]



| Leaf Fermentation Duration (Day) | Total Polysaccharide (mg/g·DW) | Total Polyphenols (mg/g·DW) | Total Flavonoid (mg/g·DW) |
|---|---|---|---|
| 0 | 220.43 ± 11.64 b | 10.42 ± 0.85 d | 64.34 ± 3.02 d |
| 2 | 261.39 ± 7.09 a (18.58) | 12.17 ± 1.70 d (16.79) | 71.69 ± 2.46 d (11.42) |
| 4 | 259.87 ± 8.71 a (−0.58) | 16.93 ± 1.59 c (39.11) | 82.86 ± 3.42 c (15.58) |
| 6 | 219.10 ± 7.65 b (−15.69) | 23.93 ± 2.16 b (41.35) | 102.89 ± 4.86 b (24.17) |
| 8 | 172.64 ± 5.13 c (−21.20) | 34.25 ± 2.24 a (43.13) | 129.73 ± 4.78 a (26.09) |
| 10 | 173.26 ± 11.23 c,C (0.36) | 35.56 ± 0.98 a,B (3.82) | 131.70 ± 4.09 a,B (1.52) |
| Fresh dried leaves | 225.10 ± 10.56 B | 10.28 ± 0.84 C | 63.58 ± 5.17 C |
| Aged leaves | 284.54 ± 12.26 A | 50.55 ± 5.44 A | 218.56 ± 7.03 A |
| Leaf Fermentation Duration (Day) | IC50 (Hydroxyl Radical) | IC50 (Superoxide Anion Radical) | IC50 (ABTS Radical) | IC50 (DPPH Radical) |
|---|---|---|---|---|
| 0 | 920.80 ± 14.00 a | 586.94 ± 6.13 a | 728.19 ± 16.00 a | 464.60 ± 13.65 a |
| 2 | 897.42 ± 16.04 a (−2.54) | 569.26 ± 5.59 a (−3.01) | 692.01 ± 12.53 b (−4.97) | 443.99 ± 7.95 a (−4.44) |
| 4 | 848.34 ± 7.14 b (−5.47) | 525.33 ± 5.26 b (−7.72) | 646.24 ± 5.29 c (−6.61) | 372.01 ± 12.65 b (−16.21) |
| 6 | 760.85 ± 10.44 c (−10.31) | 442.11 ± 9.59 c (−15.84) | 573.69 ± 11.64 d (−11.23) | 250.22 ± 16.33 c (−32.74) |
| 8 | 678.82 ± 6.43 d (−10.78) | 364.08 ± 11.32 d (−17.65) | 496.54 ± 14.22 e (−13.45) | 198.54 ± 13.05 d (−20.65) |
| 10 | 674.53 ± 9.54 d,B (−0.63) | 357.46 ± 12.08 d,B (−1.82) | 487.91 ± 11.89 e,B (−1.74) | 189.26 ± 15.87 d,B (−4.67) |
| Fresh dried leaves | 920.75 ± 9.52 A | 577.62 ± 7.54 A | 727.76 ± 6.86 A | 472.21 ± 13.33 A |
| Aged leaves | 380.16 ± 8.59 C | 303.28 ± 21.50 C | 319.98 ± 6.86 C | 63.28 ± 4.75 C |
| Leaf Fermentation Duration (Day) | Xanthine Oxidase Inhibition (%) at 100 μg/mL | Tyrosinase Inhibition (%) at 100 μg/mL |
|---|---|---|
| 0 | 8.69 ± 1.38 d | 16.84 ± 3.53 d |
| 2 | 9.17 ± 1.04 d (5.52) | 17.46 ± 2.38 d (3.68) |
| 4 | 14.25 ± 1.77 c (55.40) | 22.94 ± 3.19 c (31.39) |
| 6 | 25.07± 1.44 b (75.93) | 39.09 ± 4.05 b (70.40) |
| 8 | 34.33 ± 1.90 a (36.94) | 49.07 ± 0.95 a (25.53) |
| 10 | 34.04 ± 1.43 a,B (−0.84) | 50.02 ± 0.76 a,B (1.94) |
| Fresh dried leaves | 8.74 ± 1.93 C | 16.43 ± 1.67 C |
| Aged leaves | 43.97 ± 2.51 A | 55.99 ± 1.90 A |
| Common Name | Systematic Name | Chemical Formula | Retention Index | Molecular Weight | Fermented Leaves (%) | Control Leaves (%) | Aged Leaves (%) | |
|---|---|---|---|---|---|---|---|---|
| MT | α-pinene | 2,6,6-trimethyl-bicyclo[3.1.1-2]heptene | C10H16 | 942 | 136.23 | 0.36 ± 0.03 c | 0.46 ± 0.02 b | 0.65 ± 0.01 a |
| camphene | 2,2-Dimethyl-3-methylene-bicyclo[2.2.1]heptane | C10H16 | 951 | 136.23 | 0.78 ± 0.04 b | 0.74 ± 0.04 b | 1.20± 0.06 a | |
| trans-sabinene | (1R)-4-methylene-1-(1-methylethyl)-bicyclo[3.1.0]hexane | C10H16 | 963 | 136.23 | 1.29 ± 0.32 a | 1.58 ± 0.23 a | 1.23 ± 0.13 a | |
| (+)-2-carene | (1S,6R)-3,7,7-Trimethylbicyclo[4.1.0]hept-2-ene | C10H16 | 990 | 136.23 | 0.68 ± 0.17 b | 0.77 ± 0.10 b | 1.16 ± 0.29 a | |
| α-phellandrene | 2-methyl-5-(1-methylethyl)-1,3-Cyclohexadiene | C10H16 | 1008 | 136.23 | 2.29 ± 0.21 b | 3.18 ± 0.08 a | 0.89 ± 0.21 c | |
| γ-terpinene | 1-methyl-4-isopropyl-1,4-cyclohexadiene | C10H16 | 1058 | 136.23 | 1.34 ± 0.09 a | 0.67 ± 0.25 b | 1.56 ± 0.06 a | |
| Total MT | 6.74 | 7.40 | 6.69 | |||||
| OMT | eucalyptol | 1,3,3-Trimethyl-2-oxabicyclo[2.2.2]octane | C10H18O | 1033 | 154.24 | 22.27 ± 1.55 a | 17.18 ± 1.46 b | 24.37 ± 1.93 a |
| D-camphor | 7,7-trimethyl-(1theta)-bicyclo[2.2.1]heptan-2-on | C10H16O | 1133 | 152.23 | 1.67 ± 0.25 a | 1.63 ± 0.30 a | 0.37 ± 0.28 b | |
| (S)-cis-verbenol | 1,2,4-trimethyl-5-[2-(2,4,5-trimethylphenyl)ethyl]benzene | C10H16O | 1141 | 152.23 | 0.34 ± 0.12 b | 0.33 ± 0.08 b | 0.93 ± 0.35 a | |
| DL-2-bornanol | (1S,4R,6R)-1,7,7-Trimethylbicyclo[2.2.1]heptan-6-ol | C10H18O | 1152 | 154.25 | 4.29 ± 0.35 a | 3.64 ± 0.37 b | 4.26 ± 0.37 a | |
| borneol | (1R,2S,4R)-rel-1,7,7-TriMethylbicyclo[2.2.1]heptan-2-ol | C10H18O | 1164 | 154.25 | 1.10 ± 0.23 b | 0.48 ± 0.15 c | 3.51 ± 0.29 a | |
| DL-menthol | (1R,2R,5S)-5-methyl-2-propan-2-yl-1-cyclohexanol | C10H20O | 1169 | 156.27 | 6.27 ± 0.10 a | 5.36 ± 0.09 b | 6.74 ± 0.41 a | |
| terpinen-4-ol | 1-isopropyl-4-methyl-cyclohex-3-enol | C10H18O | 1174 | 154.25 | 0.65 ± 0.10 ab | 0.56 ± 0.28 b | 0.94 ± 0.11 a | |
| α-terpineol | 1-Methyl-4-(1-hydroxy-1-methylethyl)-1-cyclohexene | C10H18O | 1190 | 154.25 | 0.86 ± 0.09 b | 0.53 ± 0.08 c | 2.06 ± 0.18 a | |
| α-terpineol | (s)-(-)-p-menth-1-en-8-o | C10H18O | 1196 | 154.25 | 3.58 ± 0.26 b | 4.53 ± 0.32 a | 3.21 ± 0.32 b | |
| trans-p-menth-1-en-3-ol | trans-3-methyl-6-(1-methylethyl)-2-cyclohexen-1-ol | C10H18O | 1213 | 154.25 | 1.18 ± 0.13 a | 1.33 ± 0.12 a | 0.82 ± 0.07 b | |
| (-)L-α-terpineol | .alpha.,.alpha.-4-trimethyl-,(S)-3-Cyclohexene-1-methanol | C10H18O | 1223 | 154.25 | 0.23 ± 0.03 b | 0.26 ± 0.06 b | 0.62 ± 0.11 a | |
| cis-carveol | (1R,5R)-2-Methyl-5-isopropenyl-2-cyclohexene-1-ol | C10H16O | 1227 | 152.23 | 0.36 ± 0.03 a | 0.36 ± 0.05 a | 0.00 | |
| carveol | 2-methyl-5-(1-methylethenyl)-2-cyclohexenol | C10H16O | 1235 | 152.23 | 1.58 ± 0.05 b | 1.42 ± 0.04 b | 2.15 ± 0.17 a | |
| L(-)-perillaldehyde | (S)-4-(Prop-1-en-2-yl)-cyclohex-1-enecarbaldehyde | C10H14O | 1272 | 150.22 | 1.17 ± 0.16 a | 1.24 ± 0.19 a | 0.58 ± 0.24 b | |
| Total OMT | 45.55 | 38.85 | 50.56 | |||||
| ST | α-copaene | Tricyclo[4.4.0.02,7]dec-3-ene, 1,3-dimethyl-8-(1-methylethyl)-, stereoisomer | C15H24 | 1378 | 204.35 | 0.67 ± 0.11 a | 0.45 ± 0.06 b | 0.12 ± 0.04 c |
| β-caryophyllene | 2-Methylene-6,10,10-trimethyl bicyclo[7.2.0]undec-5-ene | C15H24 | 1420 | 204.35 | 1.15 ± 0.19 a | 1.19 ± 0.24 a | 1.02 ± 0.08 a | |
| trans-caryophyllene | 2-Methylene-6,10,10-trimethyl bicyclo[7.2.0]undec-5-ene | C15H24 | 1432 | 204.35 | 2.16 ± 0.22 b | 3.24 ± 0.36 a | 1.67 ± 0.05 c | |
| α-caryophyllene | (E,E,E)-2,6,6,9-Tetramethyl-1,4,8-cycloundecatriene | C15H24 | 1459 | 204.35 | 0.38 ± 0.04 a | 0.35 ± 0.09 a | 0.00 | |
| cadina-3,9-diene | 1-Isopropyl-4,7-dimethyl-1,2,4a,5,8,8a-hexahydronaphthalene-, [1S-(1α,4aβ,8aα)]- | C15H24 | 1519 | 204.35 | 0.50 ± 0.08 b | 0.46 ± 0.04 b | 0.85 ± 0.07 a | |
| Total ST | 4.86 | 5.69 | 3.66 | |||||
| OST | spathulenol | (1aR,4aβ,7aα,7bβ)-Decahydro-1,1,7-trimethyl-4-methylene-1H-cycloprop[e]azulen-7α-ol | C15H24O | 1577 | 220.35 | 0.18 ± 0.05 a | 0.16 ± 0.03 ab | 0.10 ± 0.03 b |
| caryophyllene oxide | (1r,4r,6r,10s)-9-methylene-4,12,12-trimethyl-5-oxatricyclo[8.2.0.0(4,6)]dodecane | C15H24O | 1590 | 220.35 | 0.28 ± 0.05 a | 0.35 ± 0.06 a | 0.29 ± 0.12 a | |
| eudesm-7(11)-en-4-ol | (1S,4aS,8aS)-Decahydro-1,4a-dimethyl-7-(1-methylethylidene)-1-naphthalenol | C15H26O | 1683 | 222.36 | 0.68 ± 0.10 a | 0.81 ± 0.07 a | 0.37 ± 0.05 b | |
| Total OST | 1.14 | 1.32 | 0.76 | |||||
| AC | o-cymene | 1-methyl-2-(1-methylethyl)benzene | C10H14 | 1020 | 134.22 | 1.89 ± 0.17 a | 1.88 ± 0.22 a | 0.90 ± 0.19 b |
| p-Cymen-8-ol | 1-Methyl-4-(1-hydroxy-1-methylethyl)benzene | C10H14O | 1187 | 150.22 | 2.13 ± 0.33 b | 3.21 ± 0.14 a | 1.64 ± 0.20 c | |
| isoanethole | 1-methoxy-4-prop-2-enylbenzene | C10H12O | 1201 | 148.20 | 0.00 | 0.50 ± 0.10 b | 0.80 ± 0.13 a | |
| cis-anethol | trans-1-methoxy-4-(1-propenyl)benzene | C10H12O | 1257 | 148.20 | 0.12 ± 0.05 b | 0.21 ± 0.03 a | 0.00 | |
| 1-methylnaphthalene | Methyl-1-naphthalene | C11H10 | 1311 | 142.20 | 0.11 ± 0.04 a | 0.09 ± 0.03 a | 0.00 | |
| eugenol | 4-allyl-2-methoxy-pheno | C10H12O2 | 1384 | 164.20 | 1.84 ± 0.32 ab | 2.10 ± 0.10 a | 1.62 ± 0.25 b | |
| butylated hydroxytoluene | (Z)-retro-αretro-Methyl-αButylated hydroxytoluene Manufacturer | C15H24O | 1508 | 220.35 | 1.45 ± 0.07 a | 1.36 ± 0.08 a | 1.52± 0.10 a | |
| Thujopsenal | cyclopropa[d]naphthalene-2-carboxaldehyde, 1,1a,4,4a,5,6,7,8-octahydro-4a,8,8-trimethyl- | C16H24O2 | 1717 | 248.36 | 0.40 ± 0.04 a | 0.39 ± 0.02 a | 0.45 ± 0.05 a | |
| Total AC | 7.94 | 9.74 | 6.93 | |||||
| OD | artemisia ketone | 3,3,6-trimethylhepta-1,5-dien-4-one | C10H16O | 1068 | 152.23 | 4.56 ± 0.30 b | 6.26 ± 0.37 a | 2.65 ± 0.43 c |
| (.+/−.)-Artemisia alcohol | 3,3,6-Trimethyl-1,5-heptadien-4-ol | C10H18O | 1090 | 154.24 | 5.02 ± 0.33 ab | 5.51 ± 0.37 a | 4.61 ± 0.02 b | |
| Total OD | 9.58 | 11.77 | 7.26 | |||||
| Total | 75.81 | 74.77 | 75.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Zhou, X.; Dai, L. Time-Dependent Modulation of Phenolics, Polysaccharides, and Bioactivities in Artemisia argyi Leaves During Solid-State Fermentation with Rhizopus oryzae. Foods 2025, 14, 4262. https://doi.org/10.3390/foods14244262
Chen H, Zhou X, Dai L. Time-Dependent Modulation of Phenolics, Polysaccharides, and Bioactivities in Artemisia argyi Leaves During Solid-State Fermentation with Rhizopus oryzae. Foods. 2025; 14(24):4262. https://doi.org/10.3390/foods14244262
Chicago/Turabian StyleChen, Hongzhi, Xiuren Zhou, and Lei Dai. 2025. "Time-Dependent Modulation of Phenolics, Polysaccharides, and Bioactivities in Artemisia argyi Leaves During Solid-State Fermentation with Rhizopus oryzae" Foods 14, no. 24: 4262. https://doi.org/10.3390/foods14244262
APA StyleChen, H., Zhou, X., & Dai, L. (2025). Time-Dependent Modulation of Phenolics, Polysaccharides, and Bioactivities in Artemisia argyi Leaves During Solid-State Fermentation with Rhizopus oryzae. Foods, 14(24), 4262. https://doi.org/10.3390/foods14244262

