Enhanced Rehydration of Micellar Casein Powder: Effects of Electrodialysis Treatment
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Electrodialysis Treatment
2.3. Particle Size and Zeta Potential Measurements
2.4. Preparation of MC Powder
2.5. Composition and Structure of MC Powder
2.5.1. Calcium and Phosphorus Content
2.5.2. Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE)
2.5.3. Moisture Distribution
2.5.4. Fluorescence Spectroscopy
2.6. Dispersibility and Stability Measurements
2.7. Solubility Measurements
2.8. Statistical Analysis
3. Results and Discussion
3.1. Composition and Structure of MC Powder
3.1.1. Calcium and Phosphorus Content
3.1.2. SDS-PAGE
3.1.3. Moisture Distribution
3.1.4. Fluorescence Spectroscopy

3.2. Solubility of MC Powder
3.2.1. Solubility Measurements
3.2.2. Dispersibility Measurement
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Kruif, C.G.; Holt, C. Casein Micelle Structure, Functions and Interactions. In Advanced Dairy Chemistry—1 Proteins; Fox, P.F., McSweeney, P.L.H., Eds.; Springer: Boston, MA, USA, 2003; pp. 233–276. ISBN 978-0-306-47271-8. [Google Scholar]
- Fox, P.F.; Brodkorb, A. The Casein Micelle: Historical Aspects, Current Concepts and Significance. Int. Dairy J. 2008, 7, 677–684. [Google Scholar] [CrossRef]
- Dalgleish, D.G.; Corredig, M. The Structure of the Casein Micelle of Milk and Its Changes During Processing. Annu. Rev. Food Sci. Technol. 2012, 3, 449–467. [Google Scholar] [CrossRef]
- Dalgleish, D.G. On the Structural Models of Bovine Casein Micelles—Review and Possible Improvements. Soft Matter 2011, 7, 2265–2272. [Google Scholar] [CrossRef]
- Hammam, A.R.A.; Martínez-Monteagudo, S.I.; Metzger, L.E. Progress in Micellar Casein Concentrate: Production and Applications. Compr. Rev. Food Sci. Food Saf. 2021, 20, 4426–4449. [Google Scholar] [CrossRef]
- Schokker, E.P.; Church, J.S.; Mata, J.P.; Gilbert, E.P.; Puvanenthiran, A.; Udabage, P. Reconstitution Properties of Micellar Casein Powder: Effects of Composition and Storage. Int. Dairy J. 2011, 21, 877–886. [Google Scholar] [CrossRef]
- Martin, A.H.; Douglas Goff, H.; Smith, A.; Dalgleish, D.G. Immobilization of Casein Micelles for Probing Their Structure and Interactions with Polysaccharides Using Scanning Electron Microscopy (SEM). Food Hydrocoll. 2006, 20, 817–824. [Google Scholar] [CrossRef]
- Udabage, P.; Puvanenthiran, A.; Yoo, J.A.; Versteeg, C.; Augustin, M.A. Modified Water Solubility of Milk Protein Concentrate Powders through the Application of Static High Pressure Treatment. J. Dairy Res. 2012, 79, 76–83. [Google Scholar] [CrossRef]
- Holt, C. The Milk Salts and Their Interaction with Casein. In Advanced Dairy Chemistry Volume 3; Fox, P.F., Ed.; Springer: Boston, MA, USA, 1997; pp. 233–256. ISBN 978-1-4757-4411-8. [Google Scholar]
- Wu, S.; Li, G.; Xue, Y.; Ashokkumar, M.; Zhao, H.; Liu, D.; Zhou, P.; Sun, Y.; Hemar, Y. Solubilisation of Micellar Casein Powders by High-Power Ultrasound. Ultrason. Sonochem. 2020, 67, 105131. [Google Scholar] [CrossRef]
- Deshwal, G.K.; Fenelon, M.; Gómez-Mascaraque, L.G.; Huppertz, T. Influence of Citrate- and Phosphate-Based Calcium Sequestering Salts on the Disruption of Casein Micelles. Food Hydrocoll. 2024, 153, 109970. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, Z.; Li, H.; Li, S.; Mo, B.; Lv, J. Functionality of Milk Protein Concentrate 80 with Emulsifying Salts and Its Applications in Analogue Cheeses. Int. J. Food Prop. 2017, 20, 2594–2607. [Google Scholar] [CrossRef]
- Tran, M.; Voronin, G.L.; Roberts, R.F.; Coupland, J.N.; Ziegler, G.R.; Harte, F.M. The Effect of High-Pressure Jet Processing on Cocoa Stability in Chocolate Milk. J. Dairy Sci. 2021, 104, 11432–11441. [Google Scholar] [CrossRef]
- Strathmann, H. Electrodialysis, a Mature Technology with a Multitude of New Applications. Desalination 2010, 264, 268–288. [Google Scholar] [CrossRef]
- Gurreri, L.; Tamburini, A.; Cipollina, A.; Micale, G. Electrodialysis Applications in Wastewater Treatment for Environmental Protection and Resources Recovery: A Systematic Review on Progress and Perspectives. Membranes 2020, 10, 146. [Google Scholar] [CrossRef]
- Huang, C.; Xu, T.; Zhang, Y.; Xue, Y.; Chen, G. Application of Electrodialysis to the Production of Organic Acids: State-of-the-Art and Recent Developments. J. Membr. Sci. 2007, 288, 1–12. [Google Scholar] [CrossRef]
- Ilhan, F.; Kabuk, H.A.; Kurt, U.; Avsar, Y.; Gonullu, M.T. Recovery of Mixed Acid and Base from Wastewater with Bipolar Membrane Electrodialysis—A Case Study. Desalination Water Treat. 2016, 57, 5165–5173. [Google Scholar] [CrossRef]
- Post, J.W.; Veerman, J.; Hamelers, H.V.M.; Euverink, G.J.W.; Metz, S.J.; Nymeijer, K.; Buisman, C.J.N. Salinity-Gradient Power: Evaluation of Pressure-Retarded Osmosis and Reverse Electrodialysis. J. Membr. Sci. 2007, 288, 218–230. [Google Scholar] [CrossRef]
- Dumpler, J.; Kieferle, I.; Wohlschläger, H.; Kulozik, U. Milk Ultrafiltrate Analysis by Ion Chromatography and Calcium Activity for SMUF Preparation for Different Scientific Purposes and Prediction of Its Supersaturation. Int. Dairy J. 2017, 68, 60–69. [Google Scholar] [CrossRef]
- Zhang, W.; Zhao, L.; Wang, J.; Hu, Y.; Wang, Y.; Wang, P.; Su, J.; Zhang, H.; Wang, R.; Ren, F.; et al. Effect of Trisodium Citrate on the Gelation Properties of Casein/Gellan Gum Double Gels Formed at Different Temperature. Carbohydr. Polym. Technol. Appl. 2025, 10, 100768. [Google Scholar] [CrossRef]
- Mizuno, R.; Lucey, J.A. Effects of Emulsifying Salts on the Turbidity and Calcium-Phosphate–Protein Interactions in Casein Micelles. J. Dairy Sci. 2005, 88, 3070–3078. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Zhao, M.; Zhao, H.; Sun, W.; Cui, C. Effects of Oxidative Modification on Gel Properties of Isolated Porcine Myofibrillar Protein by Peroxyl Radicals. Meat Sci. 2014, 96, 1432–1439. [Google Scholar] [CrossRef]
- Chen, L.; Tian, Y.; Tong, Q.; Zhang, Z.; Jin, Z. Effect of Pullulan on the Water Distribution, Microstructure and Textural Properties of Rice Starch Gels during Cold Storage. Food Chem. 2017, 214, 702–709. [Google Scholar] [CrossRef]
- Li, C.; Huang, X.; Peng, Q.; Shan, Y.; Xue, F. Physicochemical Properties of Peanut Protein Isolate–Glucomannan Conjugates Prepared by Ultrasonic Treatment. Ultrason. Sonochem. 2014, 21, 1722–1727. [Google Scholar] [CrossRef]
- Wu, L.; Jiang, Y.; Chen, C.; Zhang, W.; Guo, J.; Liu, S.; Wang, P.; Ren, F.; Xu, B.; Hu, Y. Efficient Stabilizing Effect of Low-Dose Zein/Xanthan Gum Nanoparticles at the Oil-Water Interface. Int. J. Biol. Macromol. 2025, 294, 139512. [Google Scholar] [CrossRef]
- Ji, J.; Cronin, K.; Fitzpatrick, J.; Fenelon, M.; Miao, S. Effects of Fluid Bed Agglomeration on the Structure Modification and Reconstitution Behaviour of Milk Protein Isolate Powders. J. Food Eng. 2015, 167, 175–182. [Google Scholar] [CrossRef]
- Ahmadi, E.; Markoska, T.; Huppertz, T.; Vasiljevic, T. Structural Properties of Casein Micelles with Adjusted Micellar Calcium Phosphate Content. Foods 2024, 13, 322. [Google Scholar] [CrossRef]
- Tercinier, L.; Ye, A.; Anema, S.G.; Singh, A.; Singh, H. Interactions of Casein Micelles with Calcium Phosphate Particles. J. Agric. Food Chem. 2014, 62, 5983–5992. [Google Scholar] [CrossRef] [PubMed]
- Bazinet, L. Electrodialytic Phenomena and Their Applications in the Dairy Industry: A Review. Crit. Rev. Food Sci. Nutr. 2005, 45, 307–326. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, J.; Luo, L.; Chen, Z.; Mao, L.; Wang, F.; Zhang, Y.; Zhang, F.; Chen, C.; Zhang, W. New Insights into the Acid Gelation of Camel Milk Casein. J. Agric. Food Res. 2025, 19, 101746. [Google Scholar] [CrossRef]
- Ahmadi, E. Impact of Micellar Calcium Phosphate Concentration on the Casein Micelle Structure, Stability and Functionality. Ph.D. Thesis, Victoria University, Sydney, Australia, 2024. [Google Scholar]
- Schmidt, S.J. Water Mobility in Foods. In Water Activity in Foods; Barbosa-Cánovas, G.V., Fontana, A.J., Schmidt, S.J., Labuza, T.P., Eds.; Wiley: Hoboken, NJ, USA, 2020; pp. 61–122. ISBN 978-1-118-76831-0. [Google Scholar]
- Vasiljevic, T.; Toebes, A.; Huppertz, T. Moisture Sorption by Dairy Powders Studied by Low-Field NMR. Int. Dairy J. 2021, 119, 105062. [Google Scholar] [CrossRef]
- Chen, F.; Chen, C.; Zhao, D.; Zhang, S.; Ma, G.; Su, Z.; Li, X. On-Line Monitoring of the Sol-Gel Transition Temperature of Thermosensitive Chitosan/β-Glycerophosphate Hydrogels by Low Field NMR. Carbohydr. Polym. 2020, 238, 116196. [Google Scholar] [CrossRef]
- Nimaming, N.; Sadeghpour, A.; Murray, B.S.; Sarkar, A. Pickering Oil-in-Water Emulsions Stabilized by Hybrid Plant Protein-Flavonoid Conjugate Particles. Food Hydrocoll. 2024, 154, 110146. [Google Scholar] [CrossRef]
- Damodaran, S. Protein Stabilization of Emulsions and Foams. J. Food Sci. 2006, 70, R54–R66. [Google Scholar] [CrossRef]
- Zecca, E. Investigating the Role of Surface Hydrophobicity in Protein Aggregation. Ph.D. Thesis, University of Connecticut, Storrs, CT, USA, 2017; p. 1488. [Google Scholar]
- Chen, H.; Zhong, Q. Processes Improving the Dispersibility of Spray-Dried Zein Nanoparticles Using Sodium Caseinate. Food Hydrocoll. 2014, 35, 358–366. [Google Scholar] [CrossRef]
- O’Mahony, J.A.; Fox, P.F. Milk Proteins: Introduction and Historical Aspects. In Advanced Dairy Chemistry; McSweeney, P.L.H., Fox, P.F., Eds.; Springer: Boston, MA, USA, 2013; pp. 43–85. ISBN 978-1-4614-4713-9. [Google Scholar]
- Hu, Y.; Qiu, C.; Jin, Z.; Qin, Y.; Zhan, C.; Xu, X.; Wang, J. Pickering Emulsions with Enhanced Storage Stabilities by Using Hybrid β-Cyclodextrin/Short Linear Glucan Nanoparticles as Stabilizers. Carbohydr. Polym. 2020, 229, 115418. [Google Scholar] [CrossRef]







| Time (min) | Ca (g/kg) | p (g/kg) | Ca/P |
|---|---|---|---|
| 0 | 25.55 ± 0.08 | 14.83 ± 0.04 | 1.72 |
| 10 | 25.35 ± 0.08 | 15.10 ± 0.05 | 1.68 |
| 30 | 24.18 ± 0.05 | 14.20 ± 0.05 | 1.70 |
| 60 | 21.93 ± 0.09 | 13.04 ± 0.05 | 1.68 |
| 90 | 17.47 ± 0.05 | 11.88 ± 0.05 | 1.47 |
| Time | Bound Water (A21) | Immobile Water (A22) | Free Water (A23) |
|---|---|---|---|
| 0 min | 96.70 ± 0.04% | 3.24 ± 0.00% | 0.06 ± 0.04% |
| 10 min | 95.89 ± 0.13% | 3.95 ± 0.00% | 0.16 ± 0.05% |
| 30 min | 95.09 ± 0.03% | 4.81 ± 0.00% | 0.10 ± 0.03% |
| 60 min | 94.54 ± 0.06% | 5.34 ± 0.00% | 0.12 ± 0.09% |
| 90 min | 96.35 ± 0.03% | 3.52 ± 0.00% | 0.13 ± 0.02% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Chen, Y.; Fan, X.; Yu, S.; Song, Y.; Wang, S.; Zhang, W.; Wang, P.; Wang, S.; Zhu, Y.; et al. Enhanced Rehydration of Micellar Casein Powder: Effects of Electrodialysis Treatment. Foods 2025, 14, 4171. https://doi.org/10.3390/foods14244171
Wang K, Chen Y, Fan X, Yu S, Song Y, Wang S, Zhang W, Wang P, Wang S, Zhu Y, et al. Enhanced Rehydration of Micellar Casein Powder: Effects of Electrodialysis Treatment. Foods. 2025; 14(24):4171. https://doi.org/10.3390/foods14244171
Chicago/Turabian StyleWang, Kerong, Yun Chen, Xuhui Fan, Shengbo Yu, Yang Song, Shuang Wang, Weibo Zhang, Pengjie Wang, Shumin Wang, Yanli Zhu, and et al. 2025. "Enhanced Rehydration of Micellar Casein Powder: Effects of Electrodialysis Treatment" Foods 14, no. 24: 4171. https://doi.org/10.3390/foods14244171
APA StyleWang, K., Chen, Y., Fan, X., Yu, S., Song, Y., Wang, S., Zhang, W., Wang, P., Wang, S., Zhu, Y., Chen, C., & Mu, Z. (2025). Enhanced Rehydration of Micellar Casein Powder: Effects of Electrodialysis Treatment. Foods, 14(24), 4171. https://doi.org/10.3390/foods14244171

