Statistical and Multivariate Evaluation of Olive Oil Degradation During Long-Term Storage
Abstract
1. Introduction
2. Materials and Methods
2.1. EVOO Samples
2.2. Physical-Chemical Analyses
2.3. Statistical and Chemometric Analysis
3. Results
3.1. Physical-Chemical Analysis
3.2. Pattern Recognition Using HCA and PCA
3.3. Statistical Comparison of EVOO Quality Parameters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jimenez-Lopez, C.; Carpena, M.; Lourenço-Lopes, C.; Gallardo-Gomez, M.; Lorenzo, J.M.; Barba, F.J.; Prieto, M.A.; Simal-Gandara, J. Bioactive Compounds and Quality of Extra Virgin Olive Oil. Foods 2020, 9, 1014. [Google Scholar] [CrossRef]
- COI. Trade Standard Applying To Olive Oils And Olive Pomace Oils. In International Olive Council—COI/T.15/Rev. 13; International Olive Council: Madrid, Spain, 2019; Volume 3. [Google Scholar]
- Miho, H.; Moral, J.; Barranco, D.; Ledesma-Escobar, C.A.; Priego-Capote, F.; Díez, C.M. Influence of Genetic and Interannual Factors on the Phenolic Profiles of Virgin Olive Oils. Food Chem. 2021, 342, 128357. [Google Scholar] [CrossRef]
- Spiegel, M.; Kapusta, K.; Kołodziejczyk, W.; Saloni, J.; Żbikowska, B.; Hill, G.A.; Sroka, Z. Antioxidant Activity of Selected Phenolic Acids–Ferric Reducing Antioxidant Power Assay and QSAR Analysis of the Structural Features. Molecules 2020, 25, 3088. [Google Scholar] [CrossRef]
- Bortoluzzi, L.; Casal, S.; Cruz, R.; Peres, A.M.; Baptista, P.; Rodrigues, N. Influence of Interannual Climate Conditions on the Composition of Olive Oil from Centenarian Olive Trees. Agronomy 2023, 13, 2884. [Google Scholar] [CrossRef]
- García-Inza, G.P.; Castro, D.N.; Hall, A.J.; Rousseaux, M.C. Responses to temperature of fruit dry weight, oil concentration, and oil fatty acid composition in olive (Olea europaea L. var. ‘Arauco’). Eur. J. Agron. 2014, 54, 107. [Google Scholar] [CrossRef]
- Firestone, D. Olive Oil. In Bailey’s Industrial Oil and Fat Products; Wiley: Weinheim, Germany, 2005. [Google Scholar]
- Almeida, E.S.; Carmona, P.O.; Mendonça, S.; Dias, A.C.B.; Castellón, E.R.; Cecilia, J.A.; da Silva Júnior, I.J.; Monteiro, S. The Role of Carotenes in Preventing Oxidation during Palm Oil Processing: Adsorption Studies. Ind. Crop. Prod. 2024, 216, 118691. [Google Scholar] [CrossRef]
- Abeyrathne, E.D.N.S.; Nam, K.; Ahn, D.U. Analytical Methods for Lipid Oxidation and Antioxidant Capacity in Food Systems. Antioxidants 2021, 10, 1587. [Google Scholar] [CrossRef]
- Villeneuve, P.; Bourlieu-Lacanal, C.; Durand, E.; Lecomte, J.; McClements, D.J.; Decker, E.A. Lipid Oxidation in Emulsions and Bulk Oils: A Review of the Importance of Micelles. Crit. Rev. Food Sci. Nutr. 2023, 63, 4687–4727. [Google Scholar] [CrossRef]
- Kacalova, T.; Jarosova, A. How Storage Time Affects Sensory, Chemical, and Physical Characteristics of Flavored Olive Oil. Food Sci. Nutr. 2023, 11, 6648–6659. [Google Scholar] [CrossRef]
- Milligan, G.W.; Cooper, M.C. A Study of Standardization of Variables in Cluster Analysis. J. Classif. 1988, 5, 181–204. [Google Scholar]
- Gere, A. Recommendations for Validating Hierarchical Clustering in Consumer Sensory Projects. Curr. Res. Food Sci. 2023, 6, 100522. [Google Scholar] [CrossRef]
- Avramidou, E.V.; Doulis, A.G.; Petrakis, P. V Chemometrical and Molecular Methods in Olive Oil Analysis: A Review. J. Food Process. Preserv. 2018, 42, e13770. [Google Scholar] [CrossRef]
- Beebe, K.R.; Pell, R.J.; Seasholtz, M.B. Chemometrics: A Practical Guide; Wiley: Weinheim, Germany, 1998. [Google Scholar]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological Statistics Software Package for Education and Data Analysis, version 4.03. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Python Software Foundation. Python: Version 3.13; Python Software Foundation: Wilmington, DE, USA, 2025. [Google Scholar]
- Sivaranjani, S.; Jayasree, J.T.; Mukta, S.S.P.S.R. A Comprehensive Review of the Mechanism, Changes, and Effect of Deep Fat Frying on the Characteristics of Restructured Foods. Food Chem. 2024, 450, 139393. [Google Scholar] [CrossRef]
- Schaich, K.M. In Bailey’s Industrial Oil And Fat Products; Shahidi, F., Ed.; Lipid Oxidation: Theoretical Aspects. John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Schaich, K.M. Lipid Oxidation: New Perspectives on an Old Reaction. In Bailey’s Industrial Oil and Fat Products; Wiley: Weinheim, Germany, 2020; pp. 1–72. [Google Scholar]
- Yalcin, S.; Schreiner, M. Stabilities of Tocopherols and Phenolic Compounds in Virgin Olive Oil during Thermal Oxidation. J. Food Sci. Technol. 2018, 55, 244–251. [Google Scholar] [CrossRef]
- Zhang, N.; Li, Y.; Wen, S.; Sun, Y.; Chen, J.; Gao, Y.; Sagymbek, A.; Yu, X. Analytical Methods for Determining the Peroxide Value of Edible Oils: A Mini-Review. Food Chem. 2021, 358, 129834. [Google Scholar] [CrossRef]
- Prevc, T.; Šegatin, N.; Poklar Ulrih, N.; Cigić, B. DPPH Assay of Vegetable Oils and Model Antioxidants in Protic and Aprotic Solvents. Talanta 2013, 109, 13–19. [Google Scholar] [CrossRef]
- Derardja, A.E.; Pretzler, M.; Barkat, M.; Dassamiour, S.; Romple, A. Enzymatic browning in fresh extra virgin olive oil (EVOO): Detection of polyphenol oxidase, assessing moisture impact, and revealing the anti-browning capacity of EVOO. Food Chem. 2025, 472, 142582. [Google Scholar] [CrossRef]
- Chen, X.-W.; Li, X.-X.; Hu, Q.-H.; Sun, S.-D.; Wan, Z.-L. Multifactorial Revealing the Association between Components and Lipid Oxidation of Edible Vegetable Oils in Bulk and Emulsion Systems. LWT 2023, 183, 114909. [Google Scholar] [CrossRef]
- Dauber, C.; Carreras, T.; González, L.; Gámbaro, A.; Valdés, A.; Ibañez, E.; Vieitez, I. Characterization and Incorporation of Extracts from Olive Leaves Obtained through Maceration and Supercritical Extraction in Canola Oil: Oxidative Stability Evaluation. LWT 2022, 160, 113274. [Google Scholar] [CrossRef]
- Amft, J.; Meissner, P.M.; Steffen-Heins, A.; Hasler, M.; Stöckmann, H.; Meynier, A.; Birault, L.; Velasco, J.; Vermoesen, A.; Perez-Portabella, I.; et al. Interlaboratory Study on Lipid Oxidation during Accelerated Storage Trials with Rapeseed and Sunflower Oil Analyzed by Conjugated Dienes as Primary Oxidation Products. Eur. J. Lipid Sci. Technol. 2023, 125, 2300067. [Google Scholar] [CrossRef]
- Bendini, A.; Cerretani, L.; Carrasco-Pancorbo, A.; Gómez-Caravaca, A.M.; Segura-Carretero, A.; Fernández-Gutiérrez, A.; Lercker, G. Phenolic Molecules in Virgin Olive Oils: A Survey of Their Sensory Properties, Health Effects, Antioxidant Activity and Analytical Methods. An Overview of the Last Decade Alessandra. Molecules 2007, 12, 1679–1719. [Google Scholar] [CrossRef] [PubMed]
- Mancebo-Campos, V.; Salvador, M.D.; Fregapane, G. Modelling Virgin Olive Oil Potential Shelf-Life from Antioxidants and Lipid Oxidation Progress. Antioxidants 2022, 11, 539. [Google Scholar] [CrossRef] [PubMed]
- Martín-Torres, S.; Tello-Jiménez, J.A.; López-Blanco, R.; González-Casado, A.; Cuadros-Rodríguez, L. Multivariate Stability Monitoring and Shelf Life Models of Deterioration of Vegetable Oils under Real Time Ageing Conditions—Extra Virgin Olive Oil as a Main Case of Study. Food Packag. Shelf Life 2023, 37, 101070. [Google Scholar] [CrossRef]
- Caipo, L.; Sandoval, A.; Sepúlveda, B.; Fuentes, E.; Valenzuela, R.; Metherel, A.H.; Romero, N. Effect of Storage Conditions on the Quality of Arbequina Extra Virgin Olive Oil and the Impact on the Composition of Flavor-Related Compounds (Phenols and Volatiles). Foods 2021, 10, 2161. [Google Scholar] [CrossRef]
- Chabni, A.; Bañares, C.; Torres, C.F. Study of the Oxidative Stability via Oxitest and Rancimat of Phenolic-Rich Olive Oils Obtained by a Sequential Process of Dehydration, Expeller and Supercritical CO2 Extractions. Front. Nutr. 2024, 11, 1494091. [Google Scholar] [CrossRef]
- Lobo-Prieto, A.; Tena, N.; Aparicio-Ruiz, R.; Morales, M.T.; García-González, D.L. Gradual Changes of the Protective Effect of Phenols in Virgin Olive Oils Subjected to Storage and Controlled Stress by Mesh Cell Incubation. J. Agric Food Chem. 2023, 71, 15732–15744. [Google Scholar] [CrossRef]
- Vendrell Calatayud, M.; Li, X.; Brizzolara, S.; Tonutti, P.; Wang, S.C. Storage Effect on Olive Oil Phenols: Cultivar-Specific Responses. Front. Nutr. 2024, 11, 1382551. [Google Scholar] [CrossRef]




| Sample | Origin | Bottled | Expiration Date |
|---|---|---|---|
| 1 | Argentina | 02/03/2022 | 02/03/2024 |
| 2 | Argentina | 07/01/2021 | 07/01/2023 |
| 3 | Tunisia | 01/14/2022 | 01/13/2024 |
| 4 | Portugal | 01/18/2022 | 01/18/2024 |
| 5 | Portugal | 01/21/2022 | 07/31/2023 |
| 6 | Portugal | 01/06/2022 | 01/06/2024 |
| 7 | Chile | 03/26/2022 | 03/26/2024 |
| 8 | Spain | 02/01/2022 | 08/01/2025 |
| 9 | Spain | 01/24/2022 | 09/24/2023 |
| 10 | Spain | 07/31/2021 | 07/31/2023 |
| 11 | Tunisia | 01/25/2022 | 01/24/2024 |
| 12 | Tunisia | 02/07/2022 | 02/06/2024 |
| 13 | Portugal | 05/24/2022 | 01/31/2024 |
| 14 | Chile | 03/11/2022 | 03/11/2025 |
| Explained Variance (%) | Accumulated Variance (%) | |
|---|---|---|
| PC 1 | 43.95 | 43.95 |
| PC 2 | 17.21 | 61.16 |
| PC 3 | 14.41 | 75.57 |
| PC 4 | 11.16 | 86.72 |
| PC 5 | 8.63 | 95.35 |
| PC 6 | 4.65 | 100.00 |
| Parameters | Number of Pairs of Samples Significantly Different from Each Other | |
|---|---|---|
| Immediately After Opening | After 3 Years Opening | |
| AA | 77 | 72 |
| p-AV | 53 | 36 |
| PV | 53 | 40 |
| AV | 54 | 73 |
| K232 | 63 | 62 |
| K268 | 48 | 31 |
| Samples | AA(%) | AI (%) | p-AnV | PV (meqO2∙kg−1) | K 232 | K 268 |
|---|---|---|---|---|---|---|
| 1 | 40.0 ± 2.0 | 0.62 ± 0.10 | 6.0 ± 0.3 | 7.9 ± 1.3 | 2.00 ± 0.06 | 0.12 ± 0.02 |
| 1′ | 20.0 ± 1.9 | 0.69 ± 0.01 | 4.6 ± 0.5 | 3.7 ± 0.3 | 2.9 ± 0.1 | 0.25 ± 0.03 |
| 2 | 39.7 ± 1.9 | 0.69 ± 0.05 | 7.2 ± 0.9 | 10.5 ± 0.8 | 2.02 ± 0.02 | 0.20 ± 0.02 |
| 2′ | 20.3 ± 2.3 | 0.80 ± 0.02 | 4.6 ± 0.3 | 2.1 ± 0.5 | 2.49 ± 0.03 | 0.26 ± 0.02 |
| 3 | 85.8 ± 1.0 | 0.50 ± 0.01 | 8.3 ± 0.6 | 8.4 ± 0.2 | 2.17 ± 0.12 | 0.20 ± 0.02 |
| 3′ | 35.0 ± 3.7 | 1.11 ± 0.01 | 16.0 ± 0.8 | 1.2 ± 0.2 | 2.6 ± 0.1 | 0.34 ± 0.04 |
| 4 | 53.6 ± 1.1 | 0.59 ± 0.06 | 7.6 ± 0.8 | 4.4 ± 0.8 | 1.9 ± 0.1 | 0.26 ± 0.05 |
| 4′ | 50.2 ± 1.9 | 1.37 ± 0.04 | 6.8 ± 0.6 | 1.6 ± 0.1 | 2.00 ± 0.09 | 0.27 ± 0.03 |
| 5 | 63.7 ± 1.3 | 0.41 ± 0.02 | 4.0 ± 0.3 | 8.4 ± 0.2 | 2.16 ± 0.05 | 0.30 ± 0.04 |
| 5′ | 58.4 ± 1.8 | 0.64 ± 0.01 | 8.0 ± 1.0 | 1.7 ± 0.2 | 2.30 ± 0.13 | 0.26 ± 0.01 |
| 6 | 62.4 ± 1.6 | 0.66 ± 0.01 | 4.7 ± 0.4 | 8.0 ± 0.3 | 2.13 ± 0.08 | 0.27 ± 0.03 |
| 6′ | 45.8 ± 2.9 | 1.38 ± 0.03 | 8.8 ± 0.6 | 1.7 ± 0.2 | 1.9 ± 0.1 | 0.22 ± 0.02 |
| 7 | 72.1 ± 0.8 | 0.33 ± 0.01 | 3.4 ± 0.5 | 3.3 ± 0.5 | 1.68 ± 0.03 | 0.15 ± 0.03 |
| 7′ | 49.4 ± 3.1 | 0.62 ± 0.01 | 5.7 ± 0.4 | 2.4 ± 0.1 | 2.35 ± 0.02 | 0.20 ± 0.01 |
| 8 | 80.8 ± 1.9 | 0.54 ± 0.04 | 7.2 ± 0.4 | 4.9 ± 0.5 | 1.63 ± 0.02 | 0.03 ± 0.01 |
| 8′ | 67.8 ± 6.9 | 1.14 ± 0.06 | 8.1 ± 0.8 | 2.1 ± 0.2 | 2.25 ± 0.06 | 0.26 ± 0.03 |
| 9 | 60.8 ± 1.6 | 0.55 ± 0.02 | 3.0 ± 1.0 | 5.9 ± 0.5 | 1.83 ± 0.05 | 0.10 ± 0.04 |
| 9′ | 20.6 ± 3.1 | 0.95 ± 0.01 | 5.4 ± 1.0 | 2.8 ± 0.4 | 2.90 ± 0.04 | 0.26 ± 0.02 |
| 10 | 72.0 ± 2.1 | 0.37 ± 0.07 | 6.5 ± 0.7 | 4.3 ± 0.8 | 1.95 ± 0.03 | 0.21 ± 0.03 |
| 10′ | 37.1 ± 1.8 | 0.67 ± 0.01 | 10.5 ± 0.9 | 3.5 ± 0.2 | 2.93 ± 0.05 | 0.32 ± 0.03 |
| 11 | 76.6 ± 2.0 | 0.53 ± 0.01 | 7.9 ± 0.6 | 6.0 ± 0.7 | 2.12 ± 0.01 | 0.19 ± 0.01 |
| 11′ | 82.2 ± 0.4 | 1.09 ± 0.02 | 6.4 ± 0.8 | 1.7 ± 0.2 | 3.51 ± 0.01 | 0.23 ± 0.03 |
| 12 | 75.2 ± 5.6 | 0.57 ± 0.02 | 3.9 ± 1.0 | 5.9 ± 0.6 | 2.28 ± 0.05 | 0.21 ± 0.05 |
| 12′ | 33.7 ± 0.4 | 1.11 ± 0.01 | 6.7 ± 0.7 | 10.4 ± 0.3 | 2.14 ± 0.10 | 0.54 ± 0.01 |
| 13 | 56.4 ± 2.4 | 0.30 ± 0.03 | 4.5 ± 0.9 | 4.3 ± 0.8 | 1.83 ± 0.04 | 0.17 ± 0.02 |
| 13′ | 54.8 ± 1.4 | 0.58 ± 0.02 | 6.7 ± 1.2 | 2.3 ± 0.4 | 2.60 ± 0.08 | 0.22 ± 0.02 |
| 14 | 47.6 ± 1.0 | 0.49 ± 0.01 | 5.2 ± 0.6 | 2.4 ± 0.7 | 1.70 ± 0.04 | 0.10 ± 0.04 |
| 14′ | 51.7 ± 1.5 | 0.70 ± 0.02 | 4.3 ± 1.0 | 1.9 ± 0.5 | 2.13 ± 0.21 | 0.15 ± 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almeida, E.S.; Silva, D.F.; de Oliveira, N.S.; Fernandes, J.S.; Oliveira, B.C.S.; Monteiro, S.; Almeida, F.V.; Braga, J.W.B.; Dias, A.C.B. Statistical and Multivariate Evaluation of Olive Oil Degradation During Long-Term Storage. Foods 2025, 14, 4065. https://doi.org/10.3390/foods14234065
Almeida ES, Silva DF, de Oliveira NS, Fernandes JS, Oliveira BCS, Monteiro S, Almeida FV, Braga JWB, Dias ACB. Statistical and Multivariate Evaluation of Olive Oil Degradation During Long-Term Storage. Foods. 2025; 14(23):4065. https://doi.org/10.3390/foods14234065
Chicago/Turabian StyleAlmeida, Erislene S., Danyel F. Silva, Natalia S. de Oliveira, Juliana S. Fernandes, Bruna C. S. Oliveira, Simone Monteiro, Fernanda V. Almeida, Jez W. B. Braga, and Ana C. B. Dias. 2025. "Statistical and Multivariate Evaluation of Olive Oil Degradation During Long-Term Storage" Foods 14, no. 23: 4065. https://doi.org/10.3390/foods14234065
APA StyleAlmeida, E. S., Silva, D. F., de Oliveira, N. S., Fernandes, J. S., Oliveira, B. C. S., Monteiro, S., Almeida, F. V., Braga, J. W. B., & Dias, A. C. B. (2025). Statistical and Multivariate Evaluation of Olive Oil Degradation During Long-Term Storage. Foods, 14(23), 4065. https://doi.org/10.3390/foods14234065

