Interfacial Engineering of High-Performance Pickering Emulsion–Gelatin Composite Films for Active Packaging
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Acetylated Chitin Nanocrystals (a-ChNCs)
2.3. a-ChNC-Stabilized Oregano Essential Oil (OEO) Pickering Emulsions (AOPE)
2.4. Preparation of Gelatin/AOPE Composite Films (GOPX%)
2.5. Characterization of GOPX%
2.6. Mechanical Properties
2.7. UV–Visible Transmittance
2.8. Water Vapour Permeability (WVP) and Oxygen Permeability (OP)
2.9. Swelling Rate (SR) and Water Solubility (WS)
2.10. Determination of Total Phenol Content (TPC)
2.11. Antioxidant Activity
2.12. Antibacterial Activity
2.13. Release Characteristics of GOPX%
2.14. Applications in Fish Preservation
2.14.1. Determination of pH and Total Volatile Basic Nitrogen (TVB-N)
2.14.2. Determination of Total Viable Count (TVC)
2.14.3. Determination of Thiobarbituric Acid-Reactive Substances (TBARS)
2.14.4. Texture Profile Analysis (TPA)
2.14.5. Myofibril Protein Degradation
2.15. Statistical Analysis
3. Results and Discussion
3.1. Characterization of a-ChNCs and AOPE
3.2. Characterization of GOPX%
3.3. Mechanical Properties
3.4. Barrier Properties
3.5. Antibacterial and Antioxidant Properties
3.6. Swelling Rate (SR) and Water Solubility (WS)
3.7. Release Characteristics of Composite Films
3.8. Application of Films in Grass Carp Preservation
3.8.1. pH Analysis
3.8.2. TVC Analysis
3.8.3. TVB-N Analysis
3.8.4. TBARS Analysis
3.8.5. Protein Oxidation Analysis
3.8.6. Texture Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AOPE | Oregano essential oil Pickering emulsion |
| GOPX% | Gelatin composite film |
| OEO | Oregano essential oil |
| ChNCs | Chitin nanocrystals |
| PDI | Polydispersity index |
| WVP | Water vapor permeability |
| OP | Oxygen permeability |
| SR | Swelling rate |
| WS | Water solubility |
| TPC | Total phenolic content |
| TVC | Total viable count |
| MDA | Malondialdehyde |
| TVB-N | Total volatile basic nitrogen |
| TBARS | Thiobarbituric acid-reactive substances |
| ROS | Reactive oxygen species |
| MP | Myofibrillar proteins |
| -SH | Sulfhydryl groups |
References
- Ermis, H.; Collins, C.; Kumar Saha, S.; Murray, P. Beyond Visibility: Microorganisms for tackling plastic and microplastic problems for cleaner future. Chem. Eng. J. 2024, 497, 154585. [Google Scholar] [CrossRef]
- Zhou, F.-Z.; Yu, X.-H.; Luo, D.-H.; Yang, X.-Q.; Yin, S.-W. Pickering water in oil emulsions prepared from biocompatible gliadin/ethyl cellulose complex particles. Food Hydrocoll. 2023, 134, 108050. [Google Scholar] [CrossRef]
- Dong, H.; Xu, Y.; Zhang, Q.; Li, H.; Chen, L. Activity and safety evaluation of natural preservatives. Food Res. Int. 2024, 190, 114548. [Google Scholar] [CrossRef]
- Atarés, L.; Chiralt, A. Essential oils as additives in biodegradable films and coatings for active food packaging. Trends Food Sci. Technol. 2016, 48, 51–62. [Google Scholar] [CrossRef]
- Onyeaka, P.O.; Dai, H.; Feng, X.; Wang, H.; Fu, Y.; Yu, Y.; Zhu, H.; Chen, H.; Ma, L.; Zhang, Y. Effect of different types of nanocellulose on the structure and properties of gelatin films. Food Hydrocoll. 2023, 144, 108972. [Google Scholar] [CrossRef]
- Ding, F.; Long, S.; Huang, X.; Shi, J.; Povey, M.; Zou, X. Emerging Pickering emulsion films for bio-based food packaging applications. Food Packag. Shelf Life 2024, 42, 101242. [Google Scholar] [CrossRef]
- Liu, Z.; Ma, W.; Hao, Y.; Bian, J.; Zhang, Y.; Wang, H.; Li, L.; Wang, Y. Development of antimicrobial and antioxidant film by incorporation of modified protein self-assembled nanoparticles into Pickering emulsion. Food Packag. Shelf Life 2024, 41, 101236. [Google Scholar] [CrossRef]
- Wei, L.; Li, J.; Qin, X.; Wang, Q.; Zhong, J. Enhancing the antioxidant properties and compatibility of protein/sodium alginate film by incorporating Zanthoxylum bungeanum essential oil Pickering emulsion. Food Chem. 2024, 445, 138771. [Google Scholar] [CrossRef]
- Khalil, R.K.S.; Sharaby, M.R.; Abdelrahim, D.S.; ElLeithy, A.E. A novel multifunctional carboxymethyl cellulose packaging film with encapsulated lemon oil for quality enhancement of cherry tomato and baby spinach leaves. Food Packag. Shelf Life 2024, 42, 101267. [Google Scholar] [CrossRef]
- Chen, G.; Liu, B. Cellulose sulfate based film with slow-release antimicrobial properties prepared by incorporation of mustard essential oil and β-cyclodextrin. Food Hydrocoll. 2016, 55, 100–107. [Google Scholar] [CrossRef]
- Zhang, N.; You, J.; Yan, X.; Ji, H.; Ji, W.; Liu, Z.; Zhang, M.; Liu, P.; Yue, P.; Ullah, Z.; et al. Okra Flower Polysaccharide–Pea Protein Conjugates Stabilized Pickering Emulsion Enhances Apigenin Stability, Bioaccessibility, and Intestinal Absorption In Vitro. Foods 2025, 14, 1923. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, S.; Hu, Y.; Fu, Q.; Cheng, X.; Li, Y.; Wu, P.; Li, H.; Ai, S. Pectin-based film activated with carboxylated cellulose nanocrystals-stabilized oregano essential oil Pickering emulsion. Food Hydrocoll. 2024, 151, 109781. [Google Scholar] [CrossRef]
- Xu, W.; Ning, Y.; Wu, S.; Wu, G.; Sun, H.; Li, C.; Jia, Y.; Luo, D.; Shah, B.R. Heat stability promoted Pickering emulsions stabilized by glidian/sodium caseinate nanoparticles and konjac glucomannan. LWT Food Sci. Technol. 2023, 182, 114847. [Google Scholar] [CrossRef]
- Ni, X.; Xiao, W.; Liu, X.; Peng, S.; Wu, Y.; Gao, Z. Enhancement of konjac glucomannan/carrageenan blend films by incorporating cellulose nanocrystals/tannic acid stabilized Litsea cubeba essential oil Pickering emulsion and their application to pork preservation. Int. J. Biol. Macromol. 2025, 307, 142198. [Google Scholar] [CrossRef]
- Liu, M.; Cui, Z.; Xu, D.; Liu, C.; Zhou, C. Chitin nanocrystal-reinforced chitin/collagen composite hydrogels for annulus fibrosus repair after discectomy. Mater. Today Bio 2025, 31, 101537. [Google Scholar] [CrossRef] [PubMed]
- Ngasotter, S.; Xavier, K.A.M.; Sagarnaik, C.; Sasikala, R.; Mohan, C.O.; Jaganath, B.; Ninan, G. Evaluating the reinforcing potential of steam-exploded chitin nanocrystals in chitosan-based biodegradable nanocomposite films for food packaging applications. Carbohydr. Polym 2025, 348, 122841. [Google Scholar] [CrossRef]
- Zhao, Q.; Fan, L.; Li, J.; Zhong, S. Pickering emulsions stabilized by biopolymer-based nanoparticles or hybrid particles for the development of food packaging films: A review. Food Hydrocoll. 2024, 146, 109185. [Google Scholar] [CrossRef]
- Yu, S.; Peng, G.; Wu, D. Effect of surface acetylation of chitin nanocrystals on the preparation and viscoelasticity of sunflower seed oil-in-water Pickering emulsions. Int. J. Biol. Macromol. 2024, 254, 127883. [Google Scholar] [CrossRef]
- Ling, Z.; Zhang, X.; Yang, G.; Takabe, K.; Xu, F. Nanocrystals of cellulose allomorphs have different adsorption of cellulase and subsequent degradation. Ind. Crops Prod. 2018, 112, 541–549. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, M.; Chen, K.; Wang, M. Nano-emulsion prepared by high pressure homogenization method as a good carrier for Sichuan pepper essential oil: Preparation, stability, and bioactivity. LWT-Food Sci. Technol. 2022, 154, 112779. [Google Scholar] [CrossRef]
- Almasi, H.; Azizi, S.; Amjadi, S. Development and characterization of pectin films activated by nanoemulsion and Pickering emulsion stabilized marjoram (Origanum majorana L.) essential oil. Food Hydrocoll. 2020, 99, 105338. [Google Scholar] [CrossRef]
- ASTM D882-22; Standard Test Method for Tensile Properties of Thin Plastic Sheeting. ASTM International: West Conshohocken, PA, USA, 2022.
- Wang, K.; Ma, S.; Zhang, J.; Yan, Y.; He, B.; Li, Y.; Xie, M.; Lian, S.; Wang, J.; Xu, C. High-performance water vapor barriers via amorphous alumina-polycrystalline zinc oxide hybrids with a self-wrinkling morphology. Surf. Coat. Technol. 2022, 447, 128834. [Google Scholar] [CrossRef]
- Ruan, C.-Q.; Zhao, M.; Zhang, W.; Zeng, K. Carboxymethyl cellulose based edible nanocomposite coating with tunable functionalities and the application on the preservation of postharvest Satsuma mandarin fruit. Food Packag. Shelf Life 2024, 46, 101364. [Google Scholar] [CrossRef]
- Sucheta; Rai, S.K.; Chaturvedi, K.; Yadav, S.K. Evaluation of structural integrity and functionality of commercial pectin based edible films incorporated with corn flour, beetroot, orange peel, muesli and rice flour. Food Hydrocoll. 2019, 91, 127–135. [Google Scholar] [CrossRef]
- Bocker, R.; Silva, E.K. Sustainable pectin-based film for carrying phenolic compounds and essential oil from Citrus sinensis peel waste. Food Biosci. 2024, 61, 104526. [Google Scholar] [CrossRef]
- Li, M.; Luo, X.; Zhu, R.; Zhong, K.; Ran, W.; Wu, Y.; Gao, H. Development and characterization of active bilayer film incorporated with dihydromyricetin encapsulated in hydroxypropyl-β-cyclodextrin for food packaging application. Food Hydrocoll. 2022, 131, 107834. [Google Scholar] [CrossRef]
- Yu, Z.; Jiang, Q.; Yu, D.; Dong, J.; Xu, Y.; Xia, W. Physical, antioxidant, and preservation properties of chitosan film doped with proanthocyanidins-loaded nanoparticles. Food Hydrocoll. 2022, 130, 107686. [Google Scholar] [CrossRef]
- Liang, Q.; Cao, P.; Lu, H.; Du, Y.; Kang, L.; Ma, H.; Ren, X. Ultrasonic engineering of zein-curcumin nanoparticles/sodium alginate composite films for active food packaging applications. Int. J. Biol. Macromol. 2025, 315, 144268. [Google Scholar] [CrossRef] [PubMed]
- Oun, A.A.; Shin, G.H.; Kim, J.T. Multifunctional poly(vinyl alcohol) films using cellulose nanocrystals/oregano and cellulose nanocrystals/cinnamon Pickering emulsions: Effect of oil type and concentration. Int. J. Biol. Macromol. 2022, 194, 736–745. [Google Scholar] [CrossRef]
- Bao, Y.; Yang, X.; Li, J.; Li, Z.; Cheng, Z.; Wang, M.; Li, Z.; Si, X.; Li, B. Structural homeostasis and controlled release for anthocyanin in oral film via sulfated polysaccharides complexation. Int. J. Biol. Macromol. 2024, 256, 128473. [Google Scholar] [CrossRef]
- Sun, X.; Guo, X.; Ji, M.; Wu, J.; Zhu, W.; Wang, J.; Cheng, C.; Chen, L.; Zhang, Q. Preservative effects of fish gelatin coating enriched with CUR/βCD emulsion on grass carp (Ctenopharyngodon idellus) fillets during storage at 4 °C. Food Chem. 2019, 272, 643–652. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yu, H.; Bu, Q.; Wang, Z.; Jiang, N.; Chen, J.; Sun, R.; Liu, Q.; Xu, J.; Fu, J. Supramolecular interaction-enhanced green active packaging films: Design and performance of Ca2+-crosslinked carboxymethyl chitosan composite films. Int. J. Biol. Macromol. 2025, 309, 143002. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Liang, L.; Xia, W.; Regenstein, J.M.; Zhou, P. Biochemical and physical changes of grass carp (Ctenopharyngodon idella) fillets stored at −3 and 0°C. Food Chem. 2013, 140, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Zhang, L.; Qiu, Z.; Yu, Z.; Shi, W.; Wang, X. Comparison of oxidation extent, structural characteristics, and oxidation sites of myofibrillar protein affected by hydroxyl radicals and lipid-oxidizing system. Food Chem. 2022, 396, 133710. [Google Scholar] [CrossRef]
- Wang, S.; Lin, S.; Li, S.; Qian, X.; Li, C.; Sun, N. Decoding the textural deterioration of ready-to-eat shrimp: Insights from dynamic myofibrillar protein changes during thermal sterilization. Food Res. Int. 2025, 202, 115745. [Google Scholar] [CrossRef]
- Lin, J.; Hong, H.; Zhang, L.; Zhang, C.; Luo, Y. Antioxidant and cryoprotective effects of hydrolysate from gill protein of bighead carp (Hypophthalmichthys nobilis) in preventing denaturation of frozen surimi. Food Chem. 2019, 298, 124868. [Google Scholar] [CrossRef]
- Zhu, C.; Zeng, X.; Chen, L.; Liu, M.; Zheng, M.; Liu, J.; Liu, H. Changes in quality characteristics based on protein oxidation and microbial action of ultra-high pressure-treated grass carp (Ctenopharyngodon idella) fillets during magnetic field storage. Food Chem. 2024, 434, 137464. [Google Scholar] [CrossRef]
- Jiang, W.; He, Y.; Xiong, S.; Liu, Y.; Yin, T.; Hu, Y.; You, J. Effect of Mild Ozone Oxidation on Structural Changes of Silver Carp (Hypophthalmichthys molitrix) Myosin. Food Bioprocess Technol. 2017, 10, 370–378. [Google Scholar] [CrossRef]
- Yu, F.; Fei, X.; He, Y.; Li, H. Poly(lactic acid)-based composite film reinforced with acetylated cellulose nanocrystals and ZnO nanoparticles for active food packaging. Int. J. Biol. Macromol. 2021, 186, 770–779. [Google Scholar] [CrossRef]
- Zhang, W.; Jiang, H.; Rhim, J.-W.; Cao, J.; Jiang, W. Effective strategies of sustained release and retention enhancement of essential oils in active food packaging films/coatings. Food Chem. 2022, 367, 130671. [Google Scholar] [CrossRef]
- Wang, B.; Li, J.; Zhang, J.; Li, H.; Chen, P.; Gu, Q.; Wang, Z. Thermo-mechanical properties of the composite made of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) and acetylated chitin nanocrystals. Carbohydr. Polym. 2013, 95, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wei, Y.; He, Y.; Qian, Y.; Wang, C.; Chen, G. Large-Scale Preparation of Carboxylated Cellulose Nanocrystals and Their Application for Stabilizing Pickering Emulsions. ACS Omega 2023, 8, 15114–15123. [Google Scholar] [CrossRef]
- Alimi, B.A.; Pathania, S.; Wilson, J.; Duffy, B.; Celayeta, J.M.F. Sustainable enzymatic extraction of high-purity chitin from button mushroom (Agaricus bisporus) off-production waste: Influence of alkaline pre-treatment on physicochemical properties. Future Foods 2025, 11, 100657. [Google Scholar] [CrossRef]
- Zhou, B.; Yang, P.; Hou, Q.; Cui, B.; Liang, H.; Li, B.; Shi, X. The mechanism of glutenin-tannic acid nanoparticles in improving the storage instability of glutenin emulsion: Based on interactions, nanoparticle property, and interface property. Colloids Surf. A 2025, 721, 137219. [Google Scholar] [CrossRef]
- Abuibaid, A.; AlSenaani, A.; Hamed, F.; Kittiphattanabawon, P.; Maqsood, S. Microstructural, rheological, gel-forming and interfacial properties of camel skin gelatin. Food Struct. 2020, 26, 100156. [Google Scholar] [CrossRef]
- Núñez-Flores, R.; Giménez, B.; Fernández-Martín, F.; López-Caballero, M.E.; Montero, M.P.; Gómez-Guillén, M.C. Role of lignosulphonate in properties of fish gelatin films. Food Hydrocoll. 2012, 27, 60–71. [Google Scholar] [CrossRef]
- Roy, S.; Rhim, J.-W. Preparation of antimicrobial and antioxidant gelatin/curcumin composite films for active food packaging application. Colloids Surf. B 2020, 188, 110761. [Google Scholar] [CrossRef]
- Li, J.; Cai, D.; Chen, L.; Zhu, L.; Liu, S.; Cai, J.; Wang, G.; Wang, B.; Ding, W. Utilization of Pickering emulsion stabilized by chitin nanofibers for improving water and oxygen resistance of gelatin films. Int. J. Biol. Macromol. 2024, 271, 132713. [Google Scholar] [CrossRef] [PubMed]
- Uribarrena, M.; Peñalba, M.; Guerrero, P.; de la Caba, K. Valorization of chitin using a natural deep eutectic solvent for the development of active gelatin films. Food Packag. Shelf Life 2024, 46, 101376. [Google Scholar] [CrossRef]
- Xie, Y.; Ding, K.; Xu, S.; Xu, H.; Ge, S.; Chang, X.; Li, H.; Wang, Z.; Luo, Z.; Shan, Y.; et al. Citrus oil gland and cuticular wax inspired multifunctional gelatin film of OSA-starch nanoparticles-based nanoemulsions for preserving perishable fruit. Carbohydr. Polym. 2024, 342, 122352. [Google Scholar] [CrossRef]
- Li, H.; Yang, M.; Chen, Y.; Liu, Y.; Wang, X.; Lei, W.; Yang, H.; Gao, Z. Biodegradable multifunctional hydroxypropyl-β-cyclodextrin@EGCG/lignin/ gelatin composite films based on incorporating lignin and loaded EGCG for fruit preservation. Food Hydrocoll. 2025, 164, 111206. [Google Scholar] [CrossRef]
- Liu, R.; Wang, J.; Zhang, Y.; Xia, Z.; Lu, Y.; Hu, H. Biodegradable and gelatin-based composite films incorporating Lactoferrin-Nisin active nanoparticles: Preparation, characterization, antibacterial applications of cheese and chicken. Appl. Food Res. 2025, 5, 100883. [Google Scholar] [CrossRef]
- Rodrigues, C.; de Mello, J.M.M.; Dalcanton, F.; Macuvele, D.L.P.; Padoin, N.; Fiori, M.A.; Soares, C.; Riella, H.G. Mechanical, Thermal and Antimicrobial Properties of Chitosan-Based-Nanocomposite with Potential Applications for Food Packaging. J. Polym. Environ. 2020, 28, 1216–1236. [Google Scholar] [CrossRef]
- Fernández-Marín, R.; Labidi, J.; Andrés, M.Á.; Fernandes, S.C.M. Using α-chitin nanocrystals to improve the final properties of poly (vinyl alcohol) films with Origanum vulgare essential oil. Polym. Degrad. Stab. 2020, 179, 109227. [Google Scholar] [CrossRef]
- Pasanako, P.; Somsaard, W.; Yotnarong, O.; Laksee, S.; Tangthong, T.; Suwanmanee, U. pH-sensitive film based on gelatin and anthocyanin extracts incorporated with gamma irradiation for real-time monitoring of beef freshness. Mater. Today Commun. 2025, 46, 112314. [Google Scholar] [CrossRef]
- Farokhi, N.M.; Milani, J.M.; Amiri, Z.R. Fabrication of nanocomposite gelatin-based film by the pickering emulsion containing nanoparticles of chitin. J. Food Eng. 2024, 367, 111885. [Google Scholar] [CrossRef]
- Sun, D.-x.; Huang, C.-h.; Zhang, Z.-x.; Lan, Z.-y.; Zha, Y.-f.; Wang, A.-y.; Guo, L.; Wang, Y. Synchronously enhancing fracture toughness and mechanical strength of polyester blend composites via constructing dual-network structures of one-dimensional carbon nanofillers. Polymer 2025, 324, 128242. [Google Scholar] [CrossRef]
- Xu, J.; Liu, T.; Zhang, Y.; Zhang, Y.; Wu, K.; Lei, C.; Fu, Q.; Fu, J. Dragonfly wing-inspired architecture makes a stiff yet tough healable material. Matter 2021, 4, 2474–2489. [Google Scholar] [CrossRef]
- Chen, J.; Jing, J.; Wang, C.; Chen, T.; Xu, J.; Yao, B.; Fu, J. Ultra-strong, ultra-tough, and transparent polymer composite with excellent dynamic and biodegradable properties enabled by bicontinuous structure. Polymer 2023, 283, 126220. [Google Scholar] [CrossRef]
- Lee, J.Y.; Garcia, C.V.; Shin, G.H.; Kim, J.T. Antibacterial and antioxidant properties of hydroxypropyl methylcellulose-based active composite films incorporating oregano essential oil nanoemulsions. LWT Food Sci. Technol. 2019, 106, 164–171. [Google Scholar] [CrossRef]
- Rabani, I.; Lee, S.-H.; Kim, H.-S.; Yoo, J.; Hussain, S.; Maqbool, T.; Seo, Y.-S. Engineering-safer-by design ZnO nanoparticles incorporated cellulose nanofiber hybrid for high UV protection and low photocatalytic activity with mechanism. J. Environ. Chem. Eng. 2021, 9, 105845. [Google Scholar] [CrossRef]
- Rhim, J.-W. Effect of clay contents on mechanical and water vapor barrier properties of agar-based nanocomposite films. Carbohydr. Polym. 2011, 86, 691–699. [Google Scholar] [CrossRef]
- Zhu, Z.; Liang, J.; Zhou, C.; Huang, K.; Fan, X.; Zhou, M.; Xu, B.; Huang, C.; Li, H.; Ma, H.; et al. Synergistic enhancement of gelatin-chitosan films with vanillin Schiff base and ZnO for effective strawberry preservation. Food Control 2026, 180, 111647. [Google Scholar] [CrossRef]
- Guo, L.; Li, C. Preparation of organically modified montmorillonite reinforced gelatin/cassava starch film and its application in broccoli florets preservation. Food Packag. Shelf Life 2025, 52, 101604. [Google Scholar] [CrossRef]
- Mao, S.; Ren, Y.; Wei, C.; Chen, S.; Ye, X.; Jinhu, T. Development of novel EGCG/Fe loaded sodium alginate-based packaging films with antibacterial and slow-release properties. Food Hydrocoll. 2023, 145, 109032. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, M.; Bu, Q.; Jiang, N.; Kan, J.; Sun, R.; Liu, Q.; Wang, C. Quaternary chitosan/polyvinyl alcohol/thymol electrospun nanofiber films integrated with deodorization, antibacterial and antioxidant properties for aquatic products packaging. Food Res. Int. 2025, 208, 116270. [Google Scholar] [CrossRef]
- Lin, J.; Cui, M.; Zhang, X.; Alharbi, M.; Alshammari, A.; Lin, Y.; Yang, D.-P.; Lin, H. Fabricating active Egg Albumin/Sodium Alginate/Sodium Lignosulfonate Nanoparticles film with significantly improved multifunctional characteristics for food packing. Int. J. Biol. Macromol. 2024, 273, 133110. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, K.; Wang, Y.; Zhao, P.; Cheng, M.; Lu, J.; Xi, X.; Wang, X.; Han, X.; Wang, J. Development and characterization of a novel konjac glucomannan/shellac bilayer composite film with effective UV resistance, antioxidant and antibacterial activity. Ind. Crops Prod. 2025, 225, 120497. [Google Scholar] [CrossRef]
- Roy, S.; Rhim, J.-W. Gelatin/agar-based functional film integrated with Pickering emulsion of clove essential oil stabilized with nanocellulose for active packaging applications. Colloids Surf. A 2021, 627, 127220. [Google Scholar] [CrossRef]
- Tian, Y.; Lei, Q.; Yang, F.; Xie, J.; Chen, C. Development of cinnamon essential oil-loaded PBAT/thermoplastic starch active packaging films with different release behavior and antimicrobial activity. Int. J. Biol. Macromol. 2024, 263, 130048. [Google Scholar] [CrossRef] [PubMed]
- Lian, H.; Shi, J.; Zhang, X.; Peng, Y. Effect of the added polysaccharide on the release of thyme essential oil and structure properties of chitosan based film. Food Packag. Shelf Life 2020, 23, 100467. [Google Scholar] [CrossRef]
- Dakhili, S.; Yekta, R.; Zade, S.V.; Mohammadi, A.; Hosseini, S.M.; Shojaee-Aliabadi, S. Release kinetic modeling of Satureja Khuzestanica Jamzad essential oil from fish gelatin/succinic anhydride starch nanocomposite films: The effects of temperature and nanocellulose concentration. Food Chem. 2024, 439, 138152. [Google Scholar] [CrossRef]
- Abedi-Firoozjah, R.; Azimi-Salim, S.; Afrah, A.; Moradiyan, M.H.; Assadpour, E.; Sarlak, Z.; Azizi-Lalabadi, M.; Dehnad, D.; Jafari, S.M. Comparison of the pH- and NH3-sensitivity of chitosan/polyvinyl alcohol smart films containing anthocyanins or betacyanins for monitoring fish freshness. Carbohydr. Polym. Technol. Appl. 2025, 9, 100639. [Google Scholar] [CrossRef]
- Bu, Q.; Yue, Z.; Wang, Z.; Jiang, N.; Luo, H.; Sun, R.; Liu, Q.; Xu, J.; Wang, C.; Fu, J. Sustainable bio-based active packaging films: Enhancing chitosan with gallic acid-loaded nanoparticles. Mater. Chem. Front. 2025, 9, 1053–1065. [Google Scholar] [CrossRef]
- GB 2733-2015; National Food Safety Standard—Fresh and Frozen Animal Aquatic Products. Standards Press of China: Beijing, China, 2015.
- Wang, Y.; Ni, X.; Wen, M.; Lou, S.; Xiao, W.; Gao, Z. Preparation of antioxidant konjac glucomannan-based films enriched with Ocimum gratissimum L. essential oil Pickering emulsion and its effect on walnuts preservation. Colloids Surf. A 2023, 665, 131220. [Google Scholar] [CrossRef]
- Kanatt, S.R. Development of active/intelligent food packaging film containing Amaranthus leaf extract for shelf life extension of chicken/fish during chilled storage. Food Packag. Shelf Life 2020, 24, 100506. [Google Scholar] [CrossRef]
- Sun, Q.; Chen, Q.; Xia, X.; Kong, B.; Diao, X. Effects of ultrasound-assisted freezing at different power levels on the structure and thermal stability of common carp (Cyprinus carpio) proteins. Ultrason. Sonochem. 2019, 54, 311–320. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, L.; Liu, Y.; Li, J. Effects of antioxidants, proteins, and their combination on emulsion oxidation. Crit. Rev. Food Sci. Nutr. 2022, 62, 8137–8160. [Google Scholar] [CrossRef]
- Chen, G.; Xu, C.; Wang, Z.; Han, Z.; Xia, Q.; Wei, S.; Sun, Q.; Liu, S. Effect of MDA-mediated oxidation on the protein structure and digestive properties of golden pomfret. Food Chem. 2024, 443, 138563. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, N.; Yu, X.; Wang, Y.; Sun, Q.; Dong, X. Cryoprotective effect of trehalose on myofibrillar protein of snakehead fish (Channa argus) during freeze–thaw cycles. Food Chem. 2025, 474, 143213. [Google Scholar] [CrossRef]
- Lei, G.; Zhang, P.; Xu, L.; Wang, L.; He, X.; Chen, J. Understanding the Protective Effect of Liquid Nitrogen Freezing on Crayfish Quality During Transportation and Storage. Foods 2025, 14, 2078. [Google Scholar] [CrossRef]
- Cao, Y.; True, A.D.; Chen, J.; Xiong, Y.L. Dual Role (Anti- and Pro-oxidant) of Gallic Acid in Mediating Myofibrillar Protein Gelation and Gel in Vitro Digestion. J. Agric. Food Chem. 2016, 64, 3054–3061. [Google Scholar] [CrossRef]
- Wu, J.; Song, G.; Huang, R.; Yan, Y.; Li, Q.; Guo, X.; Shi, X.; Tian, Y.; Wang, J.; Wang, S. Fish gelatin films incorporated with cinnamaldehyde and its sulfobutyl ether-β-cyclodextrin inclusion complex and their application in fish preservation. Food Chem. 2023, 418, 135871. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Guan, B.; Zhang, Y.; Hu, J.; Sun, T.; Dong, T.; Yun, X. Development of high barrier poly(l-actic acid)/chitosan/graphene oxide flexible films for meat packaging by layer-by-layer. Food Biosci. 2024, 60, 104304. [Google Scholar] [CrossRef]
- Riahi, Z.; Hong, S.J.; Rhim, J.-W.; Shin, G.H.; Kim, J.T. High-performance multifunctional gelatin-based films engineered with metal-organic frameworks for active food packaging applications. Food Hydrocoll. 2023, 144, 108984. [Google Scholar] [CrossRef]
- Wu, H.; Li, T.; Peng, L.; Wang, J.; Lei, Y.; Li, S.; Li, Q.; Yuan, X.; Zhou, M.; Zhang, Z. Development and characterization of antioxidant composite films based on starch and gelatin incorporating resveratrol fabricated by extrusion compression moulding. Food Hydrocoll. 2023, 139, 108509. [Google Scholar] [CrossRef]
- Khin, M.N.; Easdani, M.; Aziz, T.; Shami, A.; Alharbi, N.K.; Al-Asmari, F.; Lin, L. Schiff’s base crosslinked gelatin-dialdehyde cellulose film with gallic acid for improved water resistance and antimicrobial properties. Food Hydrocoll. 2025, 166, 111331. [Google Scholar] [CrossRef]









Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kan, J.; Li, M.; Liu, M.; Jiang, N.; Yue, Z.; Yu, H.; Sun, R.; Liu, Q.; Pan, S.; Wang, C. Interfacial Engineering of High-Performance Pickering Emulsion–Gelatin Composite Films for Active Packaging. Foods 2025, 14, 3978. https://doi.org/10.3390/foods14223978
Kan J, Li M, Liu M, Jiang N, Yue Z, Yu H, Sun R, Liu Q, Pan S, Wang C. Interfacial Engineering of High-Performance Pickering Emulsion–Gelatin Composite Films for Active Packaging. Foods. 2025; 14(22):3978. https://doi.org/10.3390/foods14223978
Chicago/Turabian StyleKan, Jia, Mingzhu Li, Menghuan Liu, Ning Jiang, Zefeng Yue, Hao Yu, Rongxue Sun, Qianyuan Liu, Saikun Pan, and Cheng Wang. 2025. "Interfacial Engineering of High-Performance Pickering Emulsion–Gelatin Composite Films for Active Packaging" Foods 14, no. 22: 3978. https://doi.org/10.3390/foods14223978
APA StyleKan, J., Li, M., Liu, M., Jiang, N., Yue, Z., Yu, H., Sun, R., Liu, Q., Pan, S., & Wang, C. (2025). Interfacial Engineering of High-Performance Pickering Emulsion–Gelatin Composite Films for Active Packaging. Foods, 14(22), 3978. https://doi.org/10.3390/foods14223978

