The Combination of Enzymes in the Enhancement of Fibre-Enriched Product Quality: Effects of the Interactions of Dietary Fibre, Gluten Proteins, and Starch Granules on Dough Rheological Properties and Bubble Dynamics
Abstract
1. Introduction
2. Effects of Combined Enzymes on the Interactions of Dietary Fibre, Gluten Proteins, and Starch Granules
2.1. Xylanase Effects
2.2. Cellulase Effects
2.3. Glucose Oxidase Effects
2.4. Amylase Effects
2.5. Combined Enzyme Effects
3. Effects of Combined Enzymes on the Rheological Properties and Bubble Dynamics of Fibre-Enriched Dough
3.1. Large-Strain Rheological Properties of Dough
3.2. Small-Strain Rheological Properties of Dough
3.3. Bubble Dynamics in the Dough
4. Effects of Combined Enzymes on the Overall Quality of Fibre-Enriched Products
4.1. Physical and Chemical Properties
4.2. Sensory Evaluation
4.3. Nutritional Characterization
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| DF | dietary fibre |
| SDF | soluble dietary fibre |
| IDF | insoluble dietary fibre |
| WBDF | wheat bran dietary fibre |
| -SH | sulfur-hydrogen bonds |
| FAA | free amino acids |
| AX | arabinoxylan |
| WUAX | water-unextractable arabinoxylan |
| WEAX | water-extractable arabinoxylan |
| VF | void fraction |
| GOx | glucose oxidase |
| BSD | bubble size distribution |
| S-S | disulfide bonds |
| GMP | gluten macromolecule polymer |
| WRC | water retention capacity |
| NMMO | N-methyl morpholine N-oxide |
| ILs | ionic liquids |
| GMC | glucose-methanol-choline oxidoreductase |
| FAD | flavin adenine dinucleotide |
| MAA | maltogenic amylase |
| XYL | xylanase |
| DDT | development time |
| STA | dough stability |
| MTI | mixing tolerance index |
| HMW | high molecular weight |
| SHI | strain hardening index |
| H2O2 | hydrogen peroxide |
| IN | inulin |
| PD | polydextrose |
| RS | reducing sugar |
| GI | glycemic index |
| AXOS | arabinoxylan-oligosaccharides |
| FA | ferulic acid |
References
- Li, M.; Li, L.; Sun, B.; Ma, S. Interaction of wheat bran dietary fiber-gluten protein affects dough product: A critical review. Int. J. Biol. Macromol. 2024, 255, 128199. [Google Scholar] [CrossRef]
- Liu, Q.; Wu, S.; Sun, X. Improvement in the rheological properties and gas phase of dough, and overall quality of dietary fibre enriched products: Enzymatic modification on the composition and structure of dietary fibre. Food Hydrocoll. 2025, 160, 110742. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, S.; Ai, L. Physical barrier effects of dietary fibers on lowering starch digestibility. Curr. Opin. Food Sci. 2022, 48, 100940. [Google Scholar] [CrossRef]
- Torres, J.D.; Dueik, V.; Contardo, I.; Carré, D.; Bouchon, P. Relationship between microstructure formation and in vitro starch digestibility in baked gluten-starch matrices. Food Chem. X 2024, 22, 101347. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, L.; Jiang, P.; Zhu, Y.; Zhang, W.; Li, R.; Tan, B. The effect of wheat bran dietary fibre and raw wheat bran on the flour and dough properties: A comparative study. LWT-Food Sci. Technol. 2023, 173, 114304. [Google Scholar] [CrossRef]
- Sun, X.; Wu, S.; Koksel, F.; Xie, M.; Fang, Y. Effects of ingredient and processing conditions on the rheological properties of whole wheat flour dough during breadmaking—A review. Food Hydrocoll. 2023, 135, 108123. [Google Scholar] [CrossRef]
- Sun, X.Y.; Bu, Z.W.; Wu, S.M. Effects of ingredients on the gas phase of whole wheat flour dough. J. Food Eng. 2025, 395, 112536. [Google Scholar] [CrossRef]
- Pourmohammadi, K.; Abedi, E. Hydrolytic enzymes and their directly and indirectly effects on gluten and dough properties: An extensive review. Food Sci. Nutr. 2021, 9, 3988–4006. [Google Scholar] [CrossRef]
- Leys, S.; De Bondt, Y.; Bosmans, G.; Courtin, C.M. Assessing the impact of xylanase activity on the water distribution in wheat dough: A 1H NMR study. Food Chem. 2020, 325, 126828. [Google Scholar] [CrossRef]
- Zhao, X.; Hou, C.; Tian, M.; Zhou, Y.; Yang, R.; Wang, X.; Gu, Z.; Wang, P. Effect of water-extractable arabinoxylan with different molecular weight on the heat-induced aggregation behavior of gluten. Food Hydrocoll. 2020, 99, 105318. [Google Scholar] [CrossRef]
- Sun, X.; Bu, Z.; Wu, S. Effects of wheat cultivar, bran concentration and endoxylanase on the thermomechanical, viscoelastic and microstructural properties of whole wheat flour dough. Int. J. Biol. Macromol. 2024, 282, 137292. [Google Scholar] [CrossRef]
- Cao, S.; Zheng, W.; Chen, Z.; Zhang, F.; Jiang, W.; Qiu, Y.; Gu, M.; Chen, Z.; Zheng, T.; Zhang, H.; et al. Highly efficient deamidation of wheat gluten by glucose-citric acid-based natural deep eutectic solvent: A potential effective reaction media. J. Agric. Food Chem. 2021, 69, 3452–3465. [Google Scholar] [CrossRef] [PubMed]
- Xiao, F.; Zhang, X.; Niu, M.; Xiang, X.; Chang, Y.; Zhao, Z.; Xiong, L.; Zhao, S.; Rong, J.; Tang, C.; et al. Gluten development and water distribution in bread dough influenced by bran components and glucose oxidase. LWT-Food Sci. Technol. 2021, 137, 110427. [Google Scholar] [CrossRef]
- Liu, P.; Ma, L.; Duan, W.; Gao, W.; Fang, Y.; Guo, L.; Yuan, C.; Wu, Z.; Cui, B. Maltogenic amylase: Its structure, molecular modification, and effects on starch and starch-based products. Carbohydr. Polym. 2023, 319, 121183. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Dhital, S.; Zhao, C.; Ye, F.; Chen, J.; Zhao, G. Dietary fiber-gluten protein interaction in wheat flour dough: Analysis, consequences and proposed mechanisms. Food Hydrocoll. 2021, 111, 106203. [Google Scholar] [CrossRef]
- Mohammadi, M.; Zoghi, A.; Azizi, M.H. Effect of xylanase and pentosanase enzymes on dough rheological properties and quality of baguette bread. J. Food Qual. 2022, 2022, 2910821. [Google Scholar] [CrossRef]
- Yang, M.; Li, N.N.; Wang, A.; Tong, L.; Wang, L.; Yue, Y.; Yao, J.; Zhou, S.; Liu, L. Evaluation of rheological properties, microstructure and water mobility in buns dough enriched in aleurone flour modified by enzyme combinations. Int. J. Food Sci. Tech. 2021, 56, 5913–5922. [Google Scholar] [CrossRef]
- Hu, X.; Cheng, L.; Hong, Y.; Li, Z.; Li, C.; Gu, Z. Impact of celluloses and pectins restrictions on gluten development and water distribution in potato-wheat flour dough. Int. J. Biol. Macromol. 2022, 206, 534–542. [Google Scholar] [CrossRef]
- An, X.; Zhang, R.; Liu, L.; Yang, J.; Tian, Z.; Yang, G.; Cao, H.; Cheng, Z.; Ni, Y.; Liu, H. Ozone pretreatment facilitating cellulase hydrolysis of unbleached bamboo pulp for improved fiber flexibility. Ind. Crops Prod. 2022, 178, 114577. [Google Scholar] [CrossRef]
- Hu, X.; Cheng, L.; Hong, Y.; Li, Z.; Li, C.; Gu, Z. An extensive review: How starch and gluten impact dough machinability and resultant bread qualities. Crit. Rev. Food Sci. Nutr. 2023, 63, 1930–1941. [Google Scholar] [CrossRef] [PubMed]
- Paul, J.S.; Gupta, N.; Beliya, E.; Tiwari, S.; Jadhav, S.K. Aspects and recent trends in microbial α-amylase: A review. Appl. Biochem. Biotechnol. 2021, 193, 2649–2698. [Google Scholar] [CrossRef] [PubMed]
- Orm, R.B.; Jury, V.; Falourd, X.; Boillereaux, L.; Guihard, L.; Le-Bail, A. Impacts of the baking heating rate on the water mobility, starch microstructure and mechanical properties of degassed crumb during staling. J. Cereal Sci. 2021, 100, 103228. [Google Scholar] [CrossRef]
- Yang, M.; Yue, Y.; Liu, L.; Tong, L.; Wang, L.; Ashraf, J.; Li, N.; Zhou, X.; Zhou, S. Investigation of combined effects of xylanase and glucose oxidase in whole wheat buns making based on reconstituted model dough system. LWT-Food Sci. Technol. 2021, 135, 110261. [Google Scholar] [CrossRef]
- Dai, Y.; Tyl, C. A review on mechanistic aspects of individual versus combined uses of enzymes as clean label-friendly dough conditioners in breads. J. Food Sci. 2021, 86, 1583–1598. [Google Scholar] [CrossRef]
- Kaushal, J.; Khatri, M.; Singh, G.; Arya, S.K. A multifaceted enzyme conspicuous in fruit juice clarification: An elaborate review on xylanase. Int. J. Biol. Macromol. 2021, 193, 1350–1361. [Google Scholar] [CrossRef]
- Sun, X.; Liu, Q.; Wu, S. Effects of wheat cultivar, oligosaccharide, inulin, arabinoxylan and endoxylanase on the large- and small-strain rheological properties and microstructure of dietary fibre enriched dough. Int. J. Biol. Macromol. 2025, 308, 142443. [Google Scholar] [CrossRef] [PubMed]
- Parsa, P.; Mazaheri Tehrani, M.; Mohebbi, M. Evaluation of the effect of sodium stearoyl-2-lactylate emulsifier, xylanase enzyme, and alcoholic sugar sorbitol on the quality of wheat bran bread. Iran. Food Sci. Technol. Res. J. 2023, 19, 427–450. [Google Scholar] [CrossRef]
- Chen, Z.; Li, S.; Fu, Y.; Li, C.; Chen, D.; Chen, H. Arabinoxylan structural characteristics, interaction with gut microbiota and potential health functions. J. Funct. Foods 2019, 54, 536–551. [Google Scholar] [CrossRef]
- Zhu, X.; Tao, H.; Wang, H.; Xu, X. Impact of water soluble arabinoxylan on starch-gluten interactions in dough. LWT-Food Sci. Technol. 2023, 173, 114289. [Google Scholar] [CrossRef]
- Kaur, A.; Singh, B.; Yadav, M.P.; Bhinder, S.; Singh, N. Isolation of arabinoxylan and cellulose-rich arabinoxylan from wheat bran of different varieties and their functionalities. Food Hydrocoll. 2021, 112, 106287. [Google Scholar] [CrossRef]
- Both, J.; Biduski, B.; Gomez, M.; Bertolin, T.E.; Friedrich, M.T.; Gutkoski, L.C. Micronized whole wheat flour and xylanase application: Dough properties and bread quality. J. Food Sci. Technol. 2021, 58, 3902–3912. [Google Scholar] [CrossRef]
- Etale, A.; Onyianta, A.J.; Turner, S.R.; Eichhorn, S.J. Cellulose: A review of water interactions, applications in composites, and water treatment. Chem. Rev. 2023, 123, 2016–2048. [Google Scholar] [CrossRef] [PubMed]
- Yi, T.; Zhao, H.; Mo, Q.; Pan, D.; Liu, Y.; Huang, L.; Xu, H.; Hu, B.; Song, H. From cellulose to cellulose nanofibrils—A comprehensive review of the preparation and modification of cellulose nanofibrils. Materials 2020, 13, 5062. [Google Scholar] [CrossRef]
- Lindman, B.; Karlström, G.; Stigsson, L. On the mechanism of dissolution of cellulose. J. Mol. Liq. 2010, 156, 76–81. [Google Scholar] [CrossRef]
- Sharma, A.; Tewari, R.; Rana, S.S.; Soni, R.; Soni, S.K. Cellulases: Classification, methods of determination and industrial applications. Appl. Biochem. Biotechnol. 2016, 179, 1346–1380. [Google Scholar] [CrossRef]
- Saavedra, J.M.; Azocar, M.A.; Rodriguez, V.; Ramirez-Sarmiento, C.A.; Andrews, B.A.; Asenjo, J.A.; Parra, L.P. Relevance of local flexibility near the active site for enzymatic catalysis: Biochemical characterization and engineering of cellulase Cel5A from Bacillus agaradherans. Biotechnol. J. 2018, 13, 1700669. [Google Scholar] [CrossRef]
- Bhati, N.; Shreya; Sharma, A.K. Cost-effective cellulase production, improvement strategies, and future challenges. J. Food Process Eng. 2020, 44, e13623. [Google Scholar] [CrossRef]
- Ejaz, U.; Sohail, M.; Ghanemi, A. Cellulases: From bioactivity to a variety of industrial applications. Biomimetics 2021, 6, 44. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Wang, Z.; Liu, H.; Li, L.; Zheng, X.; Tian, X.; Sun, B.; Wang, X. Supplementation of wheat flour products with wheat bran dietary fiber: Purpose, mechanisms, and challenges. Trends Food Sci. Technol. 2022, 123, 281–289. [Google Scholar] [CrossRef]
- Hmad, I.B.; Ghribi, A.M.; Bouassida, M.; Ayadi, W.; Besbes, S.; Chaabouni, S.E.; Gargouri, A. Combined effects of alpha-amylase, xylanase, and cellulase coproduced by Stachybotrys microspora on dough properties and bread quality as a bread improver. Int. J. Biol. Macromol. 2024, 277, 134391. [Google Scholar] [CrossRef]
- Jia, R.; Zhang, M.; Yang, T.; Ma, M.; Sun, Q.; Li, M. Evolution of the morphological, structural, and molecular properties of gluten protein in dough with different hydration levels during mixing. Food Chem. X 2022, 15, 100448. [Google Scholar] [CrossRef]
- Thielemans, K.; De Bondt, Y.; Bautil, A.; Roye, C.; Sels, B.F.; Courtin, C.M. Amorphisation and chain length reduction of cellulose affect its impact on the water distribution, dough rheology and loaf volume in bread making. Food Hydrocoll. 2024, 146, 109258. [Google Scholar] [CrossRef]
- Khatami, S.H.; Vakili, O.; Ahmadi, N.; Soltani Fard, E.; Mousavi, P.; Khalvati, B.; Maleksabet, A.; Savardashtaki, A.; Taheri-Anganeh, M.; Movahedpour, A. Glucose oxidase: Applications, sources, and recombinant production. Biotechnol. Appl. Biochem. 2022, 69, 939–950. [Google Scholar] [CrossRef]
- Bauer, J.A.; Zamocka, M.; Majtan, J.; Bauerova-Hlinkova, V. Glucose oxidase, an enzyme “Ferrari”: Its structure, function, production and properties in the light of various industrial and biotechnological applications. Biomolecules 2022, 12, 472. [Google Scholar] [CrossRef]
- Liu, L.; Yang, W.; Cui, S.; Jiang, Z.; Chen, Q.; Qian, H.; Wang, L.; Zhou, S. Effects of pentosanase and glucose oxidase on the composition, rheology and microstructure of whole wheat dough. Food Hydrocoll. 2018, 84, 545–551. [Google Scholar] [CrossRef]
- Wang, G.; Qu, X.; Li, D.; Yang, R.; Gu, Z.; Jiang, D.; Wang, P. Enhancing the technofunctionality of gamma-aminobutyric acid enriched germinated wheat by modification of arabinoxylan, gluten proteins and liquid lamella of dough. Food Chem. 2023, 404, 134523. [Google Scholar] [CrossRef]
- Liu, L.; Sun, Y.; Yue, Y.; Yang, J.; Chen, L.; Ashraf, J.; Wang, L.L.; Zhou, S.; Tong, L. Composition and foam properties of whole wheat dough liquor as affected by xylanase and glucose oxidase. Food Hydrocoll. 2020, 108, 106050. [Google Scholar] [CrossRef]
- Bangar, S.P.; Ashogbon, A.O.; Singh, A.; Chaudhary, V.; Whiteside, W.S. Enzymatic modification of starch: A green approach for starch applications. Carbohydr. Polym. 2022, 287, 119265. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Sun, Y.; Xia, X.; Yang, L.; Fan, M.; Li, Y.; Wang, L.; Qian, H. Effects of β-amylase treatment conditions on the gelatinization and retrogradation characteristics of wheat starch. Food Hydrocoll. 2022, 124, 107286. [Google Scholar] [CrossRef]
- Bertoft, E. Understanding starch structure: Recent progress. Agronomy 2017, 7, 56. [Google Scholar] [CrossRef]
- Jaafar, N.R.; Ahmad, R.A.A.; Nawawi, N.N.; Abd Rahman, N.H.; Annuar, N.A.S.; Rahman, R.A.; Illias, R.M. Synergistic action of cyclodextrin glucanotransferase and maltogenic amylase improves the bioconversion of starch to malto-oligosaccharides. Process Biochem. 2021, 103, 9–17. [Google Scholar] [CrossRef]
- Cha, H.J.; Yoon, H.G.; Kim, Y.W.; Lee, H.S.; Kim, J.W.; Kweon, K.S.; Oh, B.H.; Park, K.H. Molecular and enzymatic characterization of a maltogenic amylase that hydrolyzes and transglycosylates acarbose. Eur. J. Biochem. 1998, 253, 251–262. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Y.; Li, X.; Bai, Y.; Jin, Z.; Svensson, B. Maltogenic α-amylase hydrolysis of wheat starch granules: Mechanism and relation to starch retrogradation. Food Hydrocoll. 2022, 124, 107256. [Google Scholar] [CrossRef]
- Kim, H.J.; Yoo, S.H. Effects of Combined alpha-Amylase and Endo-Xylanase Treatments on the Properties of Fresh and Frozen Doughs and Final Breads. Polymers 2020, 12, 1349. [Google Scholar] [CrossRef]
- Bajaj, P.; Mahajan, R. Cellulase and xylanase synergism in industrial biotechnology. Appl. Microbiol. Biotechnol. 2019, 103, 8711–8724. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Scanlon, M.G.; Nickerson, M.T.; Koksel, F. The entrainment and evolution of gas bubbles in bread dough—A review. Cereal Chem. 2023, 100, 1031–1047. [Google Scholar] [CrossRef]
- Konieczny, D.; Stone, A.K.; Hucl, P.; Nickerson, M.T. Enzymatic cross-linking to improve the handling properties of dough prepared within a normal and reduced NaCl environment. J. Texture Stud. 2020, 51, 567–574. [Google Scholar] [CrossRef]
- Sun, X.; Koksel, F.; Scanlon, M.G.; Nickerson, M.T. Effects of water, salt, and mixing on the rheological properties of bread dough at large and small deformations: A review. Cereal Chem. 2022, 99, 709–723. [Google Scholar] [CrossRef]
- Nguyen, S.N.; Ngo, T.C.T.; Tran, T.T.T.; Ton, N.M.N.; Le, V.V.M. Pasta from cellulase-treated wheat bran and durum semolina: Effects of vital gluten addition and/or transglutaminase treatment. Food Biosci. 2020, 38, 100782. [Google Scholar] [CrossRef]
- Van Rooyen, J.; Simsek, S.; Oyeyinka, S.A.; Manley, M. Wheat starch structure-function relationship in breadmaking: A review. Compr. Rev. Food Sci. Food Saf. 2023, 22, 2292–2309. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.R.; Kim, M.R.; Ryu, A.R.; Bae, J.E.; Choi, Y.S.; Lee, G.B.; Choi, H.D.; Hong, J.S. Comparison of rheological properties between Mixolab-driven dough and bread-making dough under various salt levels. Food Sci. Biotechnol. 2023, 32, 193–202. [Google Scholar] [CrossRef]
- Dornez, E.; Gebruers, K.; Delcour, J.A.; Courtin, C.M. Grain-associated xylanases: Occurrence, variability, and implications for cereal processing. Trends Food Sci. Technol. 2009, 20, 495–510. [Google Scholar] [CrossRef]
- Wang, C.; Yang, Z.; Xing, J.; Guo, X.; Zhu, K. Effects of insoluble dietary fiber and ferulic acid on the rheological properties of dough. Food Hydrocoll. 2021, 121, 107008. [Google Scholar] [CrossRef]
- Xu, F.; Liu, W.; Zhang, L.; Liu, Q.; Hu, X.; Wang, F.; Zhang, H.; Hu, H.; Blecker, C. Prediction of the rheological properties of wheat dough by starch-gluten model dough systems: Effect of gluten fraction and starch variety. Int. J. Food Sci. Tech. 2022, 57, 2126–2137. [Google Scholar] [CrossRef]
- Miś, A.; Krekora, M.; Niewiadomski, Z.; Dziki, D.; Nawrocka, A. Water redistribution between model bread dough components during mixing. J. Cereal Sci. 2020, 95, 103035. [Google Scholar] [CrossRef]
- Bilal, M.; Li, D.; Xie, C.; Yang, R.; Gu, Z.; Jiang, D.; Xu, X.; Wang, P. Recent advances of wheat bran arabinoxylan exploitation as the functional dough additive. Food Chem. 2025, 463, 141146. [Google Scholar] [CrossRef] [PubMed]
- De Bondt, Y.; Hermans, W.; Moldenaers, P.; Courtin, C.M. Selective modification of wheat bran affects its impact on gluten-starch dough rheology, microstructure and bread volume. Food Hydrocoll. 2021, 113, 106348. [Google Scholar] [CrossRef]
- Scanlon, M.G.; Koksel, F. The role of bubbles and interfaces in the quality of foamed cereal Products. Curr. Opin. Colloid. 2024, 73, 101843. [Google Scholar] [CrossRef]
- Sun, X.; Scanlon, M.G.; Guillermic, R.M.; Belev, G.S.; Webb, M.A.; Aritan, S.; Nickerson, M.T.; Koksel, F. The effects of sodium reduction on the gas phase of bread doughs using synchrotron X-ray microtomography. Food Res. Int. 2020, 130, 108919. [Google Scholar] [CrossRef]
- Janssen, F.; Wouters, A.G.; Delcour, J.A. Gas cell stabilization by aqueous-phase constituents during bread production from wheat and rye dough and oat batter: Dough or batter liquor as model system. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3881–3917. [Google Scholar] [CrossRef]
- Chakrabarti-Bell, S.; Lukasczyk, J.; Liu, J.; Maciejewski, R.; Xiao, X.; Mayo, S.; Regenauer-Lieb, K. Flour quality effects on percolation of gas bubbles in wheat flour doughs. Innov. Food Sci. Emerg. Technol. 2021, 74, 102841. [Google Scholar] [CrossRef]
- Aghajanzadeh, S.; Sultana, A.; Ziaiifar, A.M.; Khalloufi, S. Formation of pores and bubbles and their impacts on the quality attributes of processed foods: A review. Food Res. Int. 2024, 188, 114494. [Google Scholar] [CrossRef] [PubMed]
- Meeus, Y.; Janssen, F.; Wouters, A.G.; Delcour, J.A.; Moldenaers, P. Linear and non-linear rheology of bread doughs made from blends of wheat (Triticum aestivum L.) and rye (Secale cereale L.) flour. Food Bioprocess Technol. 2020, 13, 159–171. [Google Scholar] [CrossRef]
- Han, W.; Ma, S.; Li, L.; Zheng, X.; Wang, X. Impact of wheat bran dietary fiber on gluten and gluten-starch microstructure formation in dough. Food Hydrocoll. 2019, 95, 292–297. [Google Scholar] [CrossRef]
- Han, W.; Ma, S.; Li, L.; Zheng, X.; Wang, X. Rheological properties of gluten and gluten-starch model doughs containing wheat bran dietary fibre. Int. J. Food Sci. Tech. 2018, 53, 2650–2656. [Google Scholar] [CrossRef]
- Lockyer, S.; Spiro, A. The role of bread in the UK diet: An update. Nutr. Bull. 2020, 45, 133–164. [Google Scholar] [CrossRef]
- Nguyen, S.N.; Vien, M.D.; Le, T.T.; Tran, T.T.; Ton, N.M.; Le, V.V. Effects of enzymatic treatment conditions on dietary fibre content of wheat bran and use of cellulase-treated bran in cookie. Int. J. Food Sci. Tech. 2021, 56, 4017–4025. [Google Scholar] [CrossRef]
- Sheikholeslami, Z.; Mahfouzi, M.; Karimi, M.; Ghiafehdavoodi, M. Modification of dough characteristics and baking quality based on whole wheat flour by enzymes and emulsifiers supplementation. LWT-Food Sci. Technol. 2021, 139, 110794. [Google Scholar] [CrossRef]
- Tebben, L.; Chen, G.; Tilley, M.; Li, Y. Individual effects of enzymes and vital wheat gluten on whole wheat dough and bread properties. J. Food Sci. 2020, 85, 4201–4208. [Google Scholar] [CrossRef]
- Gu, M.; Hong, T.; Ma, Y.; Xi, J.; Zhao, Q.; Xu, D.; Jin, Y.; Wu, F.; Xu, X. Effects of a commercial peptidase on rheology, microstructure, gluten properties of wheat dough and bread quality. LWT-Food Sci. Technol. 2022, 160, 113266. [Google Scholar] [CrossRef]
- Zhang, Y.; Hong, T.; Yu, W.; Yang, N.; Jin, Z.; Xu, X. Structural, thermal and rheological properties of gluten dough: Comparative changes by dextran, weak acidification and their combination. Food Chem. 2020, 330, 127154. [Google Scholar] [CrossRef]
- Alpers, T.; Kerpes, R.; Frioli, M.; Nobis, A.; Hoi, K.I.; Bach, A.; Jekle, M.; Becker, T. Impact of storing condition on staling and microbial spoilage behavior of bread and their contribution to prevent food waste. Foods 2021, 10, 76. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, Y.; Wu, Y.; Ouyang, J. Factors influencing the starch digestibility of starchy foods: A review. Food Chem. 2023, 406, 135009. [Google Scholar] [CrossRef]
- Rodriguez-Garcia, J.; Ding, R.; Nguyen, T.H.; Grasso, S.; Chatzifragkou, A.; Methven, L. Soluble fibres as sucrose replacers: Effects on physical and sensory properties of sugar-reduced short-dough biscuits. LWT-Food Sci. Technol. 2022, 167, 113837. [Google Scholar] [CrossRef]
- Dahiya, S.; Bajaj, B.K.; Kumar, A.; Tiwari, S.K.; Singh, B. A review on biotechnological potential of multifarious enzymes in bread making. Process Biochem. 2020, 99, 290–306. [Google Scholar] [CrossRef]
- Xu, D.; Gu, M.; Xi, J.; Chen, L.; Jin, Y.; Wu, F.; Xu, X.; Zhao, Q. Effect of a commercial peptidase on volatile composition and sensory properties of wheat bread crumb and crust. LWT-Food Sci. Technol. 2023, 189, 115532. [Google Scholar] [CrossRef]
- Xu, J.; Li, Y.; Zhao, Y.; Wang, D.; Wang, W. Influence of antioxidant dietary fiber on dough properties and bread qualities: A review. J. Funct. Foods 2021, 80, 104434. [Google Scholar] [CrossRef]
- Ansari, F.; Pimentel, T.C.; Pourjafar, H.; Ibrahim, S.A.; Jafari, S.M. The influence of prebiotics on wheat flour, dough, and bread properties; resistant starch, polydextrose, and inulin. Foods 2022, 11, 3366. [Google Scholar] [CrossRef] [PubMed]


| Enzymes | Intermolecular Interactions | References |
|---|---|---|
| Xylanase | Hydrolyze the WUAX to WEAX with a lower molecular weight | [16] |
| Promote the interaction between WEAX and gluten proteins | [9] | |
| Slow down the hydration of gluten proteins and delay the optimal development of dough | [17] | |
| Cellulase | Hydrolyze the cellulose to decrease the content of IDF | [18] |
| Contribute to the redistribution of water molecules from the gluten proteins to SDF | [19] | |
| Promote the formation of secondary structure and disulfide bonds for gluten proteins | [20] | |
| Glucose oxidase | Modify the interactions between DF and gluten proteins | [13] |
| Contribute to the formation of disulfide bonds and an increase in the content of gluten macromolecule polymers | [2] | |
| Amylase | Hydrolyze the starches into the polysaccharides with a low molecular weight and monosaccharides | [21] |
| Inhibit the recrystallization of starch granules, promote the entanglement of protein macromolecules and starch granules, and delay the retrogradation of starch granules | [22] | |
| Combined enzymes | Decrease the content of free sulfhydryl and promote the interaction between gluten proteins | [23] |
| Weaken the interaction between WUAX and gluten protein, hydrolyze the WUAX into fragments | [24] |
| Enzymes | Flour Type | Rheological Properties | References |
|---|---|---|---|
| Xylanase | Weak cultivar | Increase water absorption (%) | [8] |
| Weak cultivar | Enhance elastic modulus G′(ω) and viscous modulus G″(ω) (Pa) | [9] | |
| Medium cultivar | Decrease dough development time (min) | [57] | |
| Medium cultivar | Decrease creep-recovery compliance J(t) (Pa−1) | [2] | |
| Strong cultivar | Decrease dough consistency | [2] | |
| Strong cultivar | Enhance dough stability (min) | [5] | |
| Cellulase | Weak cultivar | Increase water absorption (%) | [2] |
| Medium cultivar | Decrease dough consistency | [9] | |
| Weak cultivar | Decrease dough development time (min) | [58] | |
| Strong cultivar | Enhance dough stability (min) | [2] | |
| Glucose oxidase | Weak cultivar | Increase dough development time (min) | [13] |
| Strong cultivar | Enhance G′(ω) and G″(ω) (Pa) | [2,13] | |
| Weak cultivar | Increase mixing tolerance index (MTI) | [2] | |
| Medium cultivar | Enhance dough stability (min) | [13] | |
| Strong cultivar | Decrease dough resistance to extension (g) | [23] | |
| Combined enzymes | Weak cultivar | Decrease dough development time (min) | [20] |
| Medium cultivar | Increase dough extensibility (mm) | [2] | |
| Strong cultivar | Enhance G′(ω) and G″(ω) (Pa) | [23] | |
| Weak cultivar | Enhance dough stability (min) | [17] |
| Enzymes | Flour Type | Bubble Dynamics | References |
|---|---|---|---|
| Xylanase | Weak cultivar | Increase bubble sizes | [59] |
| Weak cultivar | Improve gas retention | [53] | |
| Medium cultivar | Enhance bubble stability | [47] | |
| Strong cultivar | Promote bubble production | [9,47] | |
| Cellulase | Weak cultivar | Increase bubble sizes | [59] |
| Strong cultivar | Promote bubble formation | [53] | |
| Amylase | Weak cultivar | Increase bubble sizes | [14,53,59] |
| Medium cultivar | Promote bubble formation | [53,60] | |
| Glucose oxidase | Weak cultivar | Improve gas retention | [13,23] |
| Strong cultivar | Enhance bubble stability | [23,47] | |
| Combined enzymes | Weak cultivar | Enhance bubble stability | [47] |
| Strong cultivar | Decrease bubble sizes | [47] | |
| Weak cultivar | Promote bubble formation | [53] | |
| Medium cultivar | Inhibit bubble expansion | [13,47] |
| Enzymes | Product Type | Physiochemical Properties | Sensory Properties | Nutritional Properties | References |
|---|---|---|---|---|---|
| Xylanase | Noodle | Increase loaf volume Decrease crumb hardness | Aroma, flavour, colour, consumer acceptability | Elevate the levels of total SDF and short-chain fatty acid butyrate | [76] |
| Bread | Increase loaf volume Decrease crumb hardness | Aroma, flavour, colour, consumer acceptability | Reduce the starch digestibility Lower the GI value | [59] | |
| Cellulase | Noodle | Increase loaf volume | Springiness, gumminess, chewiness, cohesiveness, crumb fineness | Elevate the levels of total SDF Reduce the starch digestibility Lower the GI value | [40,77] |
| Bread | Decrease crumb hardness | Aroma, flavour, colour, consumer acceptability | Elevate the levels of free FAs | [2] | |
| Amylase | Bread | Decrease crumb hardness Increase loaf volume | Aroma, flavour, colour, consumer acceptability, crumb fineness | Extend the shelf life of product | [22] |
| Glucose oxidase | Bread | Decrease crumb hardness | Springiness, chewiness, cohesiveness | [13] | |
| Combined enzymes | Noodle | Decrease crumb hardness | Aroma, flavour, colour, consumer acceptability | Release the free FAAs Reduce the starch digestibility | [8] |
| Bread | Increase loaf volume Increase water activity | Aroma, flavour, colour, consumer acceptability | Elevate the levels of total SDF | [40] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Wu, S.; Sun, X. The Combination of Enzymes in the Enhancement of Fibre-Enriched Product Quality: Effects of the Interactions of Dietary Fibre, Gluten Proteins, and Starch Granules on Dough Rheological Properties and Bubble Dynamics. Foods 2025, 14, 3963. https://doi.org/10.3390/foods14223963
Zhou X, Wu S, Sun X. The Combination of Enzymes in the Enhancement of Fibre-Enriched Product Quality: Effects of the Interactions of Dietary Fibre, Gluten Proteins, and Starch Granules on Dough Rheological Properties and Bubble Dynamics. Foods. 2025; 14(22):3963. https://doi.org/10.3390/foods14223963
Chicago/Turabian StyleZhou, Xiang, Simiao Wu, and Xinyang Sun. 2025. "The Combination of Enzymes in the Enhancement of Fibre-Enriched Product Quality: Effects of the Interactions of Dietary Fibre, Gluten Proteins, and Starch Granules on Dough Rheological Properties and Bubble Dynamics" Foods 14, no. 22: 3963. https://doi.org/10.3390/foods14223963
APA StyleZhou, X., Wu, S., & Sun, X. (2025). The Combination of Enzymes in the Enhancement of Fibre-Enriched Product Quality: Effects of the Interactions of Dietary Fibre, Gluten Proteins, and Starch Granules on Dough Rheological Properties and Bubble Dynamics. Foods, 14(22), 3963. https://doi.org/10.3390/foods14223963

