Does the Digital Economy Promote Dietary Diversity Among Chinese Residents?
Abstract
1. Introduction
2. Hypotheses Development
2.1. Influence of the Digital Economy
2.2. Individual Effect of the Digital Economy
2.3. Regional Effect of the Digital Economy
3. Data, Variables, and Methodology
3.1. Data and Variables
3.2. Descriptive Statistics
3.3. Empirical Models
4. Results and Discussion
4.1. Benchmark Regression
4.2. Mechanism Test
4.2.1. Individual Effect: Income and Dietary Awareness
4.2.2. Regional Effect: Industry Transformation and Consumption Upgrading
4.3. Heterogeneity Analysis
4.3.1. Dietary Pattern and Digital Economy
4.3.2. The Synergistic Effects of the Digital Economy and Dietary Patterns
5. Robustness Test
5.1. Replacement of Explained Variable
5.2. Remeasurement of Core Explanatory Variable
5.3. Quantile Model Regressions
5.4. Endogeneity Test
6. Conclusions
6.1. Research Contributions
6.2. Limitations and Future Research
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Du, S.F.; Wang, H.J.; Zhang, B.; Zhai, F.Y.; Popkin, B.M. China in the period of transition from scarcity and extensive undernutrition to emerging nutrition—Related non—Communicable diseases, 1949–1992. Obes. Rev. 2014, 15, 8–15. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. China Statistical Yearbook; China Statistics Press: Beijing, China, 2024.
- Zhai, F.Y.; Du, S.F.; Wang, Z.H.; Zhang, J.G.; Du, W.W.; Popkin, B. Dynamics of the Chinese diet and the role of urbanicity, 1991–2011. Obes. Rev. 2014, 15, 16–26. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Fan, S. Healthy and Sustainable Diets in China and Their Global Implications. Agric. Econ. 2025, 56, 349–359. [Google Scholar] [CrossRef]
- Quan, S.; Zhu, W. Measuring Global Dietary Diversity by Considering Nutritional Functional Dissimilarity and Dietary Guidelines. Foods 2025, 14, 1759. [Google Scholar] [CrossRef]
- Marques, A.C.; Fuinhas, J.A.; Pais, D.F. Economic growth, sustainable development and food consumption: Evidence across different income groups of countries. J. Clean. Prod. 2018, 196, 245–258. [Google Scholar] [CrossRef]
- CAICT White Paper on China’s Digital Economy Development. China Academy of Information and Communications Technology, Beijing, China. 2024. Available online: http://www.caict.ac.cn/ (accessed on 21 October 2025).
- Jia, J.; Xu, Y.; Li, W. A study on the strategic momentum of SMEs’ digital transformation: Evidence from China. Technol. Forecast. Soc. Change 2024, 200, 123038. [Google Scholar] [CrossRef]
- He, Y.; Li, K.; Wang, Y. Crossing the digital divide: The impact of the digital economy on elderly individuals’ consumption upgrade in China. Technol. Soc. 2022, 71, 102141. [Google Scholar] [CrossRef]
- Shen, J.; Zhu, Z.; Qiam, M.; Fan, S.; Tian, X. E-commerce improves dietary quality of rural households in China. Agribusiness 2023, 39, 1495–1511. [Google Scholar] [CrossRef]
- Cinelli, M.; De Francisci Morales, G.; Galeazzi, A.; Quattrociocchi, W.; Starnini, M. The echo chamber effect on social media. Proc. Natl. Acad. Sci. USA 2021, 118, e2023301118. [Google Scholar] [CrossRef]
- Stookey, J.D.; Wang, Y.; Ge, K.; Lin, H.; Popkin, B.M. Measuring diet quality in China: The INFH-UNC-CH diet quality index. Eur. J. Clin. Nutr. 2000, 54, 811–821. [Google Scholar] [CrossRef]
- Kim, S.; Haines, P.S.; Siega-Riz, A.M.; Popkin, B.M. The Diet Quality Index-International (DQI-I) provides an effective tool for cross-national comparison of diet quality as illustrated by China and the United States. J. Nutr. 2003, 133, 3476–3484. [Google Scholar] [CrossRef]
- He, Y.N.; Fang, Y.H.; Xia, J. Update of the Chinese diet balance index: DBI_16. Acta Nutr. Sin. 2018, 40, 526–530. [Google Scholar]
- Yuan, Y.Q.; Li, F.; Dong, R.H.; Chen, J.S.; He, G.S.; Li, S.G.; Chen, B. The development of a Chinese healthy eating index and its application in the general population. Nutrients 2017, 9, 977. [Google Scholar] [CrossRef]
- Sun, Q.; Li, X.; Rahut, D.B. Urbanicity and nutrition: Evidence from rural–urban migrants in China. China Agric. Econ. Rev. 2021, 13, 673–704. [Google Scholar] [CrossRef]
- Hou, M.; Qing, P.; Min, S. Multiple indicators of household dietary diversity in rural China: Effects of income and dietary knowledge. Nutrition 2021, 91–92, 111406. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Wang, J.; Xu, Q. Traffic Infrastructure and Dietary Quality Improvement: Evidence from Chinese Expressway. Food Secur. 2025, 17, 863–881. [Google Scholar] [CrossRef]
- de Vries, R.; Bol, N.; van der, L.N. “Just-in-time” but a bit delayed: Personalizing digital nudges for healthier online food choices. Appetite 2025, 206, 107852. [Google Scholar] [CrossRef] [PubMed]
- Godden, E.; Dens, N.; Coppens, B.; Thornton, L. Can we improve the healthiness of online food purchases through the Nutri-Score and site design? Food Policy 2025, 134, 102899. [Google Scholar] [CrossRef]
- Ma, W.; Vatsa, P.; Zheng, H.; Guo, Y. Does online food shopping boost dietary diversity? Application of an endogenous switching model with a count outcome variable. Agric. Food Econ. 2022, 10, 30. [Google Scholar] [CrossRef] [PubMed]
- Jin, T.; Li, L. Does smartphone use improve the dietary diversity of rural residents? Evidence from household survey data from 5 provinces. Int. J. Environ. Res. Public Health 2022, 19, 11129. [Google Scholar] [CrossRef]
- Leng, X.; Zhang, Y.; Cheng, R. Digital technology, labor allocation, and nutrition intake: Evidence from China. Technol. Forecast. Soc. Change 2024, 201, 123228. [Google Scholar] [CrossRef]
- Zhou, Q. Research on the impact of digital economy on rural consumption upgrading: Evidence from China family panel studies. Technol. Econ. Dev. Econ. 2023, 29, 1461–1476. [Google Scholar] [CrossRef]
- Xiong, Y.; Lin, Y.; Zhang, S.; Xing, T.; Wen, X. Digital Literacy and Food Consumption Structure: Evidence from Rural China. Nutrients 2025, 17, 2207. [Google Scholar] [CrossRef]
- Bennett, M.K. International contrasts in food consumption. Geogr. Rev. 1941, 31, 365–376. [Google Scholar] [CrossRef]
- Agrawal, K.; Goktas, P.; Holtkemper, M.; Beecks, C.; Kumar, N. AI-driven transformation in food manufacturing: A pathway to sustainable efficiency and quality assurance. Front. Nutr. 2025, 12, 1553942. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Shao, X. Research on the impact of digital transformation on the production efficiency of manufacturing enterprises: Institution-based analysis of the threshold effect. Int. Rev. Econ. Financ. 2024, 91, 883–897. [Google Scholar] [CrossRef]
- Stecuła, K.; Wolniak, R.; Aydın, B. Technology development in online grocery shopping—From shopping services to virtual reality, metaverse, and smart devices: A review. Foods 2024, 13, 3959. [Google Scholar] [CrossRef]
- Samoggia, A.; Monticone, F.; Bertazzoli, A. Innovative digital technologies for purchasing and consumption in urban and regional agro-food systems: A systematic review. Foods 2021, 10, 208. [Google Scholar] [CrossRef]
- Kuhn, P.; Mansour, H. Is internet job search still ineffective? Econ. J. 2014, 124, 1213–1233. [Google Scholar] [CrossRef]
- Wielgos, D.M.; Homburg, C.; Kuehnl, C. Digital business capability: Its impact on firm and customer performance. J. Acad. Mark. Sci. 2021, 49, 762–789. [Google Scholar] [CrossRef]
- Werle, C.O.C.; Gauthier, C.; Yamim, A.P.; Bally, F. How a food scanner app influences healthy food choice. Appetite 2024, 200, 107571. [Google Scholar] [CrossRef]
- El-Kassar, A.N.; Singh, S.K. Green innovation and organizational performance: The influence of big data and the moderating role of management commitment and HR practices. Technol. Forecast. Soc. Change 2019, 144, 483–498. [Google Scholar] [CrossRef]
- Sargani, G.R.; Wang, B.; Leghari, S.J.; Ruan, J. Is digital transformation the key to agricultural strength? A novel approach to productivity and supply chain resilience. Smart Agric. Technol. 2025, 10, 100838. [Google Scholar] [CrossRef]
- Guo, D.; Li, L.; Qiao, L.; Qi, F. Digital economy and consumption upgrading: Scale effect or structure effect? Econ. Change Restruct. 2023, 56, 4713–4744. [Google Scholar] [CrossRef]
- Bonina, C.; Koskinen, K.; Eaton, B.; Gawer, A. Digital platforms for development: Foundations and research agenda. Inf. Syst. J. 2021, 31, 869–902. [Google Scholar] [CrossRef]
- Papastamoulou, P.; Antonopoulos, N. Artificial Intelligence in E-Commerce: A Comparative Analysis of Best Practices Across Leading Platforms. Systems 2025, 13, 746. [Google Scholar] [CrossRef]
- Mariani, M.M.; Wamba, S.F. Exploring how consumer goods companies innovate in the digital age: The role of big data analytics companies. J. Bus. Res. 2020, 121, 338–352. [Google Scholar] [CrossRef]
- He, Y.N.; Ye, C.; Fang, Y.H.; Lian, Y.Y. Update of the Chinese diet balance index: DBI_22. Acta Nutr. Sin. 2024, 46, 209–214. [Google Scholar]
- Huang, C.; Lin, B. How digital economy index selection and model uncertainty will affect energy green transition. Energy Econ. 2024, 136, 107774. [Google Scholar] [CrossRef]
- Fan, H.; Wang, J.; Lu, X.; Fan, S. Factors influencing food-waste behaviors at university canteens in Beijing, China: An investigation based on the theory of planned behavior. Front. Agric. Sci. Eng 2023, 10, 83–94. [Google Scholar]
- Magoutas, A.I.; Chaideftou, M.; Skandali, D.; Chountalas, P.T. Digital progression and economic growth: Analyzing the impact of ICT advancements on the GDP of European Union countries. Economies 2024, 12, 63. [Google Scholar] [CrossRef]
- Ahmed, Y.A.; Ahmad, M.N.; Ahmad, N.; Hidayati Zakaria, N. Social media for knowledge-sharing: A systematic literature review. Telemat. Inform. 2019, 37, 72–112. [Google Scholar] [CrossRef]
- Stephen, A.T. The role of digital and social media marketing in consumer behavior. Curr. Opin. Psychol. 2016, 10, 17–21. [Google Scholar] [CrossRef]
- Wang, H.; Kang, C. Digital economy and the green transformation of manufacturing industry: Evidence from Chinese cities. Front. Environ. Sci. 2024, 12, 1324117. [Google Scholar] [CrossRef]
- Riley, E. Mobile money and risk sharing against village shocks. J. Dev. Econ. 2018, 135, 43–58. [Google Scholar] [CrossRef]
- Kennedy, E. Dietary diversity, diet quality, and body weight regulation. Nutr. Rev. 2004, 62 (Suppl. S2), S78–S81. [Google Scholar] [CrossRef] [PubMed]
- Min, S.; Peng, J.; Qing, P. Does internet use improve food safety behavior among rural residents? Food Control 2022, 139, 109060. [Google Scholar] [CrossRef]
- Karlsson, O.; Subramanian, S.V. Refrigerator ownership and child health and nutrition in low-and middle-income countries. Glob. Food Secur. 2023, 37, 100698. [Google Scholar] [CrossRef]
- Huang, L.; Ren, Y. Does refrigerator ownership improve household food security for rural residents? Evidence from longitudinal survey data in China. J. Rural Stud. 2025, 120, 103841. [Google Scholar] [CrossRef]
- Liu, J.; Shively, G.E.; Binkley, J.K. Access to variety contributes to dietary diversity in China. Food Policy 2014, 49, 323–331. [Google Scholar] [CrossRef]
- Machado, J.A.F.; Silva, J.M.C.S. Quantiles via moments. J. Econom. 2019, 213, 145–173. [Google Scholar] [CrossRef]
- Nunn, N.; Qian, N. US food aid and civil conflict. Am. Econ. Rev. 2014, 104, 1630–1666. [Google Scholar] [CrossRef]
- Stehrenberger, A.; Danesi, G.; Schneider, T. More of the same? How digital food platforms reinforce prevailing eating interests and practices. J. Cult. Econ. 2024, 1–19. [Google Scholar] [CrossRef]
- Barros, P.A.A.; de Paula Matos, J.; Rodrigues, M.B.; da Costa, R.J.; Horta, P.M. Food digital marketing on social media: Trends and strategies of Brazil’s leading meal delivery app. Front. Nutr. 2025, 12, 1620348. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.R.; Zong, J. Shifting to a recommended dietary pattern could promote sustainable development of the environment and human health. Front. Agric. Sci. Eng. 2023, 10, 73–82. [Google Scholar] [CrossRef]
- Theil, H.; Finke, R. The consumer’s demand for diversity. Eur. Econ. Rev. 1983, 23, 395–400. [Google Scholar] [CrossRef]

| Variable | Mean | SD | Min | Max |
|---|---|---|---|---|
| Dietary diversity | ||||
| Dietary quality distance (DQD) | 39.164 | 8.674 | 9 | 71 |
| High-bound score (HBS) | 15.354 | 5.100 | 0 | 34 |
| Low-bound score (LBS) | −19.010 | 9.471 | −50 | 0 |
| Food variety (DDS) | −4.945 | 1.726 | −12 | 0 |
| Digital economy index | 59.501 | 6.963 | 48.677 | 77.228 |
| Individual characteristics | ||||
| Gender (male = 1, female = 0) | 0.554 | 0.498 | 0 | 1 |
| Age | 45.835 | 14.146 | 16 | 94 |
| Marital status | 2.003 | 0.500 | 1 | 5 |
| Highest education level attained | 2.703 | 1.272 | 1 | 6 |
| Activity level | 2.228 | 1.132 | 1 | 5 |
| Household characteristics | ||||
| Computer owned (dummy) | 0.311 | 0.463 | 0 | 1 |
| Refrigerator owned (dummy) | 0.772 | 0.420 | 0 | 1 |
| Household size | 3.082 | 1.266 | 1 | 10 |
| Provincial characteristics | ||||
| GDP per capita (logarithm) | 9.624 | 0.559 | 7.923 | 10.760 |
| Total retail sales of consumer goods (logarithm) | 8.100 | 0.762 | 5.840 | 9.494 |
| Mediating variables | ||||
| Household income (1000 CNY) | 29.104 | 29.399 | 0.1 | 396.4 |
| Dietary awareness (dummy) | 0.222 | 0.415 | 0 | 1 |
| Industry transformation | 0.729 | 0.149 | 0.167 | 0.906 |
| Consumption upgrading | 0.598 | 0.056 | 0.373 | 0.686 |
| Variables | (1) | (2) | (3) | (4) |
|---|---|---|---|---|
| DQD | HBS | LBS | DDS | |
| Digital economy | −0.125 ** | −0.114 *** | −0.019 | 0.019 * |
| (0.053) | (0.037) | (0.064) | (0.011) | |
| Gender | 1.105 *** | 0.226 *** | −0.946 *** | −0.007 |
| (0.102) | (0.070) | (0.125) | (0.020) | |
| Age | −0.037 | −0.029 | 0.025 | 0.015 *** |
| (0.028) | (0.019) | (0.031) | (0.006) | |
| Age squared | 0.044 | 0.043 ** | −0.027 | −0.016 *** |
| (0.030) | (0.020) | (0.033) | (0.006) | |
| Marital status | 0.034 | −0.124 | −0.297 * | −0.061 ** |
| (0.148) | (0.095) | (0.173) | (0.029) | |
| Highest education level attained | −0.457 *** | −0.064 | 0.383 *** | 0.111 *** |
| (0.067) | (0.044) | (0.080) | (0.013) | |
| Activity level | 0.542 *** | 0.132 ** | −0.566 *** | −0.110 *** |
| (0.087) | (0.057) | (0.101) | (0.017) | |
| Computer owned | −0.968 *** | −0.097 | 0.926 *** | 0.236 *** |
| (0.207) | (0.137) | (0.243) | (0.041) | |
| Refrigerator owned | −1.261 *** | −0.197 | 1.136 *** | 0.317 *** |
| (0.222) | (0.146) | (0.250) | (0.045) | |
| Household size | −0.029 | −0.001 | −0.095 | 0.004 |
| (0.080) | (0.055) | (0.092) | (0.015) | |
| GDP per capita | 2.482 ** | −2.703 *** | −5.990 *** | −1.069 *** |
| (1.263) | (0.860) | (1.504) | (0.261) | |
| Total retail sales of consumer goods | 2.859 | 1.605 | −1.167 | −0.070 |
| (1.943) | (1.186) | (2.283) | (0.385) | |
| Constant | 0.971 | 35.677 *** | 49.141 *** | 4.195 |
| (13.861) | (9.750) | (16.990) | (2.845) | |
| Year | Yes | Yes | Yes | Yes |
| Community | Yes | Yes | Yes | Yes |
| N | 13,545 | 13,545 | 13,545 | 13,545 |
| R2 | 0.345 | 0.153 | 0.235 | 0.343 |
| Variables | (1) | (2) | (3) | (4) |
|---|---|---|---|---|
| Household Income | Dietary Awareness | Industry Transformation | Consumption Upgrading | |
| Digital economy | 0.680 *** | 0.007 * | 0.005 *** | 0.001 ** |
| (0.219) | (0.003) | (0.001) | (0.000) | |
| Controls | Yes | Yes | Yes | Yes |
| Year | Yes | Yes | Yes | Yes |
| Community | Yes | Yes | Yes | Yes |
| N | 13,545 | 11,778 | 13,545 | 13,545 |
| R2 | 0.354 | 0.218 | 0.922 | 0.861 |
| Variables | (1) | (2) |
|---|---|---|
| DQD | DQD | |
| Type I | Type II | |
| Digital economy | −0.063 | −0.223 *** |
| (0.120) | (0.058) | |
| Controls | Yes | Yes |
| Year | Yes | Yes |
| Community | Yes | Yes |
| N | 3908 | 9637 |
| R2 | 0.299 | 0.285 |
| Panel A. Grouped by Urban/Rural | DQD | DQD |
|---|---|---|
| Variables | Urban | Rural |
| Digital economy | −0.182 ** | −0.224 *** |
| (0.079) | (0.074) | |
| Type I (dummy) | −9.240 *** | −5.480 *** |
| (1.959) | (1.971) | |
| Dig * Type I | 0.063 * | 0.023 |
| (0.033) | (0.032) | |
| Controls | Yes | Yes |
| Year | Yes | Yes |
| Community | Yes | Yes |
| N | 6329 | 7216 |
| R2 | 0.352 | 0.367 |
| Panel B. Grouped by Education Level | DQD | DQD |
| Variables | Low | High |
| Digital economy | −0.221 *** | −0.174 ** |
| (0.066) | (0.078) | |
| Type I (dummy) | −8.820 *** | −7.506 *** |
| (1.802) | (1.934) | |
| Dig * Type I | 0.065 ** | 0.041 |
| (0.029) | (0.032) | |
| Controls | Yes | Yes |
| Year | Yes | Yes |
| Community | Yes | Yes |
| N | 7205 | 6340 |
| R2 | 0.393 | 0.377 |
| Panel C. Grouped by Refrigerator Owned | DQD | DQD |
| Variables | With Refrigerator | Without Refrigerator |
| Digital economy | −0.167 ** | −0.277 *** |
| (0.065) | (0.106) | |
| Type I (dummy) | −9.148 *** | −7.386 * |
| (1.513) | (4.274) | |
| Dig * Type I | 0.066 *** | 0.062 |
| (0.025) | (0.074) | |
| Controls | Yes | Yes |
| Year | Yes | Yes |
| Community | Yes | Yes |
| N | 10,454 | 3091 |
| R2 | 0.376 | 0.383 |
| Variables | (1) | (2) | (3) |
|---|---|---|---|
| E | SI | DQD | |
| Digital economy | 0.003 ** | 0.001 ** | |
| (0.002) | (0.000) | ||
| Digital economy (entropy) | −0.059 ** | ||
| (0.027) | |||
| Controls | Yes | Yes | Yes |
| Year | Yes | Yes | Yes |
| Community | Yes | Yes | Yes |
| N | 13,545 | 13,545 | 13,545 |
| R2 | 0.325 | 0.283 | 0.345 |
| Variables | (1) | (2) | (3) | (4) |
|---|---|---|---|---|
| Scale | ||||
| Digital economy | −0.099 *** | −0.041 | −0.126 *** | −0.211 *** |
| (0.025) | (0.048) | (0.042) | (0.047) | |
| Controls | Yes | Yes | Yes | Yes |
| Year | Yes | Yes | Yes | Yes |
| Community | Yes | Yes | Yes | Yes |
| N | 13,545 | 13,545 | 13,545 | 13,545 |
| Variables | (1) | (2) | (3) | (4) |
|---|---|---|---|---|
| Heckman Two-Stage Model | IV_2SLS | |||
| DQD Dummy | DQD | Digital Economy | DQD | |
| Digital economy | −0.004 | −0.124 *** | −0.166 ** | |
| (0.010) | (0.032) | (0.070) | ||
| DQD mean | 0.056 *** | |||
| (0.005) | ||||
| IMR | −6.782 *** | |||
| (0.059) | ||||
| IV | 0.010 *** | |||
| (0.000) | ||||
| Controls | Yes | Yes | Yes | Yes |
| Year | Yes | Yes | Yes | Yes |
| Community | Yes | Yes | Yes | Yes |
| F-statistics | 7457.52 | |||
| N | 13,500 | 13,500 | 13,545 | 13,545 |
| R2/Pseudo R2 | 0.030 | 0.723 | 0.028 | |
| Likelihood ratio | −9072.56 | |||
| Under identification | 820.68 | |||
| Weak identification | 20,830.38 | |||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, H.; Xu, Q.; Wang, J.; Du, M. Does the Digital Economy Promote Dietary Diversity Among Chinese Residents? Foods 2025, 14, 3873. https://doi.org/10.3390/foods14223873
Fan H, Xu Q, Wang J, Du M. Does the Digital Economy Promote Dietary Diversity Among Chinese Residents? Foods. 2025; 14(22):3873. https://doi.org/10.3390/foods14223873
Chicago/Turabian StyleFan, Hao, Qian Xu, Jingjing Wang, and Mingming Du. 2025. "Does the Digital Economy Promote Dietary Diversity Among Chinese Residents?" Foods 14, no. 22: 3873. https://doi.org/10.3390/foods14223873
APA StyleFan, H., Xu, Q., Wang, J., & Du, M. (2025). Does the Digital Economy Promote Dietary Diversity Among Chinese Residents? Foods, 14(22), 3873. https://doi.org/10.3390/foods14223873

