Glycemic and Insulinemic Responses of Fresh, Freeze-Dried, and Cooked Apples: As Single Food or Preload
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Processing
2.2. Subjects
2.3. Test Meal and Study Design
2.3.1. Blood Glucose and Insulin Response of RA, CA, and FA
2.3.2. Blood Glucose and Insulin Measurements of RA, CA, and FA
2.3.3. Blood Glucose and Insulin Responses to Rice Meal with RA, CA, and FA as Preload
2.4. Determination of Total Phenolic and Flavonoid Content
2.5. Texture Analysis
2.6. Buffering Capacity Measurement
2.7. Viscosity of Fruits After In Vitro Digestion
2.8. Statistical Analysis
3. Results
3.1. Subjects
3.2. PGRs to Raw and Processed Apple
3.3. PIRs to Raw and Processed Apple
3.4. PGRs to Raw and Processed Apple as Preload
3.5. TPC and TFC
3.6. Instrumental Texture Parameters
3.7. Buffering Capacity
3.8. Viscosity of the Different Digesta
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AC | Available carbohydrate |
| GI | Glycemic index |
| OGTT | Oral glucose tolerance test |
| RA + R | Preprandial load of raw apples and rice |
| CA + R | Preprandial load of cooked apples and rice |
| FA + R | Preprandial load of freeze-dried apples and rice |
| W + R | Preprandial load of water and rice |
| IAUC | Incremental area under the curve |
| NAUC | Negative area under the curve |
| CONGA1glu and CONIA1ins | Consecutive 1 h intervals of net glucose/insulin action |
| PGR | Postprandial glycemic response |
| PIR | Postprandial insulinemic response |
| SD | Standard deviation |
| II | Insulin index |
References
- Wallace, T.C.; Bailey, R.L.; Blumberg, J.B.; Burton-Freeman, B.; Chen, C.-Y.O.; Crowe-White, K.M.; Drewnowski, A.; Hooshmand, S.; Johnson, E.; Lewis, R.; et al. Fruits, vegetables, and health: A comprehensive narrative, umbrella review of the science and recommendations for enhanced public policy to improve intake. Crit. Rev. Food Sci. Nutr. 2020, 60, 2174–2211. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, D.J.A.; Srichaikul, K.; Kendall, C.W.C.; Sievenpiper, J.L.; Abdulnour, S.; Mirrahimi, A.; Meneses, C.; Nishi, S.; He, X.; Lee, S.; et al. The relation of low glycaemic index fruit consumption to glycaemic control and risk factors for coronary heart disease in type 2 diabetes. Diabetologia 2011, 54, 271–279. [Google Scholar] [CrossRef]
- National Health and Medical Research Council; Department of Health and Ageing Eat for Health. Australian Dietary Guidelines. 2013. Available online: https://www.nhmrc.gov.au/guidelinesforguidelines (accessed on 20 May 2022).
- Public Health England. Government Dietary Recommendations. 2016. Available online: https://www.gov.uk/government/organisations/office-for-health-improvement-and-disparities (accessed on 20 May 2022).
- U.S. Department of Health and Human Services; U.S. Department of Agriculture. 2015–2020 Dietary Guidelines for Americans, 8th ed.; U.S. Government Printing Office: Washington, DC, USA, 2015. Available online: https://www.hhs.gov/ (accessed on 20 May 2022).
- Debra, R.K.; O’Neil, C.E.; Julie, M.J. Dried fruit consumption is associated with improved diet quality and reduced obesity in US adults: National Health and Nutrition Examination Survey, 1999–2004. Nutr. Res. 2011, 31, 460–467. [Google Scholar] [CrossRef]
- Sheau, C.C.; Shirin, H.; Raz, L.S.; Mark, E.P.; Kenneth, B.; Bahram, H.A. Daily apple versus dried plum: Impact on cardiovascular disease risk factors in postmenopausal women. J. Acad. Nutr. Diet. 2012, 112, 1158–1168. [Google Scholar] [CrossRef]
- Sui, K.C.; Cesarettin, A.; Fereidoon, S. Review of dried fruits: Phytochemicals, antioxidant efficacies, and health benefits. J. Funct. Foods 2016, 21, 113–132. [Google Scholar] [CrossRef]
- Pablo, H.A.; Lucía, C.B.; Mònica, B.; Jordi, S.S. Nuts and dried fruits: An update of their beneficial effects on type 2 diabetes. Nutrients 2017, 9, 673. [Google Scholar] [CrossRef]
- Shahidi, F.; Tan, Z.L. Raisins: Processing, phytochemicals, and health benefits. In Dried Fruits: Phytochemicals and Health Effects; Alasalvar, C., Shahidi, F., Eds.; Wiley Blackwell: Hoboken, NJ, USA, 2013; pp. 372–392. [Google Scholar]
- Mossine, V.V.; Mawhinney, T.P.; Giovannucci, E.L. Dried fruit intake and cancer: A systematic review of observational studies. Adv. Nutr. 2020, 11, 237–250. [Google Scholar] [CrossRef]
- Wang, S.N.; Jiang, Z.Z.; Fang, H.H.; Xu, Y.W.; Chen, X. Malus sieversii: The origin, flavonoid synthesis mechanism, and breeding of red-skinned and red-fleshed apples. Hortic. Res. 2018, 5, 70. [Google Scholar] [CrossRef]
- Bondonno, C.P.; Yang, X.; Croft, K.D.; Michael, J.C.; Natalie, C.W.; Lisa, R.; Ian, B.P.; Ewald, S.; Aidilla, M.; Jonathan, M.H. Flavonoid-rich apples and nitrate-rich spinach augment nitric oxide status and improve endothelial function in healthy men and women: A randomized controlled trial. Free Radic. Biol. Med. 2012, 52, 95–102. [Google Scholar] [CrossRef]
- Jensen, E.N.; Buch-Andersen, T.; Ravn-Haren, G.; Dragsted, L.O. Mini-review: The effects of apples on plasma cholesterol levels and cardiovascular risk—A review of the evidence. J. Hortic. Sci. Biotechnol. 2009, 84, 34–41. [Google Scholar] [CrossRef]
- Chun, O.K.; Chung, S.; Claycombe, K.J.; Song, W.O. Serum c-reactive protein concentrations are inversely associated with dietary flavonoid intake in US adults. J. Nutr. 2008, 138, 753–760. [Google Scholar] [CrossRef]
- Johnston, K.L.; Clifford, M.N.; Morgan, L.M. Possible role for apple juice phenolic, compounds in the acute modification of glucose tolerance and gastrointestinal hormone secretion in humans. J. Sci. Food Agric. 2002, 82, 1800–1805. [Google Scholar] [CrossRef]
- Atkinson, F.S.; Brand-Miller, J.C.; Foster-Powell, K.; Buyken, A.E.; Goletzke, J. International tables of glycemic index and glycemic load values 2021: A systematic review. Am. J. Clin. Nutr. 2021, 114, 1625–1632. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Zhao, W.; Wang, L.; Fan, Z.; Zhu, R.; Wu, Y.; Zhou, Y. Apple preload halved the postprandial glycaemic response of rice meal on in healthy subjects. Nutrients 2019, 11, 2912. [Google Scholar] [CrossRef] [PubMed]
- Guasch-Ferre, M.; Merino, J.; Sun, Q.; Fito, M.; Salas-Salvado, J. Dietary polyphenols, mediterranean diet, prediabetes, and type 2 diabetes: A narrative review of the evidence. Oxid. Med. Cell. Longev. 2017, 2017, 6723931. [Google Scholar] [CrossRef]
- Veronese, N.; Solmi, M.; Caruso, M.G.; Giannelli, G.; Osella, A.R.; Evangelou, E.; Maggi, S.; Fontana, L.; Stubbs, B.; Tzoulaki, I. Dietary fiber and health outcomes: An umbrella review of systematic reviews and meta-analyses. Am. J. Clin. Nutr. 2018, 107, 436–444. [Google Scholar] [CrossRef]
- Megias-Perez, R.; Gamboa-Santos, J.; Cristina Soria, A.; Villamiel, M.; Montilla, A. Survey of quality indicators in commercial dehydrated fruits. Food Chem. 2014, 150, 41–48. [Google Scholar] [CrossRef]
- Verghese, M.; Willis, S.; Boateng, J.; Gomaa, A.; Kaur, R. Effect of Food Processing on Antioxidant Potential, Availability, and Bioavailability. Annu. Rev. Food Sci. Technol. 2021, 12, 307–329. [Google Scholar] [CrossRef]
- Omolola, A.O.; Jideani, A.I.O.; Kapila, P.F. Quality properties of fruits as affected by drying operation. Crit. Rev. Food Sci. Nutr. 2017, 57, 95–108. [Google Scholar] [CrossRef]
- Lou, M.; Ritzoulis, C.; Liu, J.; Zhang, X.; Han, J.; Liu, W. In vitro digestion of tofu with different textures using an artificial gastric digestive system. Food Res. Int. 2022, 157, 111458. [Google Scholar] [CrossRef]
- Mennah-Govela, Y.A.; Bornhorst, G.M. Food buffering capacity: Quantification methods and its importance in digestion and health. Food Funct. 2021, 12, 21. [Google Scholar] [CrossRef]
- Lentle, R.G.; Janssen, P.W.M. Manipulating digestion with foods designed to change the physical characteristics of digesta. Crit. Rev. Food Sci. Nutr. 2010, 50, 130–145. [Google Scholar] [CrossRef]
- Zhu, R.; Fan, Z.; Dong, Y.; Liu, M.; Wang, L.; Pan, H. Postprandial glycaemic responses of dried fruit-containing meals in healthy adults: Results from a randomised trial. Nutrients 2018, 10, 694. [Google Scholar] [CrossRef] [PubMed]
- Gan, D.; Xu, M.; Chen, L.; Cui, S.; Deng, C.; Qiao, Q.; Guan, R.; Zhong, F. Intake of Sugar Substitute Gummy Candies Benefits the Glycemic Response in Healthy Adults: A Prospective Crossover Clinical Trial. Gels 2022, 8, 642. [Google Scholar] [CrossRef]
- Qi, K.; Cao, S.; Li, C. Possible interaction between pectin and gluten alters the starch digestibility and texture of wheat bread. Int. J. Biol. Macromol. 2024, 269 Pt 1, 131907. [Google Scholar] [CrossRef]
- ISO 26642-2010; Food Products–Determination of the Glycaemic Index (GI) and Recommendation for Food Classification. International Organization for Standardization: Geneva, Switzerland, 2010. Available online: https://cdn.standards.iteh.ai/samples/43633/7bfdd738c48247d39e08d1205c80b00d/ISO-26642-2010.pdf (accessed on 20 May 2022).
- Brouns, F.; Bjorck, I.; Frayn, K.N.; Gibbs, A.L.; Lang, V.; Slama, G.; Wolever, T. Glycaemic index methodology. Nutr. Res. Rev. 2005, 18, 145. [Google Scholar] [CrossRef]
- Jakobek, L.; Boc, M.; Barron, A.R. Optimization of ultrasonic-assisted extraction of phenolic compounds from apples. Food Anal. Methods 2015, 8, 2612–2625. [Google Scholar] [CrossRef]
- Dewanto, V.; Wu, X.Z.; Adom, K.K.; Liu, R.H. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. Am. Chem. Soc. 2002, 50, 3010–3014. [Google Scholar] [CrossRef]
- Giongo, L.; Ajelli, M.; Poncetta, P.; Ramos-Garcia, M.; Sambo, P.; Farneti, B. Raspberry texture mechanical profiling during fruit ripening and storage. Postharvest Biol. Technol. 2019, 149, 177–186. [Google Scholar] [CrossRef]
- Wu, Y.; Fan, Z.; Lou, X.; Zhao, W.; Lu, X. Combination of texture-induced oral processing and vegetable preload strategy reduced glycemic excursion but decreased insulin sensitivity. Nutrients 2022, 14, 1318. [Google Scholar] [CrossRef]
- Salaun, F.; Mietton, B.; Gaucheron, F. Buffering capacity of dairy products. Int. Dairy J. 2005, 15, 95–109. [Google Scholar] [CrossRef]
- Mishra, S.; Edwards, H.; Hedderley, D.; Podd, J.; Monro, J. Kiwifruit non-sugar components reduce glycaemic response to co-ingested cereal in humans. Nutrients 2017, 9, 1195. [Google Scholar] [CrossRef] [PubMed]
- Giger-Reverdin, S.; Duvaux-Ponter, C.; Sauvant, D.; Martin, O.; Do Prado, I.N.; Muller, R. Intrinsic buffering capacity of feedstuffs. Anim. Feed. Sci. Technol. 2002, 96, 83–102. [Google Scholar] [CrossRef]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef]
- Wu, P.; Dhital, S.; Williams, B.A.; Chen, X.D.; Gidley, M.J. Rheological and microstructural properties of porcine gastric digesta and diets containing pectin or mango powder. Carbohydr. Polym. 2016, 148, 216–226. [Google Scholar] [CrossRef]
- Huang, M.; Zhao, X.; Mao, Y.; Chen, L.; Yang, H. Metabolite release and rheological properties of sponge cake after in vitro digestion and the influence of a flour replacer rich in dietary fibre. Food Res. Int. 2021, 144, 110355. [Google Scholar] [CrossRef]
- Wyatt, P.; Berry, S.E.; Finlayson, G.; O’Driscoll, R.; Hadjigeorgiou, G.; Drew, D.A.; Khatib, H.A.; Nguyen, L.H.; Linenberg, I.; Chan Andrew, T.; et al. Postprandial glycaemic dips predict appetite and energy intake in healthy individuals. Nat. Metab. 2021, 3, 523–529. [Google Scholar] [CrossRef]
- Borer, K.T.; Lin, P.; Wuorinen, E. Timing of meals and exercise affects hormonal control of glucoregulation, insulin resistance, substrate metabolism, and gastrointestinal hormones, but has little effect on appetite in postmenopausal women. Nutrients 2021, 13, 4342. [Google Scholar] [CrossRef]
- Teo, P.S.; Lim, A.J.; Goh, A.T.; Janani, R.; Choy, J.Y.M.; McCrickerd, K.; Forde, C.G. Texture-based differences in eating rate influence energy intake for minimally processed and ultra-processed meals. Am. J. Clin. Nutr. 2022, 116, 244–254. [Google Scholar] [CrossRef]
- Krokida, M.K.; Kiranoudis, C.T.; Maroulis, Z.B. Viscoelastic behaviour of dehydrated products during rehydration. J. Food Eng. 1999, 40, 269–277. [Google Scholar] [CrossRef]
- Matsunaga, T.; Adachi, T.; Yasuda, K. The effect of co-ingesting rice and liquid on glycemic response and gastric emptying in healthy subjects. Physiol. Behav. 2025, 292, 114837. [Google Scholar] [CrossRef] [PubMed]
- Repin, N.; Kay, B.A.; Cui, S.W.; Wright, A.J.; Duncan, A.M.; Goff, H.D. Investigation of mechanisms involved in postprandial glycemia and insulinemia attenuation with dietary fibre consumption. Food Funct. 2017, 8, 2142–2154. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Hsu, W.H.; Hollis, J.H. The impact of food viscosity on eating rate, subjective appetite, glycemic response and gastric emptying rate. PLoS ONE 2013, 8, e67482. [Google Scholar] [CrossRef]
- Bornhorst, G.M.; Ferrua, M.J.; Rutherfurd, S.M.; Heldman, D.R.; Singh, R.P. Rheological properties and textural attributes of cooked brown and white rice during gastric digestion in vivo. Food Biophys. 2013, 8, 137–150. [Google Scholar] [CrossRef]
- Zamaratskaia, G.; Johansson, D.P.; Junqueira, M.A.; Deissler, L.; Langton, M.; Hellstrom, P.M.; Landberg, R. Impact of sourdough fermentation on appetite and postprandial metabolic responses—A randomised cross-over trial with whole grain rye crispbread. Br. J. Nutr. 2017, 118, 686. [Google Scholar] [CrossRef]
- Ranawana, V.; Monro, J.A.; Mishra, S.; Henry, C.J.K. Degree of particle size breakdown during mastication may be a possible cause of interindividual glycemic variability. Nutr. Res. 2010, 30, 246–254. [Google Scholar] [CrossRef]
- Wei, J.; Liu, A.; Fan, Z.; Peng, X.; Lou, X.; Lu, X.; Hu, J. Cooking Increased the Postprandial Glycaemic Response but Enhanced the Preload Effect of Air-Dried Jujube. Foods 2025, 14, 1142. [Google Scholar] [CrossRef]
- Liljeberg, H.; Bjorck, I. Delayed gastric emptying rate may explain improved glycaemia in healthy subjects to a starchy meal with added vinegar. Eur. J. Clin. Nutr. 1998, 52, 368–371. [Google Scholar] [CrossRef]
- Evans, R.A.; Frese, M.; Romero, J.; Cunningham, J.H.; Mills, K.E. Fructose replacement of glucose or sucrose in food or beverages lowers postprandial glucose and insulin without raising triglycerides: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2017, 106, 506–551. [Google Scholar] [CrossRef]
- Günther, A.L.B.; Schulze, M.B.; Kroke, A.; Diethelm, K.; Joslowski, G.; Krupp, D.; Wudy, S.; Buyken, A.E. Early Diet and Later Cancer Risk: Prospective Associations of Dietary Patterns During Critical Periods of Childhood with the GH-IGF Axis, Insulin Resistance and Body Fatness in Younger Adulthood. Nutr. Cancer Int. J. 2015, 67, 877–892. [Google Scholar] [CrossRef]
- Derossi, A.; Fiore, A.G.; De Pilli, T.; Severini, C. A review on acidifying treatments for vegetable canned food. Crit. Rev. Food Sci. Nutr. 2011, 51, 955–964. [Google Scholar] [CrossRef]
- Torija, M.J.; Beltran, G.; Novo, M.; Poblet, M.; Rozes, N.; Mas, A.; Guillamon, J.M. Effect of organic acids and nitrogen source on alcoholic fermentation: Study of their buffering capacity. J. Agric. Food Chem. 2003, 51, 916–922. [Google Scholar] [CrossRef]
- Gao, Q.; Wu, C.; Wang, M.; Xu, B.; Du, L. Effect of drying of jujubes (Ziziphus jujuba Mill.) on the contents of sugars, organic acids, alpha-tocopherol, beta-carotene, and phenolic compounds. J. Agric. Food Chem. 2013, 61, 4665. [Google Scholar] [CrossRef]
- Castro-Acosta, M.L.; Stone, S.G.; Mok, J.E.; Fu, C.I.; Lenihan-Geels, G.N.; Corpe, C.P.; Hall, W.L. Apple and blackcurrant polyphenol-rich drinks decrease postprandial glucose, insulin and incretin response to a high-carbohydrate meal in healthy men and women. J. Nutr. Biochem. 2017, 49, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.B.; Högger, P. Dietary polyphenols and type 2 diabetes: Current insights and future perspectives. Curr. Med. Chem. 2015, 22, 23. [Google Scholar] [CrossRef]
- Hanhineva, K.; Torronen, R.; Bondia-Pons, I.; Pekkinen, J.; Kolehmainen, M.; Mykkanan, H.; Poutanen, K. Impact of Dietary Polyphenols on Carbohydrate Metabolism. Polyphen. Hum. Health Dis. 2014, 1, 95–111. [Google Scholar] [CrossRef]
- Sylvie, B.; Alexandre, L.; Barbara, G.; Caroline, G.; Witold, D.; Ewelina, H.; Renata, K.; Dominika, Ś.T.; Ewa, R.; Carine, L.B. Impact of conventional and innovative processing conditions on organoleptic and nutritional properties of applesauce from organic and conventional production systems. Food Chem. 2025, 467, 142346. [Google Scholar] [CrossRef]
- Gómez-Mascaraque, G.L.; Dhital, S.; López-Rubio, A.; Michael, J.G. Dietary polyphenols bind to potato cells and cellular components. J. Funct. Foods 2017, 37, 283–292. [Google Scholar] [CrossRef]
- Zhao, W.; Liu, Z.; Fan, Z.; Wu, Y.; Lou, X.; Liu, A.; Lu, X. Apple preload increased postprandial insulin sensitivity of a high glycemic rice meal only at breakfast. Eur. J. Nutr. 2023, 62, 1427–1439. [Google Scholar] [CrossRef]
- Marjorie, R.; Victor, L.F. Canned Vegetable and Fruit Consumption Is Associated with Changes in Nutrient Intake and Higher Diet Quality in Children and Adults: National Health and Nutrition Examination Survey 2001–2010. J. Acad. Nutr. Diet. 2016, 116, 940–948. [Google Scholar] [CrossRef]
- Anthony, F.; Céline, R.; André, M. Association between consumption of fruit or processed fruit and chronic diseases and their risk factors: A systematic review of meta-analyses. Nutr. Rev. 2019, 77, 376–387. [Google Scholar] [CrossRef] [PubMed]








| Test Fruits (g) | Water (g) a | AC (g) b | |||
|---|---|---|---|---|---|
| Glucose | Fructose | Sucrose | |||
| RA c | 441.9 | 250 | 11.5 | 30.7 | 7.4 |
| CA c | 575.0 | 250 | 11.5 | 30.7 | 7.4 |
| FA c | 65.0 | 650 | 13.4 | 27.2 | 9.0 |
| Preload | Rice Meal | |||||||
|---|---|---|---|---|---|---|---|---|
| Food (g) | Water (g) | AC (g) | Glucose (g) | Sucrose (g) | Fructose (g) | Rice (g) a | AC (g) | |
| RA + R | 132.6 | 23 | 15 | 3.5 | 9.2 | 2.2 | 69.9 | 35 |
| CA + R a | 155.6 | - | 15 | 3.5 | 9.2 | 2.2 | 69.9 | 35 |
| FA + R | 19.5 | 136.1 | 15 | 3.5 | 9.2 | 2.2 | 69.9 | 35 |
| W + R | - | 54 | - | - | - | - | 171.5 | 50 |
| Men (n = 6) | Women (n = 8) | |
|---|---|---|
| Age, y | 24 (2) | 22 (1) |
| BMI, kg/m2 | 22.0 (1.6) | 20.9 (1.5) |
| Fat mass, % | 16.6 (3.7) | 25.1 (1.5) |
| Height, cm | 175.8 (5.55) | 161.3 (5.0) |
| Weight, kg | 68.1 (4.7) | 54.6 (5.9) |
| Waistline, cm | 80.5 (4.2) | 68.4 (5.5) |
| Hipline, cm | 94.8 (2.4) | 91.3 (5.2) |
| Waist–hip ratio | 84.9 (3.9) | 74.9 (2.8) |
| Basal metabolic rate, kcal | 161.8 (68.0) | 1226.5 (120.8) |
| Test Meal | iAUCglu (mmol × min/L) | iAUCglu0–60% | NAUCglu (mmol × min/L) | Peakglu (mmol/L) | SDglu (mmol/L) |
|---|---|---|---|---|---|
| RA | 112.5 ± 9.9 b | 87.2 ± 4.8 a | 22.2 ± 3.5 b | 2.8 ± 0.2 b | 1.1 ± 0.1 b |
| CA | 125.9 ± 11.0 b | 81.0 ± 3.2 a | 12.3 ± 3.9 b,c | 2.9 ± 0.2 b | 1.1 ± 0.1 b |
| FA | 122.4 ± 17.8 b | 68.6 ± 2.8 b | 7.6 ± 6.0 c | 2.1 ± 0.2 c | 0.8 ± 0.1 c |
| G | 226.9 ± 21.1 a | 69.3 ± 4.493 b | 32.4 ± 6.5 a | 4.0 ± 0.2 a | 1.6 ± 0.2 a |
| Test Meal | iAUCins (mIU × min/L) | iAUCins0–60% | Peakins (mIU/L) | SDins (mIU/L) | Matsuda Index | HOMA-IR AUC (mmol × mIU\× min/L2) |
|---|---|---|---|---|---|---|
| RA | 2112.6 ± 235.9 b | 86.8 ± 2.4 a | 51.4 ± 4.7 a | 19.5 ± 1.9 a | 121.4± 36.9 b | 913.8 ± 97.5 b |
| CA | 2096.2 ± 209.2 b | 77.8 ± 4.1 b | 44.0 ± 3.7 a | 16.3 ± 1.4 a | 143.9 ± 46.2 b | 920.4 ± 114.5 b |
| FA | 1688.6 ± 205.1 b | 71.9 ± 4.1 b | 31.2 ± 3.7 b | 11.0 ± 1.3 b | 142.9 ± 40.7 b | 744.5 ± 101.3 b |
| G | 2998.4 ± 208.4 a | 65.7 ± 3.1 b | 53.6 ± 4.4 a | 19.1 ± 1.5 a | 161.1 ± 45.7 a | 1329.6 ± 120.2 a |
| Test Meal | iAUCglu240 (mmol × min/L) | iAUCglu0–30% | iAUCglu30–90% | Peakglu (mmol/L) | CONGA1glu (mmol/L) | SDglu (mmol/L) |
|---|---|---|---|---|---|---|
| RA + R | 275.1 ± 22.3 | 12.2 ± 1.2 a | 37.1 ± 3.6 b | 2.3 ± 0.2 b | 1.1 ± 0.1 c | 0.8 ± 0.1 b |
| CA + R | 224.3 ± 26.9 | 11.3 ± 1.6 a | 44.2 ± 3.6 a | 2.5 ± 0.3 b | 1.1 ± 0.1 c | 0.8 ± 0.1 b |
| FA + R | 250.4 ± 27.8 | 5.9 ± 1.0 b | 39.5 ± 3.1 b | 2.6 ± 0.3 b | 1.4 ± 0.1 b | 0.9 ± 0.1 b |
| W + R | 264.5 ± 32.6 | 2.1 ± 0.6 c | 46.3 ± 2.3 a | 3.4 ± 0.3 a | 1.9 ± 0.2 a | 1.2 ± 0.1 a |
| Test Meal | iAUCins (mIU × min/L) | iAUCins0–30% | iAUCins30–90% | Peakins (mIU/L) | CONIA1ins (mIU/L) | SDins (mIU/L) |
|---|---|---|---|---|---|---|
| RA + R | 2647.0 ± 324.4 | 9.7 ± 1.4 a | 43.4 ± 3.2 b | 31.6 ± 3.3 b | 16.8 ± 2.7 c | 0.8 ± 0.2 b |
| CA + R | 3094.0 ± 416.4 | 10.0 ± 1.8 a | 48.3 ± 3.8 a | 40.4 ± 4.5 a | 22.6 ± 3.0 b | 0.8 ± 0.3 b |
| FA + R | 2732.4 ± 332.9 | 4.8 ± 0.8 b | 49.2 ± 3.4 a | 36.6 ± 4.4 a | 23.4 ± 4.1 b | 0.9 ± 0.3 b |
| W + R | 3228.1 ± 391.2 | 0.4 ± 0.1 c | 50.7 ± 2.8 a | 46.8 ± 4.0 a | 31.0 ± 2.9 a | 1.2 ± 0.3 a |
| Test Sample | Hardness (N) | Cohesiveness | Puncture Flexibility (mm) | Puncture Force (N) | Shear Force (g) | Shear Toughness (g × mm) |
|---|---|---|---|---|---|---|
| RA | 46.8 ± 5.8 a | 0.3 ± 0.02 a | 3.7 ± 1.6 | 3.0 ± 0.3 a | 1761.2 ± 159.1 a | 4302.6 ± 472.2 a |
| CA | 0.4 ± 0.1 b | 0.3 ± 0.03 a | 3.5 ± 1.7 | 0.1 ± 0.01 b | 97.6 ± 14.1 c | 303.6 ± 86.9 c |
| FA | 42.6 ± 10.0 a | 0.1 ± 0.01 b | 3.2 ± 1.0 | 4.4 ± 1.0 a | 1018.0 ± 230.6 b | 1197.5 ± 212.2 b |
| Sample | Initial pH | Acid Used (mmoL) | Alkali Used (mmoL) | Difference (mmoL) | Acid BC (mmoL H+/unit pH) |
|---|---|---|---|---|---|
| RA | 4.15 (0.08) a | 3.00 (0.25) a | 3.75 (0.25) a | 0.75 (0.25) a | 1.13(0.07) a |
| CA | 3.98 (0.03) a | 3.00 (0.00) a | 3.81 (0.13) a | 0.81 (0.13) a | 1.21(0.02) a |
| FA | 4.02 (0.01) a | 3.00 (0.00) a | 3.75 (0.00) a | 0.75 (0.00) a | 1.20(0.01) a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, J.; Liu, A.; Fan, Z.; Peng, X.; Lou, X.; Lu, X.; Hu, J. Glycemic and Insulinemic Responses of Fresh, Freeze-Dried, and Cooked Apples: As Single Food or Preload. Foods 2025, 14, 3869. https://doi.org/10.3390/foods14223869
Wei J, Liu A, Fan Z, Peng X, Lou X, Lu X, Hu J. Glycemic and Insulinemic Responses of Fresh, Freeze-Dried, and Cooked Apples: As Single Food or Preload. Foods. 2025; 14(22):3869. https://doi.org/10.3390/foods14223869
Chicago/Turabian StyleWei, Jinjie, Anshu Liu, Zhihong Fan, Xiyihe Peng, Xinling Lou, Xuejiao Lu, and Jiahui Hu. 2025. "Glycemic and Insulinemic Responses of Fresh, Freeze-Dried, and Cooked Apples: As Single Food or Preload" Foods 14, no. 22: 3869. https://doi.org/10.3390/foods14223869
APA StyleWei, J., Liu, A., Fan, Z., Peng, X., Lou, X., Lu, X., & Hu, J. (2025). Glycemic and Insulinemic Responses of Fresh, Freeze-Dried, and Cooked Apples: As Single Food or Preload. Foods, 14(22), 3869. https://doi.org/10.3390/foods14223869

