Effects of Yomogi Tea on Lipid Metabolism in Renal Tubular HK-2 Cells
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Preparation
2.2. Cell Line and Culture Conditions
2.3. Cell Viability Assay
2.4. Cellular Lipid Extraction
2.5. LC/MS Analysis
2.6. Oil Red O Staining
2.7. mRNA Expression and Reverse Transcription-Quantitative Polymerase Chain Reaction (RT-qPCR)
2.8. Statistical Analysis
3. Results
3.1. Yomogi Tea Improved Cellular Lipid Content
3.1.1. Cell Viability
3.1.2. TG and FFA Content
3.2. Yomogi Tea Alleviated LDs Accumulation
3.3. Transcriptional Regulation of Lipogenesis and Lipolysis Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Heindel, J.J.; Blumberg, B.; Cave, M.; Machtinger, R.; Mantovani, A.; Mendez, M.A.; Nadal, A.; Palanza, P.; Panzica, G.; Sargis, R.; et al. Metabolism disrupting chemicals and metabolic disorders. Reprod. Toxicol. 2017, 68, 3–33. [Google Scholar] [CrossRef]
- Hou, C.; Zhang, W.M.; Li, J.K.; Du, L.; Lv, O.; Zhao, S.J.; Li, J. Beneficial Effects of Pomegranate on Lipid Metabolism in Metabolic Disorders. Mol. Nutr. Food Res. 2019, 63, e1800773. [Google Scholar] [CrossRef] [PubMed]
- Moghadasian, M.H.; Kaur, R.; Kostal, K.; Joshi, A.A.; Molaei, M.; Le, K.; Fischer, G.; Bonomini, F.; Favero, G.; Rezzani, R.; et al. Anti-Atherosclerotic Properties of Wild Rice in Low-Density Lipoprotein Receptor Knockout Mice: The Gut Microbiome, Cytokines, and Metabolomics Study. Nutrients 2019, 11, 2894. [Google Scholar] [CrossRef]
- Whaley-Connell, A.; Sowers, J.R. Obesity and kidney disease: From population to basic science and the search for new therapeutic targets. Kidney Int. 2017, 92, 313–323. [Google Scholar] [CrossRef]
- Kotlyarov, S.; Bulgakov, A. Lipid Metabolism Disorders in the Comorbid Course of Nonalcoholic Fatty Liver Disease and Chronic Obstructive Pulmonary Disease. Cells 2021, 10, 2978. [Google Scholar] [CrossRef]
- Guebre-Egziabher, F.; Alix, P.M.; Koppe, L.; Pelletier, C.C.; Kalbacher, E.; Fouque, D.; Soulage, C.O. Ectopic lipid accumulation: A potential cause for metabolic disturbances and a contributor to the alteration of kidney function. Biochimie 2013, 95, 1971–1979. [Google Scholar] [CrossRef]
- Wu, X.Z.; Chen, Z.; Wu, Y.; Chen, Y.F.; Jia, J.P.; Shen, N.Q.; Chiba, H.; Hui, S.P. Flazin as a Lipid Droplet Regulator against Lipid Disorders. Nutrients 2022, 14, 1501. [Google Scholar] [CrossRef] [PubMed]
- Thongnak, L.; Pongchaidecha, A.; Lungkaphin, A. Renal Lipid Metabolism and Lipotoxicity in Diabetes. Am. J. Med. Sci. 2020, 359, 84–99. [Google Scholar] [CrossRef]
- Jiale Chang, Y.J. Baoxin Zhang, Xiangyu Kong, Jirigala Ariben, Ting Hao, Siqin Li, Xing Wang, Study on Lipid-Lowering and Anti-Inflammatory Effects of Wild Mugwort (Mongolian Medicine TGLG-1) Based on LC-MS. Adv. Clin. Med. 2023, 13, 20048. [Google Scholar] [CrossRef]
- Yamamoto, N.; Kanemoto, Y.; Ueda, M.; Kawasaki, K.; Fukuda, I.; Ashida, H. Anti-obesity and anti-diabetic effects of ethanol extract of Artemisia princeps in C57BL/6 mice fed a high-fat diet. Food Funct. 2011, 2, 45–52. [Google Scholar] [CrossRef]
- Han, J.M.; Kim, M.J.; Baek, S.H.; An, S.; Jin, Y.Y.; Chung, H.G.; Baek, N.I.; Choi, M.S.; Lee, K.T.; Jeong, T.S. Antiatherosclerotic effects of Artemisia princeps Pampanini cv. Sajabal in LDL receptor deficient mice. J. Agric. Food Chem. 2009, 57, 1267–1274. [Google Scholar] [CrossRef]
- Chen, Z.; Shrestha, R.; Yang, X.Y.; Wu, X.Z.; Jia, J.P.; Chiba, H.; Hui, S.P. Oxidative Stress and Lipid Dysregulation in Lipid Droplets: A Connection to Chronic Kidney Disease Revealed in Human Kidney Cells. Antioxidants 2022, 11, 1387. [Google Scholar] [CrossRef]
- Luyckx, V.A.; Tonelli, M.; Stanifer, J.W. The global burden of kidney disease and the sustainable development goals. Bull. World Health Organ. 2018, 96, 414–422. [Google Scholar] [CrossRef]
- GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2020, 395, 709–733. [Google Scholar] [CrossRef]
- Hsu, C.N.; Hou, C.Y.; Chang, C.; Tain, Y.L. Resveratrol Butyrate Ester Protects Adenine-Treated Rats against Hypertension and Kidney Disease by Regulating the Gut-Kidney Axis. Antioxidants 2022, 11, 83. [Google Scholar] [CrossRef]
- Fogo, A.B. Mechanisms of progression of chronic kidney disease. Pediatr. Nephrol. 2007, 22, 2011–2022. [Google Scholar] [CrossRef] [PubMed]
- Rapa, S.F.; Di Iorio, B.R.; Campiglia, P.; Heidland, A.; Marzocco, S. Inflammation and Oxidative Stress in Chronic Kidney Disease-Potential Therapeutic Role of Minerals, Vitamins and Plant-Derived Metabolites. Int. J. Mol. Sci. 2020, 21, 263. [Google Scholar] [CrossRef] [PubMed]
- Gai, Z.B.; Wang, T.Q.; Visentin, M.; Kullak-Ublick, G.A.; Fu, X.J.; Wang, Z.G. Lipid Accumulation and Chronic Kidney Disease. Nutrients 2019, 11, 722. [Google Scholar] [CrossRef]
- Han, Y.C.; Xiong, S.; Zhao, H.; Yang, S.K.; Yang, M.; Zhu, X.J.; Jiang, N.; Xiong, X.F.; Gao, P.; Wei, L.; et al. Lipophagy deficiency exacerbates ectopic lipid accumulation and tubular cells injury in diabetic nephropathy. Cell Death Dis. 2021, 12, 1031. [Google Scholar] [CrossRef] [PubMed]
- Olzmann, J.A.; Carvalho, P. Dynamics and functions of lipid droplets. Nat. Rev. Mol. Cell Biol. 2019, 20, 137–155. [Google Scholar] [CrossRef]
- Jiang, X.Y.; Wang, H.Z.; Nie, K.X.; Gao, Y.; Chen, S.; Tang, Y.H.; Wang, Z.; Su, H.; Dong, H. Targeting lipid droplets and lipid droplet-associated proteins: A new perspective on natural compounds against metabolic diseases. Chin. Med. 2024, 19, 120. [Google Scholar] [CrossRef]
- Sandner, G.; König, A.; Wallner, M.; Weghuber, J. Functional foods—Dietary or herbal products on obesity: Application of selected bioactive compounds to target lipid metabolism. Curr. Opin. Food Sci. 2020, 34, 9–20. [Google Scholar] [CrossRef]
- Trinh, H.T.; Lee, I.A.; Hyun, Y.J.; Kim, D.H. Artemisia princeps Pamp. Essential oil and its constituents eucalyptol and α-terpineol ameliorate bacterial vaginosis and vulvovaginal candidiasis in mice by inhibiting bacterial growth and NF-κB activation. Planta Med. 2011, 77, 1996–2002. [Google Scholar] [CrossRef]
- Joh, E.-h.; Trinh, H.-t.; Han, M.J.; Kim, D.-H. Anti-Inflammatory Effect of Fermented Artemisia princeps Pamp in Mice. Biomol. Ther. 2010, 18, 308–315. [Google Scholar] [CrossRef]
- Zhao, Q.-C.; Kiyohara, H.; Yamada, H. Anti-complementary neutral polysaccharides from leaves of Artemisia princeps. Phytochemistry 1993, 35, 73–77. [Google Scholar] [CrossRef]
- Kim, M.-J.; Park, M.; Jeong, M.K.; Yeo, J.; Cho, W.-I.; Chang, P.-S.; Chung, J.-H.; Lee, J. Radical scavenging activity and anti-obesity effects in 3T3-L1 preadipocyte differentiation of Ssuk (Artemisia princeps Pamp.) extract. Food Sci. Biotechnol. 2010, 19, 535–540. [Google Scholar] [CrossRef]
- Lee, J.; Narayan, V.P.; Hong, E.Y.; Whang, W.K.; Park, T. Artemisia Iwayomogi Extract Attenuates High-Fat Diet-Induced Hypertriglyceridemia in Mice: Potential Involvement of the Adiponectin-AMPK Pathway and Very Low Density Lipoprotein Assembly in the Liver. Int. J. Mol. Sci. 2017, 18, 1762. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.H.; Karadeniz, F.; Jang, M.-S.; Kim, H.; Seo, Y.; Kong, C.-S. Loliolide from Artemisia princeps Suppresses Adipogenesis in Human Bone Marrow-Derived Mesenchymal Stromal Cells via Activation of AMPK and Wnt/β-catenin Pathways. Appl. Sci. 2021, 11, 5435. [Google Scholar] [CrossRef]
- Yan, Z.; Zhong, Y.; Duan, Y.; Chen, Q.; Li, F. Antioxidant mechanism of tea polyphenols and its impact on health benefits. Anim. Nutr. 2020, 6, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Abiri, B.; Amini, S.; Hejazi, M.; Hosseinpanah, F.; Zarghi, A.; Abbaspour, F.; Valizadeh, M. Tea’s anti-obesity properties, cardiometabolic health-promoting potentials, bioactive compounds, and adverse effects: A review focusing on white and green teas. Food Sci. Nutr. 2023, 11, 5818–5836. [Google Scholar] [CrossRef]
- Ren, L.; Cui, H.; Wang, Y.; Ju, F.; Cai, Y.; Gang, X.; Wang, G. The role of lipotoxicity in kidney disease: From molecular mechanisms to therapeutic prospects. Biomed. Pharmacother. 2023, 161, 114465. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Herrera-Bravo, J.; Semwal, P.; Painuli, S.; Badoni, H.; Ezzat, S.M.; Farid, M.M.; Merghany, R.M.; Aborehab, N.M.; Salem, M.A.; et al. Artemisia spp.: An Update on Its Chemical Composition, Pharmacological and Toxicological Profiles. Oxid. Med. Cell Longev. 2022, 2022, 5628601. [Google Scholar] [CrossRef] [PubMed]
- Makanjuola, S.A. Influence of particle size and extraction solvent on antioxidant properties of extracts of tea, ginger, and tea–ginger blend. Food Sci. Nutr. 2017, 5, 1179–1185. [Google Scholar] [CrossRef] [PubMed]
- Shaukat, H.; Ali, A.; Zhang, Y.; Ahmad, A.; Riaz, S.; Khan, A.; Mehany, T.; Qin, H. Tea polyphenols: Extraction techniques and its potency as a nutraceutical. Front. Sustain. Food Syst. 2023, 7, 1175893. [Google Scholar] [CrossRef]
- Qin, W.; Hu, F.F.; Hui, S.P. Comparative Study of Total Polyphenol Content and Antioxidant Activity of Yomogi Tea and Green Tea during Simulated In Vitro Gastrointestinal Digestion. ACS Food Sci. Technol. 2025, 5, 1392–1399. [Google Scholar] [CrossRef]
- Ho, H.J.; Aoki, N.; Wu, Y.J.; Gao, M.C.; Sekine, K.; Sakurai, T.; Chiba, H.; Watanabe, H.; Watanabe, M.; Hui, S.P. A Pacific Oyster-Derived Antioxidant, DHMBA, Protects Renal Tubular HK-2 Cells against Oxidative Stress via Reduction of Mitochondrial ROS Production and Fragmentation. Int. J. Mol. Sci. 2023, 24, 10061. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, Z.; Fuda, H.; Tsukui, T.; Wu, X.; Shen, N.; Saito, N.; Chiba, H.; Hui, S.-P. Oxidative Stress Linked Organ Lipid Hydroperoxidation and Dysregulation in Mouse Model of Nonalcoholic Steatohepatitis: Revealed by Lipidomic Profiling of Liver and Kidney. Antioxidants 2021, 10, 1602. [Google Scholar] [CrossRef]
- Zhang, H.J.; Gao, X.; Guo, X.F.; Li, K.L.; Li, S.; Sinclair, A.J.; Li, D. Effects of dietary eicosapentaenoic acid and docosahexaenoic acid supplementation on metabolic syndrome: A systematic review and meta-analysis of data from 33 randomized controlled trials. Clin. Nutr. 2021, 40, 4538–4550. [Google Scholar] [CrossRef]
- Testa, R.; Bonfigli, A.R.; Genovese, S.; De Nigris, V.; Ceriello, A. The Possible Role of Flavonoids in the Prevention of Diabetic Complications. Nutrients 2016, 8, 310. [Google Scholar] [CrossRef]
- Den Hartogh, D.J.; Gabriel, A.; Tsiani, E. Antidiabetic Properties of Curcumin II: Evidence from In Vivo Studies. Nutrients 2020, 12, 58. [Google Scholar] [CrossRef]
- Poswal, F.S.; Russell, G.; Mackonochie, M.; MacLennan, E.; Adukwu, E.C.; Rolfe, V. Herbal Teas and their Health Benefits: A Scoping Review. Plant Food Hum. Nutr. 2019, 74, 266–276. [Google Scholar] [CrossRef]
- Shaik, M.I.; Hamdi, I.H.; Sarbon, N.M. A comprehensive review on traditional herbal drinks: Physicochemical, phytochemicals and pharmacology properties. Food Chem. Adv. 2023, 3, 100460. [Google Scholar] [CrossRef]
- Qin, W.; Yamada, R.; Araki, T.; Ogawa, Y. Changes in Morphological and Functional Characteristics of Tea Leaves During Japanese Green Tea (Sencha) Manufacturing Process. Food Bioprocess Technol. 2022, 15, 82–91. [Google Scholar] [CrossRef]
- Yang, H.Y.; Galea, A.; Sytnyk, V.; Crossley, M. Controlling the size of lipid droplets: Lipid and protein factors. Curr. Opin. Cell Biol. 2012, 24, 509–516. [Google Scholar] [CrossRef]
- Cheng, C.; Li, Z.Z.; Zhao, X.; Liao, C.L.; Quan, J.; Bode, A.M.; Cao, Y.; Luo, X.J. Natural alkaloid and polyphenol compounds targeting lipid metabolism: Treatment implications in metabolic diseases. Eur. J. Pharmacol. 2020, 870, 172922. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Zeng, L.; Liu, A.; Yuan, D.; Peng, Y.; Zhang, S.; Li, Y.; Chen, J.; Xiao, W.; Gong, Z. Role of Epigallocatechin Gallate in Glucose, Lipid, and Protein Metabolism and L-Theanine in the Metabolism-Regulatory Effects of Epigallocatechin Gallate. Nutrients 2021, 13, 4120. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Deng, S.; Luo, Y.; Liu, Z.; Liu, C. Research Progress on the Protective Effect of Green Tea Polyphenol (-)-Epigallocatechin-3-Gallate (EGCG) on the Liver. Nutrients 2025, 17, 1101. [Google Scholar] [CrossRef]
- Wu, X.Z.; Ho, H.J.; Eguchi, M.; Chen, Z.; Chiba, H.; Hui, S.P. Flazin improves mitochondrial dynamics in renal tubular epithelial cells under oxidative stress. Food Biosci. 2023, 56, 103378. [Google Scholar] [CrossRef]





| Target | Primer Sequence (5′-3′) | Accession Number |
|---|---|---|
| GAPDH | F: ACCCAGAAGACTGTGGATGG R: CAGTGAGCTTCCCGTTCAG | NM_002046.7 |
| ACC | F: GGAACATCCCTACGCTAAACAG R: CTGACAAGGTGGAGTGAATGAG | NM_198838.2 |
| FAS | F: ACAGGGACAACCTGGAGTTCT R: CTGTGGTCCCACTTGATGAGT | NM_004104.5 |
| SCD-1 | F: GGGAGTGTGTCTGCTGAGTAAG R: GCAAGGACTGTTAGAAATCCG | NM_005063.5 |
| ATGL | F: AGACAAACTGCCACTCTATGAG R: GAACTGGATGCTGGTGTTG | NM_020376.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, W.; Ho, H.-J.; Wu, X.-Z.; Eguchi, M.; Uchita, M.; Takeuchi, M.; Hui, S.-P. Effects of Yomogi Tea on Lipid Metabolism in Renal Tubular HK-2 Cells. Foods 2025, 14, 3817. https://doi.org/10.3390/foods14223817
Qin W, Ho H-J, Wu X-Z, Eguchi M, Uchita M, Takeuchi M, Hui S-P. Effects of Yomogi Tea on Lipid Metabolism in Renal Tubular HK-2 Cells. Foods. 2025; 14(22):3817. https://doi.org/10.3390/foods14223817
Chicago/Turabian StyleQin, Wei, Hsin-Jung Ho, Xun-Zhi Wu, Miki Eguchi, Manami Uchita, Minato Takeuchi, and Shu-Ping Hui. 2025. "Effects of Yomogi Tea on Lipid Metabolism in Renal Tubular HK-2 Cells" Foods 14, no. 22: 3817. https://doi.org/10.3390/foods14223817
APA StyleQin, W., Ho, H.-J., Wu, X.-Z., Eguchi, M., Uchita, M., Takeuchi, M., & Hui, S.-P. (2025). Effects of Yomogi Tea on Lipid Metabolism in Renal Tubular HK-2 Cells. Foods, 14(22), 3817. https://doi.org/10.3390/foods14223817

