Transcriptomics-Based Evaluation of the Effects of Polyethylene Microplastics on Pleurotus pulmonarius
Abstract
1. Introduction
2. Materials and Methodology
2.1. Experimental Materials
2.2. Experimental Design
2.3. Determination of the Absorption of PE-MPs by P. pulmonarius
2.4. Determination of Agronomic Traits
2.5. Sample Collection and RNA Extraction
2.6. Library Preparation
2.7. Sequencing, Functional Annotation, Identification, and Enrichment Analysis of DEGs
2.8. Data Analysis
3. Results and Analysis
3.1. Uptake of PE Microspheres by Hyphae
3.2. Effects of Microplastics on Agronomic Traits
3.3. Transcriptome Analysis of P. pulmonarius at Different Concentrations and Particle Sizes Under PE-MPs Stress
3.3.1. Sequencing Data
3.3.2. Analysis of Differentially Expressed Genes (DEGs)
3.3.3. Cluster Analysis
3.3.4. Functional Enrichment Analysis
4. Discussion
4.1. Uptake of Microplastics by P. pulmonarius
4.2. Effects of MPs on Agronomic Traits of P. pulmonarius
4.3. Cluster Analysis
4.4. KEGG Functional Enrichment Analysis
4.5. GO Functional Enrichment Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moharir, R.V.; Kumar, S. Challenges associated with plastic waste disposal and allied microbial routes for its effective degradation: A comprehensive review. J. Clean. Prod. 2019, 208, 65–76. [Google Scholar] [CrossRef]
- Arp, H.P.H.; Kühnel, D.; Rummel, C.; MacLeod, M.; Potthoff, A.; Reichelt, S.; Rojo-Nieto, E.; Schmitt-Jansen, M.; Sonnenberg, J.; Toorman, E.; et al. Weathering Plastics as a Planetary Boundary Threat: Exposure, Fate, and Hazards. Environ. Sci. Technol. 2021, 55, 7246–7255. [Google Scholar] [CrossRef]
- Daglen, B.C.; Tyler, D.R. Photodegradable plastics: End-of-life design principles. Green Chem. Lett. Rev. 2010, 3, 69–82. [Google Scholar] [CrossRef]
- Dogan, M. Ultraviolet light accelerates the degradation of polyethylene plastics. Microsc. Res. Tech. 2021, 84, 2774–2783. [Google Scholar] [CrossRef]
- Lima, J.Z.; Cassaro, R.; Ogura, A.P.; Vianna, M.M.G.R. A systematic review of the effects of microplastics and nanoplastics on the soil-plant system. Sustain. Prod. Consum. 2023, 38, 266–282. [Google Scholar] [CrossRef]
- Qi, Y.; Yang, X.; Pelaez, A.M.; Lwanga, E.H.; Beriot, N.; Gertsen, H.; Garbeva, P.; Geissen, V. Macro- and micro- plastics in soil-plant system: Effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Sci. Total Environ. 2018, 645, 1048–1056. [Google Scholar] [CrossRef]
- Bosker, T.; Bouwman, L.J.; Brun, N.R.; Behrens, P.; Vijver, M.G. Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum. Chemosphere 2019, 226, 774–781. [Google Scholar] [CrossRef]
- He, D.; Zhang, Y.; Gao, W. Micro (nano) plastic contaminations from soils to plants: Human food risks. Curr. Opin. Food Sci. 2021, 41, 116–121. [Google Scholar] [CrossRef]
- Zhang, N.; Li, Y.B.; He, H.R.; Zhang, J.F.; Ma, G.S. You are what you eat: Microplastics in the feces of young men living in Beijing. Sci. Total Environ. 2021, 767, 144345. [Google Scholar] [CrossRef] [PubMed]
- Ragusa, A.; Notarstefano, V.; Svelato, A.; Belloni, A.; Gioacchini, G.; Blondeel, C.; Zucchelli, E.; De Luca, C.; D’Avino, S.; Gulotta, A.; et al. Raman Microspectroscopy Detection and Characterisation of Microplastics in Human Breastmilk. Polymers 2022, 14, 2700. [Google Scholar] [CrossRef]
- Liu, T.; Hou, B.; Zhang, Y.; Wang, Z. Determination of Biological and Molecular Attributes Related to Polystyrene Microplastic-Induced Reproductive Toxicity and Its Reversibility in Male Mice. Int. J. Environ. Res. Public Health 2022, 19, 14093. [Google Scholar] [CrossRef]
- Pironti, C.; Notarstefano, V.; Ricciardi, M.; Motta, O.; Giorgini, E.; Montano, L. First Evidence of Microplastics in Human Urine, a Preliminary Study of Intake in the Human Body. Toxics 2023, 11, 40. [Google Scholar] [CrossRef] [PubMed]
- Hakkarainen, M.; Albertsson, A.-C. Environmental Degradation of Polyethylene. In Long Term Properties of Polyolefins; Albertsson, A.-C., Ed.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 177–200. [Google Scholar]
- Vimala, P.P.; Mathew, L. Biodegradation of Polyethylene Using Bacillus Subtilis. Procedia Technol. 2016, 24, 232–239. [Google Scholar] [CrossRef]
- Brandon, A.M.; Gao, S.H.; Tian, R.; Ning, D.; Yang, S.S.; Zhou, J.; Wu, W.M.; Criddle, C.S. Biodegradation of Polyethylene and Plastic Mixtures in Mealworms (Larvae of Tenebrio molitor) and Effects on the Gut Microbiome. Environ. Sci. Technol. 2018, 52, 6526–6533. [Google Scholar] [CrossRef] [PubMed]
- Veethahavya, K.S.; Rajath, B.S.; Noobia, S.; Kumar, B.M. Biodegradation of Low Density Polyethylene in Aqueous Media. Procedia Environ. Sci. 2016, 35, 709–713. [Google Scholar] [CrossRef]
- Yang, C.; Gao, X. Impact of microplastics from polyethylene and biodegradable mulch films on rice (Oryza sativa L.). Sci. Total Environ. 2022, 828, 154579. [Google Scholar] [CrossRef]
- Men, C.; Xie, Z.; Li, K.; Xing, X.; Li, Z.; Zuo, J. Single and combined effect of polyethylene microplastics (virgin and naturally aged) and cadmium on pakchoi (Brassica rapa subsp. chinensis) under different growth stages. Sci. Total Environ. 2024, 951, 175602. [Google Scholar] [CrossRef]
- Roy, R.; Hossain, A.; Sultana, S.; Deb, B.; Ahmod, M.M.; Sarker, T. Microplastics increase cadmium absorption and impair nutrient uptake and growth in red amaranth (Amaranthus tricolor L.) in the presence of cadmium and biochar. BMC Plant Biol. 2024, 24, 608. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Y.; Kaur, M.; Yao, Z.; Chen, T.; Xu, M. Phytotoxic Effects of Polyethylene Microplastics on the Growth of Food Crops Soybean (Glycine max) and Mung Bean (Vigna radiata). Int. J. Environ. Res. Public Health 2021, 18, 10629. [Google Scholar] [CrossRef]
- Dong, R.; Liu, R.; Xu, Y.; Liu, W.; Wang, L.; Liang, X.; Huang, Q.; Sun, Y. Single and joint toxicity of polymethyl methacrylate microplastics and As (V) on rapeseed (Brassia campestris L.). Chemosphere 2022, 291, 133066. [Google Scholar] [CrossRef]
- Xiong, Z.; Zhang, N.; Li, H.; Liu, C.; Liu, Y.; Peng, L.; Zou, L.; Li, Q. Integrated metabolomics and transcriptomics reveal the hormesis-like effects of polyethylene microplastics on Pisum sativum L. Environ. Technol. Innov. 2025, 37, 103972. [Google Scholar]
- Yu, X.; Zhang, Y.; Chen, S.; Chen, S.; Wan, C.; Wang, Y.; Zou, L.; Peng, L.; Ye, L.; Li, Q. Study on the degradation efficiency and mechanism of polystyrene microplastics by five kinds of edible fungi. J. Hazard. Mater. 2025, 492, 138165. [Google Scholar] [CrossRef] [PubMed]
- Aida, F.M.N.A.; Shuhaimi, M.; Yazid, M.; Maaruf, A.G. Mushroom as a potential source of prebiotics: A review. Trends Food Sci. Technol. 2009, 20, 567–575. [Google Scholar] [CrossRef]
- Khatun, S.; Islam, A.; Cakilcioglu, U.; Guler, P.; Chatterjee, N.C. Nutritional qualities and antioxidant activity of three edible oyster mushrooms (Pleurotus spp.). NJAS-Wagening. J. Life Sci. 2015, 72–73, 1–5. [Google Scholar]
- Nguyen, T.K.; Im, K.; Choi, J.; Shin, P.; Lee, T.-S. Evaluation of Antioxidant, Anti-cholinesterase, and Anti-inflammatory Effects of Culinary Mushroom Pleurotus pulmonarius. Mycobiology 2016, 44, 291. [Google Scholar] [CrossRef]
- Banik, S.; Nandi, R. Effect of supplementation of rice straw with biogas residual slurry manure on the yield, protein and mineral contents of oyster mushroom. Ind. Crop. Prod. 2004, 20, 311–319. [Google Scholar] [CrossRef]
- Xiong, Z.; Zhang, Y.; Chen, X.; Peng, L.; Zou, L.; Liu, B.; Li, Q. Mitigating the effects of polyethylene microplastics on Pisum sativum L. quality by applying microplastics-degrading bacteria: A field study. Environ. Res. 2024, 263, 120201. [Google Scholar] [CrossRef]
- Zhao, Y.; Yao, Y.; Li, H.; Han, Z.; Ma, X. Integrated transcriptome and metabolism unravel critical roles of carbon metabolism and oxidoreductase in mushroom with Korshinsk peashrub substrates. BMC Genom. 2024, 25, 763. [Google Scholar] [CrossRef]
- Jin, X.; Wu, P.; Li, P.; Xiong, C.; Gui, M.; Huang, W. Transcriptome analysis reveals insight into the protective effect of N-acetylcysteine against cadmium toxicity in Ganoderma lucidum (Polyporales: Polyporaceae). Environ. Sci. Pollut. Res. 2023, 30, 58436–58449. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, T.; Wang, S.; Zou, L. Transcriptome exploration to provide a resource for the study of Auricularia heimuer. J. For. Res. 2020, 31, 1881–1887. [Google Scholar] [CrossRef]
- Yu, W.; Li, S.; Zheng, B.; Wang, Y.; Yu, Y.; Wang, Y.; Zheng, X.; Liu, J.; Zhang, Z.; Xue, Z. Transcriptome analysis reveals the potential mechanism of polyethylene packing delaying lignification of Pleurotus eryngii. Food Chem. Mol. Sci. 2022, 5, 100117. [Google Scholar] [CrossRef]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Li, M.-C.; Konaté, M.M.; Chen, L.; Das, B.; Karlovich, C.; Williams, P.M.; Evrard, Y.A.; Doroshow, J.H.; McShane, L.M. TPM, FPKM, or Normalized Counts? A Comparative Study of Quantification Measures for the Analysis of RNA-seq Data from the NCI Patient-Derived Models Repository. J. Transl. Med. 2021, 19, 269. [Google Scholar] [CrossRef] [PubMed]
- Varet, H.; Brillet-Guéguen, L.; Coppée, J.Y.; Dillies, M.A. SARTools: A DESeq2- and EdgeR-Based R Pipeline for Comprehensive Differential Analysis of RNA-Seq Data. PLoS ONE 2016, 11, e0157022. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.-H.; Jian, H.-H.; Song, C.-Y.; Bao, D.-P.; Shang, X.-D.; Wu, D.-Q.; Tan, Q.; Zhang, X.-H. Transcriptome analysis of candidate genes and signaling pathways associated with light-induced brown film formation in Lentinula edodes. Appl. Microbiol. Biotechnol. 2013, 97, 4977–4989. [Google Scholar] [CrossRef]
- Li, L.; Luo, Y.; Li, R.; Zhou, Q.; Peijnenburg, W.J.G.M.; Yin, N.; Yang, J.; Tu, C.; Zhang, Y. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode. Nat. Sustain. 2020, 3, 929–937. [Google Scholar] [CrossRef]
- Chen, G.; Li, Y.; Liu, S.; Junaid, M.; Wang, J. Effects of micro(nano)plastics on higher plants and the rhizosphere environment. Sci. Total Environ. 2022, 807, 150841. [Google Scholar] [CrossRef]
- Yuan, W.; Zhou, Y.; Liu, X.; Wang, J. New Perspective on the Nanoplastics Disrupting the Reproduction of an Endangered Fern in Artificial Freshwater. Environ. Sci. Technol. 2019, 53, 12715–12724. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, X.; Zhang, S.; Zhang, S.; Adams, C.A.; Sun, Y. Effects of Co-Contamination of Microplastics and Cd on Plant Growth and Cd Accumulation. Toxics 2020, 8, 36. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, X.; Zhang, S.; Zhang, S.; Sun, Y. Interactions of microplastics and cadmium on plant growth and arbuscular mycorrhizal fungal communities in an agricultural soil. Chemosphere 2020, 254, 126791. [Google Scholar] [CrossRef]
- Zhang, W.; Sun, S.; Du, X.; Han, Y.; Tang, Y.; Zhou, W.; Shi, W.; Liu, G. Toxic impacts of microplastics and tetrabromobisphenol A on the motility of marine microalgae and potential mechanisms of action. Gondwana Res. 2022, 108, 158–170. [Google Scholar] [CrossRef]
- Zhang, Y.; Tian, X.; Huang, P.; Yu, X.; Xiang, Q.; Zhang, L.; Gao, X.; Chen, Q.; Gu, Y. Biochemical and transcriptomic responses of buckwheat to polyethylene microplastics. Sci. Total Environ. 2023, 899, 165587. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Cai, C.; Gu, Y.; Shi, Y.; Gao, X. Microplastics in plant-soil ecosystems: A meta-analysis. Environ. Pollut. 2022, 308, 119718. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Guo, Y. Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol. 2018, 217, 523–539. [Google Scholar] [CrossRef]
- Chidawanyika, F. Effects of Drought on the Production of Electrophysiologically Active Biogenic Volatiles Important for Cereal Pest Management. Ph.D. Thesis, University of Witwatersrand, Johannesburg, South Africa, 2015. [Google Scholar]
- Ahmed, U.; Rao, M.J.; Qi, C.; Xie, Q.; Noushahi, H.A.; Yaseen, M.; Shi, X.; Zheng, B. Expression Profiling of Flavonoid Biosynthesis Genes and Secondary Metabolites Accumulation in Populus under Drought Stress. Molecules 2021, 26, 5546. [Google Scholar] [CrossRef]
- Zhuang, M.; Qiao, C.; Han, L.; Bi, Y.; Cao, M.; Wang, S.; Guo, L.; Pang, R.; Xie, H. Multi-omics analyses reveal the responses of wheat (Triticum aestivum L.) and rhizosphere bacterial community to nano(micro)plastics stress. J. Nanobiotechnol. 2024, 22, 507. [Google Scholar] [CrossRef]
- Asad, M.A.U.; Guan, X.; Zhou, L.; Qian, Z.; Yan, Z.; Cheng, F. Involvement of plant signaling network and cell metabolic homeostasis in nitrogen deficiency-induced early leaf senescence. Plant Sci. 2023, 336, 111855. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.-M.; Lu, Y.-T.; Qiu, Q.-L.; Fan, D.-M.; Wang, X.-C.; Zheng, X.-Q. Influence of different nitrogen sources on carbon and nitrogen metabolism and gene expression in tea plants (Camellia sinensis L.). Plant Physiol. Biochem. 2021, 167, 561–566. [Google Scholar] [CrossRef]
- Liu, Y.-Q.; Chen, Y.; Ren, X.-M.; Li, Y.-Y.; Zhang, Y.-J.; Zhang, H.; Han, H.; Chen, Z.-J. Plant growth-promoting bacteria modulate gene expression and induce antioxidant tolerance to alleviate synergistic toxicity from combined microplastic and Cd pollution in sorghum. Ecotoxicol. Environ. Saf. 2023, 264, 115439. [Google Scholar] [CrossRef]
- Yu, Z.; Xu, X.; Guo, L.; Yuzuak, S.; Lu, Y. Physiological and biochemical effects of polystyrene micro/nano plastics on Arabidopsis thaliana. J. Hazard. Mater. 2024, 469, 133861. [Google Scholar] [CrossRef]





| Group | KEGG Enrichment | GO Enrichment |
|---|---|---|
| A5 vs. B5 | Biosynthesis of secondary metabolites | cation binding |
| Steroid biosynthesis | tetrapyrrole binding | |
| Terpenoid backbone biosynthesis | heme binding | |
| Pentose and glucuronate interconversions | oxidoreductase activity, acting on paired donors, with incorporation or reduction in molecular oxygen | |
| Butanoate metabolism | transition metal ion binding | |
| Tropane, piperidine, and pyridine alkaloid biosynthesis | coenzyme binding | |
| coenzyme binding | ||
| hydrolase activity, acting on glycosyl bonds hydrolase activity, hydrolyzing O-glycosyl compounds | ||
| iron ion binding | ||
| cofactor binding | ||
| membrane part | ||
| extracellular region | ||
| intrinsic component of membrane | ||
| carbohydrate metabolic process | ||
| integral component of membrane | ||
| B5 vs. B10 | Glycolysis/Gluconeogenesis | tetrapyrrole binding |
| Glyoxylate and dicarboxylate metabolism | heme binding | |
| Pyruvate metabolism | oxidoreductase activity, acting on paired donors, with incorporation or reduction in molecular oxygen | |
| Tryptophan metabolism | iron ion binding | |
| Carbon metabolism | coenzyme binding | |
| Terpenoid backbone biosynthesis | cofactor binding | |
| Biosynthesis of secondary metabolites | intrinsic component of membrane | |
| integral component of membrane | ||
| CK vs. A5 | Carbon fixation in photosynthetic organisms | structural molecule activity |
| Carbon metabolism | structural constituent of ribosome | |
| Terpenoid backbone biosynthesis | intracellular non-membrane-bounded organelle | |
| Mismatch repair | non-membrane-bounded organelle | |
| Glycolysis/Gluconeogenesis | ribonucleoprotein complex | |
| Steroid biosynthesis | ribosome | |
| DNA replication | DNA metabolic process | |
| Pentose phosphate pathway | DNA-dependent DNA replication | |
| Biosynthesis of secondary metabolites | peptide metabolic process | |
| Ribosome | amide biosynthetic process | |
| peptide biosynthetic process | ||
| DNA replication | ||
| translation | ||
| cellular amide metabolic process | ||
| CK vs. B5 | Biosynthesis of cofactors | FAD binding |
| Glutathione metabolism | oxidoreductase activity, acting on the CH-OH group of donors | |
| Fructose and mannose metabolism | flavin adenine dinucleotide binding | |
| Pentose and glucuronate interconversions | oxidoreductase activity, acting on the CH-OH group of donors, NAD or NADP as acceptor | |
| Biosynthesis of nucleotide sugars | carbon-carbon lyase activity | |
| Carbon fixation in photosynthetic organisms | NADP binding | |
| Starch and sucrose metabolism | coenzyme binding | |
| Cysteine and methionine metabolism | cofactor binding | |
| Biosynthesis of amino acids | membrane part | |
| Pentose phosphate pathway | intrinsic component of membrane | |
| Glycolysis/Gluconeogenesis | integral component of membrane | |
| Carbon metabolism | ||
| Biosynthesis of secondary metabolites | ||
| CK vs. B10 | Glycolysis/Gluconeogenesis | |
| Biosynthesis of secondary metabolites |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, X.; Zhang, B.; Chen, S.; Wan, C.; Chen, S.; Wang, Y.; Ye, L.; Li, X. Transcriptomics-Based Evaluation of the Effects of Polyethylene Microplastics on Pleurotus pulmonarius. Foods 2025, 14, 3783. https://doi.org/10.3390/foods14213783
Yu X, Zhang B, Chen S, Wan C, Chen S, Wang Y, Ye L, Li X. Transcriptomics-Based Evaluation of the Effects of Polyethylene Microplastics on Pleurotus pulmonarius. Foods. 2025; 14(21):3783. https://doi.org/10.3390/foods14213783
Chicago/Turabian StyleYu, Xin, Bo Zhang, Shuyi Chen, Caijing Wan, Sumin Chen, Ying Wang, Lei Ye, and Xiaolin Li. 2025. "Transcriptomics-Based Evaluation of the Effects of Polyethylene Microplastics on Pleurotus pulmonarius" Foods 14, no. 21: 3783. https://doi.org/10.3390/foods14213783
APA StyleYu, X., Zhang, B., Chen, S., Wan, C., Chen, S., Wang, Y., Ye, L., & Li, X. (2025). Transcriptomics-Based Evaluation of the Effects of Polyethylene Microplastics on Pleurotus pulmonarius. Foods, 14(21), 3783. https://doi.org/10.3390/foods14213783
