Study on Physicochemical Properties, Antioxidant Activity and Flavor Quality in the Fermentation of a Plant-Based Beverage by Different Lactic Acid Bacteria
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of LAB Strains
2.3. Preparation and Fermentation of the MEH Plant-Based Beverage (QJ)
2.4. Bacterial Enumeration and pH
2.5. Nutrient Composition
2.5.1. Soluble Sugar
2.5.2. Total Protein
2.5.3. Total Amino Acid
2.5.4. Total Phenol Content (TPC)
2.5.5. Total Flavonoid Content (TFC)
2.6. Organic Acids
2.7. Antioxidant Activity
2.7.1. Ferric Reducing Antioxidant Power (FRAP) Assay
2.7.2. ABTS Radical Scavenging Capacity
2.7.3. DPPH Radical Scavenging Capacity
2.8. Bionic Sensory
2.8.1. Electronic Tongue (E-Tongue)
2.8.2. Electronic Nose (E-Nose)
2.9. Volatile Component
2.9.1. Volatile Compounds
2.9.2. Odor Activity Value (OAV)
2.10. Statistical Analysis
3. Results and Discussion
3.1. Analysis of Bacterial Counts and pH
3.2. Analysis of Nutrient Composition
3.2.1. Soluble Sugar Analysis
3.2.2. Total Protein and Amino Acid Content Analysis
3.2.3. Total Phenol Content (TPC) Analysis
3.2.4. Total Flavonoid Content (TFC) Analysis
3.3. Analysis of Organic Acids
3.4. Analysis of Antioxidant Capacity
3.5. Analysis of Bionic Sensory
3.5.1. E-Tongue Analysis
3.5.2. E-Nose Analysis
3.6. Volatile Component Analysis
3.6.1. Volatile Compounds Content Analysis
3.6.2. Odor Activity Value (OAV) Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| LAB | Lactic acid bacteria |
| MEH | Medicinal and edible homologous |
| E-tongue | Electronic tongue |
| E-nose | Electronic nose |
| HS-SPME-GC-MS | Headspace solid-phase microextraction–mass spectrometry coupled with gas chromatography–mass spectrometry |
| TPC | Total phenol content |
| TFC | Total flavonoid content |
| HPLC | High-performance liquid chromatography |
| FRAP | Ferric reducing antioxidant power |
| PCA | Principal component analysis |
| OAV | Odor activity value |
References
- Qiu, L.; Zhang, M.; Chang, L. Effects of Lactic Acid Bacteria Fermentation on the Phytochemicals Content, Taste and Aroma of Blended Edible Rose and Shiitake Beverage. Food Chem. 2023, 405, 134722. [Google Scholar] [CrossRef]
- Gong, X.; Ji, M.; Xu, J.; Zhang, C.; Li, M. Hypoglycemic Effects of Bioactive Ingredients from Medicine Food Homology and Medicinal Health Food Species Used in China. Crit. Rev. Food Sci. Nutr. 2020, 60, 2303–2326. [Google Scholar] [CrossRef]
- Bu, F.; Zhang, S.; Duan, Z.; Ding, Y.; Chen, T.; Wang, R.; Feng, Z.; Shi, G.; Zhou, J.; Chen, Y. A Critical Review on the Relationship of Herbal Medicine, Akkermansia Muciniphila, and Human Health. Biomed. Pharmacother. 2020, 128, 110352. [Google Scholar] [CrossRef]
- Chen, M.; Liao, Z.; Lu, B.; Wang, M.; Lin, L.; Zhang, S.; Li, Y.; Liu, D.; Liao, Q.; Xie, Z. Huang-Lian-Jie-Du-Decoction Ameliorates Hyperglycemia and Insulin Resistant in Association With Gut Microbiota Modulation. Front. Microbiol. 2018, 9, 2380. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.; Liu, W.; Baker, S.S.; Li, H.; Chen, C.; Liu, Q.; Tang, S.; Guan, L.; Tsompana, M.; Kozielski, R.; et al. Multi-Targeting Therapeutic Mechanisms of the Chinese Herbal Medicine QHD in the Treatment of Non-Alcoholic Fatty Liver Disease. Oncotarget 2017, 8, 27820–27838. [Google Scholar] [CrossRef] [PubMed]
- Cui, R.; Zhang, C.; Pan, Z.-H.; Hu, T.-G.; Wu, H. Probiotic-Fermented Edible Herbs as Functional Foods: A Review of Current Status, Challenges, and Strategies. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13305. [Google Scholar] [CrossRef] [PubMed]
- Di Cagno, R.; Coda, R.; De Angelis, M.; Gobbetti, M. Exploitation of Vegetables and Fruits through Lactic Acid Fermentation. Food Microbiol. 2013, 33, 1–10. [Google Scholar] [CrossRef]
- Ricci, A.; Cirlini, M.; Levante, A.; Dall’Asta, C.; Galaverna, G.; Lazzi, C. Volatile Profile of Elderberry Juice: Effect of Lactic Acid Fermentation Using L. Plantarum, L. Rhamnosus and L. Casei Strains. Food Res. Int. 2018, 105, 412–422. [Google Scholar] [CrossRef]
- Fessard, A.; Kapoor, A.; Patche, J.; Assemat, S.; Hoarau, M.; Bourdon, E.; Bahorun, T.; Remize, F. Lactic Fermentation as an Efficient Tool to Enhance the Antioxidant Activity of Tropical Fruit Juices and Teas. Microorganisms 2017, 5, 23. [Google Scholar] [CrossRef]
- Wang, Y.; Tao, Y.; Zhang, X.; Shao, S.; Han, Y.; Chu, D.-T.; Xie, G.; Ye, X. Metabolic Profile of Ginkgo Kernel Juice Fermented with Lactic Aicd Bacteria: A Potential Way to Degrade Ginkgolic Acids and Enrich Terpene Lactones and Phenolics. Process Biochem. 2019, 76, 25–33. [Google Scholar] [CrossRef]
- Zhang, X.; Miao, Q.; Pan, C.; Yin, J.; Wang, L.; Qu, L.; Yin, Y.; Wei, Y. Research Advances in Probiotic Fermentation of Chinese Herbal Medicines. iMeta 2023, 2, e93. [Google Scholar] [CrossRef]
- Liang, B.; Bai, X.; Wang, Y.; Li, X.; Kong, Y.; Li, X.; Zeng, X.; Liu, W.; Li, H.; Sun, S.; et al. Effect of Five Lactic Acid Bacteria on the Flavor Quality of Fermented Sweet Potato Juice. Food Chem. X 2024, 24, 102023. [Google Scholar] [CrossRef]
- Yuan, L.; Li, M.; Xu, X.; Shi, X.; Chen, G.; Lao, F.; Wu, J. Comparative Genomics and Fermentation Flavor Characterization of Five Selected Lactic Acid Bacteria Provide Predictions for Flavor Biosynthesis Metabolic Pathways in Fermented Muskmelon Puree. Food Front. 2024, 5, 508–521. [Google Scholar] [CrossRef]
- Xu, X.; Bao, Y.; Wu, B.; Lao, F.; Hu, X.; Wu, J. Chemical Analysis and Flavor Properties of Blended Orange, Carrot, Apple and Chinese Jujube Juice Fermented by Selenium-Enriched Probiotics. Food Chem. 2019, 289, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Ren, J.; Liu, C.; Jiang, J.; Yang, H.; Li, J. Genetic Characteristics and QTL Analysis of the Soluble Sugar Content in Ripe Tomato Fruits. Sci. Hortic. 2021, 276, 109785. [Google Scholar] [CrossRef]
- Liu, Z.; Pan, J. A Practical Method for Extending the Biuret Assay to Protein Determination of Corn-Based Products. Food Chem. 2017, 224, 289–293. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Wang, L.; Zhang, L.; Wan, S.; Li, C.; Liu, S. Solvents Effect on Phenolics, Iridoids, Antioxidant Activity, Antibacterial Activity, and Pancreatic Lipase Inhibition Activity of Noni (Morinda citrifolia L.) Fruit Extract. Food Chem. 2022, 377, 131989. [Google Scholar] [CrossRef]
- Meng, F.-B.; Lei, Y.-T.; Li, Q.-Z.; Li, Y.-C.; Deng, Y.; Liu, D.-Y. Effect of Lactobacillus plantarum and Lactobacillus acidophilus Fermentation on Antioxidant Activity and Metabolomic Profiles of Loquat Juice. LWT 2022, 171, 114104. [Google Scholar] [CrossRef]
- Qiu, L.; Zhang, M.; Mujumdar, A.S.; Chang, L. Convenient Use of Near-Infrared Spectroscopy to Indirectly Predict the Antioxidant Activitiy of Edible Rose (Rose chinensis Jacq “Crimsin Glory” H.T.) Petals during Infrared Drying. Food Chem. 2022, 369, 130951. [Google Scholar] [CrossRef]
- Zhu, J.; Niu, Y.; Xiao, Z. Characterization of the Key Aroma Compounds in Laoshan Green Teas by Application of Odour Activity Value (OAV), Gas Chromatography-Mass Spectrometry-Olfactometry (GC-MS-O) and Comprehensive Two-Dimensional Gas Chromatography Mass Spectrometry (GC × GC-qMS). Food Chem. 2021, 339, 128136. [Google Scholar] [CrossRef]
- Hou, Z.; Zhang, J.; Dang, L.; Xue, H.; Chen, M.; Bai, B.; Yang, Y.; Bo, T.; Fan, S. Correlation Analysis of Microbial Community Changes and Physicochemical Characteristics in Aged Vinegar Brewing. Foods 2023, 12, 3430. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; He, X.; Li, J.; Wu, J.; Jiang, S.; Xue, H.; Zhang, J.; Jha, R.; Wang, R. Lactic Acid Bacteria Fermentation Improves Physicochemical Properties, Bioactivity, and Metabolic Profiles of Opuntia Ficus-Indica Fruit Juice. Food Chem. 2024, 453, 139646. [Google Scholar] [CrossRef]
- Cuevas-González, P.F.; Liceaga, A.M.; Aguilar-Toalá, J.E. Postbiotics and Paraprobiotics: From Concepts to Applications. Food Res. Int. 2020, 136, 109502. [Google Scholar] [CrossRef]
- Muhialdin, B.J.; Kadum, H.; Meor Hussin, A.S. Metabolomics Profiling of Fermented Cantaloupe Juice and the Potential Application to Extend the Shelf Life of Fresh Cantaloupe Juice for Six Months at 8 °C. Food Control 2021, 120, 107555. [Google Scholar] [CrossRef]
- Saeedyzadeh, N.; Zamindar, N.; Pezeshkzadeh, M.; Tahmourespour, A. Evaluation of Yogurt-like Beverages Made of Potato Starch Waste and Grape Must. Food Meas. 2017, 11, 1787–1794. [Google Scholar] [CrossRef]
- de la Fuente, B.; Luz, C.; Puchol, C.; Meca, G.; Barba, F.J. Evaluation of Fermentation Assisted by Lactobacillus brevis POM, and Lactobacillus plantarum (TR-7, TR-71, TR-14) on Antioxidant Compounds and Organic Acids of an Orange Juice-Milk Based Beverage. Food Chem. 2021, 343, 128414. [Google Scholar] [CrossRef]
- Muhialdin, B.J.; Kadum, H.; Zarei, M.; Meor Hussin, A.S. Effects of Metabolite Changes during Lacto-Fermentation on the Biological Activity and Consumer Acceptability for Dragon Fruit Juice. LWT 2020, 121, 108992. [Google Scholar] [CrossRef]
- Sharma, H.; Ozogul, F.; Bartkiene, E.; Rocha, J.M. Impact of Lactic Acid Bacteria and Their Metabolites on the Techno-Functional Properties and Health Benefits of Fermented Dairy Products. Crit. Rev. Food Sci. Nutr. 2023, 63, 4819–4841. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, J.; Lv, M.; Shao, Z.; Hungwe, M.; Wang, J.; Bai, X.; Xie, J.; Wang, Y.; Geng, W. Metabolism Characteristics of Lactic Acid Bacteria and the Expanding Applications in Food Industry. Front. Bioeng. Biotechnol. 2021, 9, 612285. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wang, R.; Zhang, Y.; Yang, Y.; Sun, X.; Zhang, Q.; Yang, N. Biotransformation of Phenolics and Metabolites and the Change in Antioxidant Activity in Kiwifruit Induced by Lactobacillus Plantarum Fermentation. J. Sci. Food Agric. 2020, 100, 3283–3290. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Casas, D.E.; Aguilar, C.N.; Ascacio-Valdés, J.A.; Rodríguez-Herrera, R.; Chávez-González, M.L.; Flores-Gallegos, A.C. Enzymatic Hydrolysis and Microbial Fermentation: The Most Favorable Biotechnological Methods for the Release of Bioactive Peptides. Food Chem. Mol. Sci. 2021, 3, 100047. [Google Scholar] [CrossRef]
- An, X.; Li, T.; Hu, J.; Li, Y.; Liu, H.; Fang, H.; Wei, X. Evaluation of Physicochemical Characteristics, Bioactivity, Flavor Profile and Key Metabolites in the Fermentation of Goji Juice by Lacticaseibacillus rhamnosus. Food Chem. X 2024, 23, 101755. [Google Scholar] [CrossRef]
- Christensen, J.E.; Dudley, E.G.; Pederson, J.A.; Steele, J.L. Peptidases and Amino Acid Catabolism in Lactic Acid Bacteria. Antonie Van Leeuwenhoek 1999, 76, 217–246. [Google Scholar] [CrossRef]
- Hur, S.J.; Lee, S.Y.; Kim, Y.-C.; Choi, I.; Kim, G.-B. Effect of Fermentation on the Antioxidant Activity in Plant-Based Foods. Food Chem. 2014, 160, 346–356. [Google Scholar] [CrossRef] [PubMed]
- Kwaw, E.; Ma, Y.; Tchabo, W.; Apaliya, M.T.; Wu, M.; Sackey, A.S.; Xiao, L.; Tahir, H.E. Effect of Lactobacillus Strains on Phenolic Profile, Color Attributes and Antioxidant Activities of Lactic-Acid-Fermented Mulberry Juice. Food Chem. 2018, 250, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Feng, L.; Deng, Y.; Chen, L.; Li, Y.; Lin, L.; Liang, M.; Jia, X.; Wang, F.; Zhang, X.; et al. Change of Phytochemicals and Bioactive Substances in Lactobacillus Fermented Citrus Juice during the Fermentation Process. LWT 2023, 180, 114715. [Google Scholar] [CrossRef]
- Benincasa, C.; Muccilli, S.; Amenta, M.; Perri, E.; Romeo, F.V. Phenolic Trend and Hygienic Quality of Green Table Olives Fermented with Lactobacillus plantarum Starter Culture. Food Chem. 2015, 186, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Landete, J.M.; Curiel, J.A.; Rodríguez, H.; de las Rivas, B.; Muñoz, R. Aryl Glycosidases from Lactobacillus plantarum Increase Antioxidant Activity of Phenolic Compounds. J. Funct. Foods 2014, 7, 322–329. [Google Scholar] [CrossRef]
- Lee, J.; Koo, N.; Min, D.B. Reactive Oxygen Species, Aging, and Antioxidative Nutraceuticals. Compr. Rev. Food Sci. Food Saf. 2004, 3, 21–33. [Google Scholar] [CrossRef]
- Zhao, M.; Mu, Y.; Shi, Z.; Wang, X.; Liu, W.; Zhou, Y.; Yi, H.; Zhang, L.; Zhang, Z. Effects of Different Lactic Acid Bacteria on the Physicochemical Properties, Functional Characteristics and Metabolic Characteristics of Fermented Hawthorn Juice. Food Chem. 2025, 470, 142672. [Google Scholar] [CrossRef]
- Chen, W.; Xie, C.; He, Q.; Sun, J.; Bai, W. Improvement in Color Expression and Antioxidant Activity of Strawberry Juice Fermented with Lactic Acid Bacteria: A Phenolic-Based Research. Food Chem. X 2023, 17, 100535. [Google Scholar] [CrossRef]
- Park, C.-M.; Kim, G.-M.; Cha, G.-S. Biotransformation of Flavonoids by Newly Isolated and Characterized Lactobacillus Pentosus NGI01 Strain from Kimchi. Microorganisms 2021, 9, 1075. [Google Scholar] [CrossRef]
- Weiz, G.; Braun, L.; Lopez, R.; de María, P.D.; Breccia, J.D. Enzymatic Deglycosylation of Flavonoids in Deep Eutectic Solvents-Aqueous Mixtures: Paving the Way for Sustainable Flavonoid Chemistry. J. Mol. Catal. B Enzym. 2016, 130, 70–73. [Google Scholar] [CrossRef]
- Guo, X.; Guo, A.; Li, E. Biotransformation of Two Citrus Flavanones by Lactic Acid Bacteria in Chemical Defined Medium. Bioprocess Biosyst. Eng. 2021, 44, 235–246. [Google Scholar] [CrossRef] [PubMed]
- Vitas, J.S.; Cvetanović, A.D.; Mašković, P.Z.; Švarc-Gajić, J.V.; Malbaša, R.V. Chemical Composition and Biological Activity of Novel Types of Kombucha Beverages with Yarrow. J. Funct. Foods 2018, 44, 95–102. [Google Scholar] [CrossRef]
- Gänzle, M.G. Lactic Metabolism Revisited: Metabolism of Lactic Acid Bacteria in Food Fermentations and Food Spoilage. Curr. Opin. Food Sci. 2015, 2, 106–117. [Google Scholar] [CrossRef]
- Punia Bangar, S.; Suri, S.; Trif, M.; Ozogul, F. Organic Acids Production from Lactic Acid Bacteria: A Preservation Approach. Food Biosci. 2022, 46, 101615. [Google Scholar] [CrossRef]
- Tang, J.; Hu, Z.; Pu, Y.; Wang, X.C.; Abomohra, A. Bioprocesses for Lactic Acid Production from Organic Wastes toward Industrialization-a Critical Review. J. Environ. Manag. 2024, 369, 122372. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Lee, S.Y. Production of Succinic Acid by Bacterial Fermentation. Enzym. Microb. Technol. 2006, 39, 352–361. [Google Scholar] [CrossRef]
- Chen, C.; Lu, Y.; Yu, H.; Chen, Z.; Tian, H. Influence of 4 Lactic Acid Bacteria on the Flavor Profile of Fermented Apple Juice. Food Biosci. 2019, 27, 30–36. [Google Scholar] [CrossRef]
- Multari, S.; Carafa, I.; Barp, L.; Caruso, M.; Licciardello, C.; Larcher, R.; Tuohy, K.; Martens, S. Effects of Lactobacillus Spp. on the Phytochemical Composition of Juices from Two Varieties of Citrus sinensis L. Osbeck: ‘Tarocco’ and ‘Washington Navel’. LWT 2020, 125, 109205. [Google Scholar] [CrossRef]
- Bai, L.; Maimaitiyiming, R.; Wang, L. Effects of Four Individual Lactic Acid Bacteria on the Physical and Chemical and Antioxidant Properties of Kuqa Apple Juice during Fermentation. J. Food Process. Preserv. 2021, 45, e15385. [Google Scholar] [CrossRef]
- Bintsis, T. Lactic Acid Bacteria as Starter Cultures: An Update in Their Metabolism and Genetics. AIMS Microbiol. 2018, 4, 665–684. [Google Scholar] [CrossRef]
- Leroy, F.; De Vuyst, L. Lactic Acid Bacteria as Functional Starter Cultures for the Food Fermentation Industry. Trends Food Sci. Technol. 2004, 15, 67–78. [Google Scholar] [CrossRef]
- Filannino, P.; Di Cagno, R.; Gobbetti, M. Metabolic and Functional Paths of Lactic Acid Bacteria in Plant Foods: Get out of the Labyrinth. Curr. Opin. Biotechnol. 2018, 49, 64–72. [Google Scholar] [CrossRef]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef] [PubMed]
- Othman, N.B.; Roblain, D.; Chammen, N.; Thonart, P.; Hamdi, M. Antioxidant Phenolic Compounds Loss during the Fermentation of Chétoui Olives. Food Chem. 2009, 116, 662–669. [Google Scholar] [CrossRef]
- Wang, Z.; Feng, Y.; Yang, N.; Jiang, T.; Xu, H.; Lei, H. Fermentation of Kiwifruit Juice from Two Cultivars by Probiotic Bacteria: Bioactive Phenolics, Antioxidant Activities and Flavor Volatiles. Food Chem. 2022, 373, 131455. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Li, T.; Qi, J.; Jiang, T.; Xu, H.; Lei, H. Effects of Lactic Acid Fermentation-Based Biotransformation on Phenolic Profiles, Antioxidant Capacity and Flavor Volatiles of Apple Juice. LWT 2020, 122, 109064. [Google Scholar] [CrossRef]
- Leonard, W.; Zhang, P.; Ying, D.; Adhikari, B.; Fang, Z. Fermentation Transforms the Phenolic Profiles and Bioactivities of Plant-Based Foods. Biotechnol. Adv. 2021, 49, 107763. [Google Scholar] [CrossRef]
- Özkılıç, S.Y.; Arslan, D. Acidic and Enzymatic Pre-Treatment Effects on Cold-Pressed Pumpkin, Terebinth and Flaxseed Oils. Grasas y Aceites 2022, 73, e462. [Google Scholar] [CrossRef]
- Ma, R.; Shen, H.; Cheng, H.; Zhang, G.; Zheng, J. Combining E-Nose and e-Tongue for Improved Recognition of Instant Starch Noodles Seasonings. Front. Nutr. 2023, 9, 1074958. [Google Scholar] [CrossRef]
- Zhao, C.J.; Schieber, A.; Gänzle, M.G. Formation of Taste-Active Amino Acids, Amino Acid Derivatives and Peptides in Food Fermentations—A Review. Food Res. Int. 2016, 89, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Lao, Y.; Zhang, M.; Li, Z.; Bhandari, B. A Novel Combination of Enzymatic Hydrolysis and Fermentation: Effects on the Flavor and Nutritional Quality of Fermented Cordyceps militaris Beverage. LWT 2020, 120, 108934. [Google Scholar] [CrossRef]
- Ma, L.-X.; Huang, X.-H.; Zheng, J.; Dong, L.; Chen, J.-N.; Dong, X.-P.; Zhou, D.-Y.; Zhu, B.-W.; Qin, L. Free Amino Acid, 5′-Nucleotide, and Lipid Distribution in Different Tissues of Blue Mussel (Mytilis edulis L.) Determined by Mass Spectrometry Based Metabolomics. Food Chem. 2022, 373, 131435. [Google Scholar] [CrossRef]
- Zhu, W.; Luan, H.; Bu, Y.; Li, J.; Li, X.; Zhang, Y. Changes in Taste Substances during Fermentation of Fish Sauce and the Correlation with Protease Activity. Food Res. Int. 2021, 144, 110349. [Google Scholar] [CrossRef]
- Li, J.; Xu, H.; Li, H.; Xie, Y.; Ding, K.; Xu, S.; Wang, Z.; Wang, R.; Yi, C.; Ding, S. Co-Fermentation of Lactiplantibacillus and Streptococcusccus Enriches the Key-Contribution Volatile and Non-Volatile Components of Jujube Juice. Food Res. Int. 2024, 196, 115093. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Luo, Y.-Y.; Zhang, Y.; Zou, C.-X.; Wang, P.-J.; Qin, L.-K.; Zhu, Q.-J.; Jia, Y.-L. Quality Analysis of Ultra-Fine Whole Pulp of Bamboo Shoots (Chimonobambusa quadrangularis) Fermented by Lactobacillus plantarum and Limosilactobacillus reuteri. Food Biosci. 2023, 52, 102458. [Google Scholar] [CrossRef]
- Chen, Q.; Hu, Y.; Wen, R.; Wang, Y.; Qin, L.; Kong, B. Characterisation of the Flavour Profile of Dry Fermented Sausages with Different NaCl Substitutes Using HS-SPME-GC-MS Combined with Electronic Nose and Electronic Tongue. Meat Sci. 2021, 172, 108338. [Google Scholar] [CrossRef]
- Seesaard, T.; Wongchoosuk, C. Recent Progress in Electronic Noses for Fermented Foods and Beverages Applications. Fermentation 2022, 8, 302. [Google Scholar] [CrossRef]
- Wang, J.; Wei, B.-C.; Wang, X.; Zhang, Y.; Gong, Y.-J. Aroma Profiles of Sweet Cherry Juice Fermented by Different Lactic Acid Bacteria Determined through Integrated Analysis of Electronic Nose and Gas Chromatography–Ion Mobility Spectrometry. Front. Microbiol. 2023, 14, 1113594. [Google Scholar] [CrossRef]
- Yang, X.; Hu, W.; Xiu, Z.; Jiang, A.; Yang, X.; Sarengaowa; Ji, Y.; Guan, Y.; Feng, K. Microbial Dynamics and Volatilome Profiles during the Fermentation of Chinese Northeast Sauerkraut by Leuconostoc mesenteroides ORC 2 and Lactobacillus plantarum HBUAS 51041 under Different Salt Concentrations. Food Res. Int. 2020, 130, 108926. [Google Scholar] [CrossRef]
- Calín-Sánchez, A.; Martínez, J.J.; Vázquez-Araújo, L.; Burló, F.; Melgarejo, P.; Carbonell-Barrachina, A.A. Volatile Composition and Sensory Quality of Spanish Pomegranates (Punica granatum L.). J. Sci. Food Agric. 2011, 91, 586–592. [Google Scholar] [CrossRef]
- Li, T.; Jiang, T.; Liu, N.; Wu, C.; Xu, H.; Lei, H. Biotransformation of Phenolic Profiles and Improvement of Antioxidant Capacities in Jujube Juice by Select Lactic Acid Bacteria. Food Chem. 2021, 339, 127859. [Google Scholar] [CrossRef]
- Tian, H.; Xiong, J.; Yu, H.; Chen, C.; Lou, X. Flavor Optimization in Dairy Fermentation: From Strain Screening and Metabolic Diversity to Aroma Regulation. Trends Food Sci. Technol. 2023, 141, 104194. [Google Scholar] [CrossRef]
- Atamyradova, N.; Özkılıç, S.Y.; Arslan, D. Blanching of Olive Fruits before Storage at Different Conditions: Effects on Oil Yield, Lipase Activity and Oxidation. J. Agric. Food Res. 2024, 18, 101509. [Google Scholar] [CrossRef]
- Guo, X.; Ho, C.-T.; Wan, X.; Zhu, H.; Liu, Q.; Wen, Z. Changes of Volatile Compounds and Odor Profiles in Wuyi Rock Tea during Processing. Food Chem. 2021, 341, 128230. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Zhang, M.; Bhandari, B.; Li, Z. Effect of Blanching on Volatile Compounds and Structural Aspects of Cordyceps Militaris Dried by Microwave-Assisted Pulse-Spouted Bed Freeze-Drying (MPSFD). Dry. Technol. 2019, 37, 13–25. [Google Scholar] [CrossRef]
- Sabatini, N.; Mucciarella, M.R.; Marsilio, V. Volatile Compounds in Uninoculated and Inoculated Table Olives with Lactobacillus Plantarum (Olea europaea L., Cv. Moresca and Kalamata). LWT—Food Sci. Technol. 2008, 41, 2017–2022. [Google Scholar] [CrossRef]
- Di Cagno, R.; Filannino, P.; Gobbetti, M. Lactic Acid Fermentation Drives the Optimal Volatile Flavor-Aroma Profile of Pomegranate Juice. Int. J. Food Microbiol. 2017, 248, 56–62. [Google Scholar] [CrossRef]
- Beaulieu, J.C.; Lloyd, S.W.; Preece, J.E.; Moersfelder, J.W.; Stein-Chisholm, R.E.; Obando-Ulloa, J.M. Physicochemical Properties and Aroma Volatile Profiles in a Diverse Collection of California-Grown Pomegranate (Punica granatum L.) Germplasm. Food Chem. 2015, 181, 354–364. [Google Scholar] [CrossRef] [PubMed]






| Organic Acid | Control (Non-Fermented QJ) | Lf14-Fermented QJ | Lr18-Fermented QJ | Lp808-Fermented QJ |
|---|---|---|---|---|
| Oxalic acid | 6.37 ± 0.05 c | 6.80 ± 0.17 ab | 6.98 ± 0.10 a | 6.57 ± 0.05 bc |
| Malic acid | 12.06 ± 0.22 b | 8.68 ± 0.06 d | 14.30 ± 0.15 a | 9.82 ± 0.06 c |
| Lactic acid | 1.53 ± 0.01 c | 53.23 ± 1.03 a | 51.55 ± 0.39 a | 49.77 ± 0.80 b |
| Acetic acid | 4.42 ± 0.04 d | 25.19 ± 0.48 b | 17.72 ± 0.26 c | 29.09 ± 0.50 a |
| Maleic acid | 0.090 ± 0.002 a | 0.076 ± 0.000 c | 0.077 ± 0.001 c | 0.080 ± 0.000 b |
| Citric acid | 8.43 ± 0.73 b | 5.90 ± 0.78 c | 11.64 ± 0.95 a | 5.86 ± 0.17 c |
| Succinic acid | 16.58 ± 0.55 a | 2.73 ± 0.12 b | 3.08 ± 0.11 b | 2.76 ± 0.13 b |
| Fumaric acid | ND | 0.025 ± 0.000 c | 0.032 ± 0.001 a | 0.030 ± 0.001 b |
| Total acids | 49.48 ± 0.94 c | 102.63 ± 1.39 b | 105.38 ± 1.08 a | 103.98 ± 0.97 b |
| NO | Name | CAS | Odor Threshold (mg/kg in Water) | Control (Non-Fermented QJ) | Lf14-Fermented QJ | Lr18-Fermented QJ | Lp808-Fermented QJ | Flavor/Odor Profile |
|---|---|---|---|---|---|---|---|---|
| 1 | (S)-2-heptanol | 6033-23-4 | 0.035 | ND | 5.14 | 28.86 | 36.00 | Mushroom, oily, fatty, blue, cheese, moldy |
| 2 | 1-hexanol | 111-27-3 | 0.5 | ND | ND | ND | 20.18 | Green, fruity, apple-skin, oily |
| 3 | 3-hexen-1-ol | 544-12-7 | 0.02 | ND | 14.50 | 42.00 | 109.50 | Green, leafy |
| 4 | trans-2-hexenol | 928-95-0 | 0.05 | ND | ND | ND | 6.80 | Green, leafy, fresh, fatty, grassy, fruity, juicy |
| 5 | 1-octen-3-ol | 3391-86-4 | 0.003 | ND | 123.33 | 450.00 | 970.00 | Mushroom, earthy, fungal, green, oily, vegetative, umami, sensation, savory, brothy |
| 6 | linalool | 78-70-6 | 0.1 | ND | 22.80 | 44.90 | 35.10 | Citrus, orange, lemon, floral, waxy, aldehydic, woody |
| 7 | 4-terpinenol | 562-74-3 | 0.02 | ND | ND | 15.50 | 25.50 | Cooling, woody, earthy, clove, spicy, with a citrus undernote |
| 8 | (R)-lavandulol | 498-16-8 | 0.075 | ND | 52.27 | 79.20 | ND | Herbal |
| 9 | α-terpineol | 98-55-5 | 0.02 | ND | 13.50 | 62.00 | 73.00 | Citrus, woody, lemon, lime, soapy |
| 10 | endo-borneol | 507-70-0 | 0.03 | ND | 9.67 | 59.00 | 51.33 | Pine, woody, camphoreous, balsamic |
| 11 | γ-terpineol | 586-81-2 | 0.06 | ND | 7.00 | ND | 16.83 | Pine, floral, lilac |
| 12 | cis-p-menth-2-en-7-ol | 19898-86-3 | 0.075 | ND | ND | 2.27 | ND | NF |
| 13 | (-)-myrtenol | 515-00-4 | 0.06 | ND | 7.83 | 14.17 | 17.50 | Cooling, minty, camphoreous, green, medicinal |
| 14 | 3,7-dimethyl-2,6-octadien-1-ol | 624-15-7 | 0.03 | ND | ND | 14.67 | ND | NF |
| 15 | geraniol | 106-24-1 | 0.01 | ND | ND | 120.00 | 318.00 | Floral, rose, waxy, fruity, peach |
| 16 | nerol | 106-25-2 | 0.02 | ND | 38.50 | 62.00 | 44.00 | Lemon, bitter, green, fruity, terpenic |
| 17 | benzyl alcohol | 100-51-6 | 3.5 | ND | 0.11 | 0.32 | 1.30 | Chemical, fruity, balsamic |
| 18 | phenylethyl alcohol | 60-12-8 | 0.3 | ND | 2.10 | 3.97 | 13.77 | Floral, sweet, rose, bready |
| 19 | 2-methyl-butanal | 96-17-3 | 0.0075 | 26.67 | ND | ND | ND | Musty, rummy, nutty, cereal, caramellic, fruity |
| 20 | 3-methyl-butanal | 590-86-3 | 0.0065 | 46.15 | ND | ND | ND | Fruity, green, chocolate, nutty, leafy, cocoa |
| 21 | furfural | 98-01-1 | 0.03 | 8.00 | ND | ND | ND | Brown, sweet, woody, bready, nutty, caramellic, burnt, astringent |
| 22 | 2-methyl-benzaldehyde | 529-20-4 | 0.03 | ND | ND | ND | 30.33 | Cherry |
| 23 | 2-heptanone | 110-43-0 | 1.25 | ND | 0.44 | ND | 1.27 | Cheesy, fruity, coconut, waxy, green |
| 24 | octanoic acid | 124-07-2 | 0.2 | ND | ND | 1.55 | 3.80 | Rancid, soapy, cheesy, fatty, brandy |
| 25 | octyl formate | 112-32-3 | 0.03 | ND | ND | ND | 361.00 | Green, oily, orange, cilantro, waxy, citrus |
| 26 | eugenol | 97-53-0 | 0.003 | ND | ND | ND | 276.67 | Sweet, warm, spicy, clove, phenolic, woody |
| 27 | thymol | 89-83-8 | 0.02 | ND | 12.00 | 47.00 | ND | Phenolic, medicinal, woody, spicy |
| 28 | carvacrol | 499-75-2 | 0.0075 | ND | ND | ND | 428.00 | Spicy, herbal, phenolic, medicinal, woody |
| 29 | 3,5-bis(1,1-dimethylethyl)-phenol | 1138-52-9 | 0.3 | ND | ND | ND | 1.70 | NF |
| 30 | D-limonene | 5989-27-5 | 0.03 | ND | ND | 8.00 | ND | Sweet, orange, citrus |
| 31 | p-cymene | 99-87-6 | 0.075 | ND | 3.47 | 8.40 | 5.87 | Rancid, woody, citrus, spicy, pepper, bell, pepper |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Zhao, Y.; Zhou, Y.; Zhao, Q.; Yuan, S.; Ma, C.; Dong, L.; Luo, Y.; Hu, X.; Chen, F.; et al. Study on Physicochemical Properties, Antioxidant Activity and Flavor Quality in the Fermentation of a Plant-Based Beverage by Different Lactic Acid Bacteria. Foods 2025, 14, 3761. https://doi.org/10.3390/foods14213761
Yang L, Zhao Y, Zhou Y, Zhao Q, Yuan S, Ma C, Dong L, Luo Y, Hu X, Chen F, et al. Study on Physicochemical Properties, Antioxidant Activity and Flavor Quality in the Fermentation of a Plant-Based Beverage by Different Lactic Acid Bacteria. Foods. 2025; 14(21):3761. https://doi.org/10.3390/foods14213761
Chicago/Turabian StyleYang, Liu, Yifan Zhao, Yingzhuo Zhou, Qian Zhao, Shaohua Yuan, Chen Ma, Li Dong, Yinghua Luo, Xiaosong Hu, Fang Chen, and et al. 2025. "Study on Physicochemical Properties, Antioxidant Activity and Flavor Quality in the Fermentation of a Plant-Based Beverage by Different Lactic Acid Bacteria" Foods 14, no. 21: 3761. https://doi.org/10.3390/foods14213761
APA StyleYang, L., Zhao, Y., Zhou, Y., Zhao, Q., Yuan, S., Ma, C., Dong, L., Luo, Y., Hu, X., Chen, F., & Li, D. (2025). Study on Physicochemical Properties, Antioxidant Activity and Flavor Quality in the Fermentation of a Plant-Based Beverage by Different Lactic Acid Bacteria. Foods, 14(21), 3761. https://doi.org/10.3390/foods14213761
