Detection, Genomic Characterization, and Antibiotic Susceptibility of Salmonella Anatum SPBM3 Isolated from Plant-Based Meat
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant-Based Meat Collection and Isolation of Salmonella
2.2. DNA Extraction and Sequencing
2.3. Genome Quality, Assembly, and Analysis
2.4. Antibiotic Susceptibility Test
3. Result and Discussion
3.1. Prevalence of Salmonella in Collected Plant-Based Meat Products
3.2. Genome Quality, Assembly, and Analysis
3.3. Antibiotic Susceptibility Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smetana, S.; Mathys, A.; Knoch, A.; Heinz, V. Meat alternatives: Life cycle assessment of most known meat substitutes. Int. J. Life Cycle Assess. 2015, 20, 1254–1267. [Google Scholar] [CrossRef]
- Kumar, P.; Chatli, M.K.; Mehta, N.; Singh, P.; Malav, O.P.; Verma, A.K. Meat analogues: Health promising sustainable meat substitutes. Crit. Rev. Food Sci. Nutr. 2021, 61, 1040–1055. [Google Scholar] [CrossRef] [PubMed]
- Sha, L.; Xiong, Y.L. Plant protein-based alternatives of reconstructed meat: Science, technology, and challenges. Trends Food Sci. Technol. 2020, 102, 51–61. [Google Scholar] [CrossRef]
- Boye, J.I.; Arcand, Y. Current trends in green technologies in food production and processing. Food Eng. Rev. 2013, 5, 1–17. [Google Scholar] [CrossRef]
- Boukid, F.; Castellari, M.; Vegarud, G.E.; Sagué, M.S. Recent advances in plant-based meat analogues: Raw materials, technologies, and challenges. Curr. Opin. Food Sci. 2021, 40, 89–100. [Google Scholar]
- Salmonella (Non-Typhoidal). Available online: https://www.who.int/news-room/fact-sheets/detail/salmonella-(non-typhoidal) (accessed on 19 April 2025).
- Shoaib, M.; Xu, J.; Meng, X.; Wu, Z.; Hou, X.; He, Z.; Shang, R.; Zhang, H.; Pu, W. Molecular epidemiology and characterization of antimicrobial-resistant Staphylococcus haemolyticus strains isolated from dairy cattle milk in Northwest, China. Front. Cell. Infect. Microbiol. 2023, 13, 1183390. [Google Scholar] [CrossRef]
- Parker, E.M.; Parker, A.J.; Short, G.; O’Connor, A.M.; Wittum, T.E. Salmonella detection in commercially prepared livestock feed and the raw ingredients and equipment used to manufacture the feed: A systematic review and meta-analysis. Prev. Vet. Med. 2022, 8, 8313. [Google Scholar] [CrossRef] [PubMed]
- Carrasco, E.; Morales-Rueda, A.; García-Gimeno, R.M. Cross-contamination and recontamination by Salmonella in foods: A review. Food Res. Int. 2012, 45, 545–556. [Google Scholar] [CrossRef]
- Bartula, K.; Begley, M.; Latour, N.; Callanan, M. Growth of food-borne pathogens Listeria and Salmonella and spore-forming Paenibacillus and Bacillus in commercial plant-based milk alternatives. Food Microbiol. 2023, 109, 104143. [Google Scholar] [CrossRef] [PubMed]
- Allard, M.W.; Strain, E.; Melka, D.; Bunning, K.; Musser, S.M.; Brown, E.W.; Timme, R. Practical value of food pathogen traceability through building a whole-genome sequencing network and database. J. Clin. Microbiol. 2016, 54, 1975–1983. [Google Scholar] [CrossRef]
- Ronholm, J.; Nasheri, N.; Petronella, N.; Pagotto, F. Navigating microbiological food safety in the era of whole-genome sequencing. Clin. Microbiol. Rev. 2016, 29, 837–857. [Google Scholar] [CrossRef] [PubMed]
- How Does Whole Genome Sequencing Work? Available online: https://www.cdc.gov/pulsenet/php/wgs/index.html (accessed on 19 April 2025).
- ISO 6579-1:2017; Microbiology of the Food Chain—Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella—Part 1: Detection of Salmonella spp. International Organization for Standardization: Geneva, Switzerland, 2017.
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 22 May 2025).
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An Ultra-Fast All-in-One FASTQ Preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Richter, M.; Rosselló-Móra, R.; Glockner, F.O.; Peplies, J. JSpeciesWS: A web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinfomatics 2015, 32, 929–931. [Google Scholar] [CrossRef]
- Jolley, K.A.; Bray, J.E.; Maiden, M.C. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018, 3, 124. [Google Scholar] [CrossRef]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [PubMed]
- Page, A.J.; Cummins, C.A.; Hunt, M.; Wong, V.K.; Reuter, S.; Holden, M.T.; Fookes, M.; Falush, D.; Keane, J.A.; Parkhill, J. Roary: Rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015, 31, 3691–3693. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.T.; Schmidt, H.A.; Von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v6: Recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res. 2024, 52, W78–W82. [Google Scholar] [CrossRef]
- Arndt, D.; Grant, J.R.; Marcu, A.; Sajed, T.; Pon, A.; Liang, Y.; Wishart, D.S. PHASTER: A better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016, 44, W16–W21. [Google Scholar] [CrossRef]
- Zhou, Y.; Liang, Y.; Lynch, K.H.; Dennis, J.J.; Wishart, D.S. PHAST: A fast phage search tool. Nucleic Acids Res. 2011, 39, W347–W352. [Google Scholar] [CrossRef]
- Wishart, D.S.; Han, S.; Saha, S.; Oler, E.; Peters, H.; Grant, J.R.; Stothard, P.; Gautam, V. PHASTEST: Faster than PHASTER, better than PHAST. Nucleic Acids Res. 2023, 51, W443–W450. [Google Scholar] [CrossRef]
- Olson, R.D.; Assaf, R.; Brettin, T.; Conrad, N.; Cucinell, C.; Davis, J.J.; Dempsey, D.M.; Dickerman, A.; Dietrich, E.M.; Kenyon, R.W.; et al. Introducing the Bacterial and Viral Bioinformatics Resource Center (BV-BRC): A resource combining PATRIC, IRD and ViPR. Nucleic Acids Res. 2023, 51, D678–D689. [Google Scholar] [CrossRef]
- Carattoli, A.; Zankari, E.; García-Fernández, A.; Voldby Larsen, M.; Lund, O.; Villa, L.; Aarestrup, F.M.; Hasman, H. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 2014, 58, 3895–3903. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 34th ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2024. [Google Scholar]
- Bonaldo, F.; Avot, B.J.P.; De Cesare, A.; Aarestrup, F.M.; Otani, S. Foodborne pathogen dynamics in meat and meat analogues analysed using traditional microbiology and metagenomic sequencing. Antibiotics 2023, 13, 16. [Google Scholar] [CrossRef]
- Canadian Food Inspection Agency. Bacterial Pathogens and Indicators in Ready-to-Eat Non-Soy Plant-Based Meat Alternatives—April 1, 2020 to March 31, 2023 (Final Report); Food Microbiology Targeted Surveys; Government of Canada: Ottawa, ON, Canada, 2023. Available online: https://inspection.canada.ca/food-safety-for-industry/food-chemistry-and-microbiology/eng/1331960432334/1331962151945 (accessed on 20 August 2025).
- Yang, X.; Wu, Q.; Zhang, J.; Huang, J.; Chen, L.; Wu, S.; Zeng, H.; Wang, J.; Chen, M.; Wu, H.; et al. Prevalence, bacterial load, and antimicrobial resistance of Salmonella serovars isolated from retail meat and meat products in China. Front. Microbiol. 2019, 10, 2121. [Google Scholar] [CrossRef]
- Santos, P.D.M.; Widmer, K.W.; Rivera, W.L. PCR-based detection and serovar identification of Salmonella in retail meat collected from wet markets in Metro Manila, Philippines. PLoS ONE 2020, 15, e0239457. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Liu, Y.; Qin, X.; Aspridou, Z.; Zheng, J.; Wang, X.; Li, Z.; Dong, Q. The prevalence and epidemiology of Salmonella in retail raw poultry meat in China: A systematic review and meta-analysis. Foods 2021, 10, 2757. [Google Scholar] [CrossRef] [PubMed]
- Feasey, N.A.; Dougan, G.; Kingsley, R.A.; Heyderman, R.S.; Gordon, M.A. Invasive non-typhoidal salmonella disease: An emerging and neglected tropical disease in Africa. Lancet 2012, 379, 2489–2499. [Google Scholar] [CrossRef]
- Rasko, D.A.; Rosovitz, M.J.; Myers, G.S.; Mongodin, E.F.; Fricke, W.F.; Gajer, P.; Crabtree, J.; Sebaihia, M.; Thomson, N.R.; Chaudhuri, R.; et al. The pangenome structure of Escherichia coli: Comparative genomic analysis of E. coli commensal and pathogenic isolates. J. Bacteriol. 2008, 190, 6881–6893. [Google Scholar] [CrossRef]
- Hai, D.; Guo, B.; Qiao, M.; Jiang, H.; Song, L.; Meng, Z.; Huang, X. Evaluating the potential safety risk of plant-based meat analogues by analyzing microbial community composition. Foods 2023, 13, 117. [Google Scholar] [CrossRef]
- Tóth, A.J.; Dunay, A.; Battay, M.; Illés, C.B.; Bittsánszky, A.; Süth, M. Microbial spoilage of plant-based meat analogues. Appl. Sci. 2021, 11, 8309. [Google Scholar] [CrossRef]
- Gomes, E.; Araújo, D.; Nogueira, T.; Oliveira, R.; Silva, S.; Oliveira, L.V.; Azevedo, N.F.; Almeida, C.; Castro, J. Advances in whole genome sequencing for foodborne pathogens: Implications for clinical infectious disease surveillance and public health. Front. Cell. Infect. Microbiol. 2025, 15, 1593219. [Google Scholar] [CrossRef] [PubMed]
- Pornsukarom, S.; Van Vliet, A.H.; Thakur, S. Whole genome sequencing analysis of multiple Salmonella serovars provides insights into phylogenetic relatedness, antimicrobial resistance, and virulence markers across humans, food animals and agriculture environmental sources. BMC Genom. 2018, 19, 801. [Google Scholar] [CrossRef]
- Pornsukarom, S.; Tongthainan, D.; Phromwat, P.; Wannaratana, S.; Nakbubpa, K.; Muangsri, S. Molecular epidemiology and antimicrobial resistance of Salmonella at the human–macaque–environment interface in Thailand: A One Health surveillance study. Vet. World 2025, 18, 1549. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Whole Genome Sequencing for Foodborne Disease Surveillance: Landscape Paper; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Destoumieux-Garzón, D.; Mavingui, P.; Boetsch, G.; Boissier, J.; Darriet, F.; Duboz, P.; Fritsch, C.; Giraudoux, P.; Roux, F.L.; Morand, S.; et al. The one health concept: 10 years old and a long road ahead. Front. Vet. Sci. 2018, 5, 14. [Google Scholar] [CrossRef]
- Karki, H.S.; Ham, J.H. The roles of the shikimate pathway genes, aroA and aroB, in virulence, growth and UV tolerance of Burkholderia glumae strain 411gr-6. Mol. Plant Pathol. 2014, 15, 940–947. [Google Scholar] [CrossRef]
- Roberts, C.A.; Al-Tameemi, H.M.; Mashruwala, A.A.; Rosario-Cruz, Z.; Chauhan, U.; Sause, W.E.; Torres, V.J.; Belden, W.J.; Boyd, J.M. The Suf iron-sulfur cluster biosynthetic system is essential in Staphylococcus aureus, and decreased Suf function results in global metabolic defects and reduced survival in human neutrophils. Infect. Immun. 2017, 85, 10–1128. [Google Scholar] [CrossRef]
- Ishiguro, N.; Izawa, H.; Shinagawa, M.; Shimamoto, T.; Tsuchiya, T. Cloning and nucleotide sequence of the gene (citC) encoding a citrate carrier from several Salmonella serovars. J. Biol. Chem. 1992, 267, 9559–9564. [Google Scholar] [CrossRef] [PubMed]
- Burns, D.M.; Burger, M.J.; Beacham, I.R. Silent genes in bacteria: The previously designated ‘cryptic’ ilvHI locus of ‘Salmonella typhimurium LT2’ is active in natural isolates. FEMS Microbiol. Lett. 1995, 131, 167–172. [Google Scholar] [CrossRef]
- Kabir, A.; Kelley, W.G.; Glover, C.; Erol, E.; Helmy, Y.A. Phenotypic and genotypic characterization of antimicrobial resistance and virulence profiles of Salmonella enterica serotypes isolated from necropsied horses in Kentucky. Microbiol. Spectr. 2025, 13, e02501-24. [Google Scholar] [CrossRef]
- Wahl, A.; Battesti, A.; Ansaldi, M. Prophages in Salmonella enterica: A driving force in reshaping the genome and physiology of their bacterial host? Mol. Microbiol. 2019, 111, 303–316. [Google Scholar] [CrossRef]
- Andrews, K.; Landeryou, T.; Sicheritz-Pontén, T.; Nale, J.Y. Diverse prophage elements of Salmonella enterica serovars show potential roles in bacterial pathogenicity. Cells 2024, 13, 514. [Google Scholar] [CrossRef]
- Trofeit, L.; Sattler, E.; Künz, J.; Hilbert, F. Salmonella prophages, their propagation, host specificity and antimicrobial resistance gene transduction. Antibiotics 2023, 12, 595. [Google Scholar] [CrossRef]
- Nikaido, E.; Yamaguchi, A.; Nishino, K. AcrAB multidrug efflux pump regulation in Salmonella enterica serovar Typhimurium by RamA in response to environmental signals. J. Biol. Chem. 2008, 283, 24245–24253. [Google Scholar] [CrossRef] [PubMed]
- Alenazy, R. Antibiotic resistance in Salmonella: Targeting multidrug resistance by understanding efflux pumps, regulators and the inhibitors. J. King Saud. Univ. Sci. 2022, 34, 102275. [Google Scholar] [CrossRef]
- Lee, H.; Hsu, F.F.; Turk, J.; Groisman, E.A. The PmrA-regulated pmrC gene mediates phosphoethanolamine modification of lipid A and polymyxin resistance in Salmonella enterica. J. Bacteriol. 2004, 186, 4124–4133. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, K.; China, K.; Nishijima, M. Release of the lipopolysaccharide deacylase PagL from latency compensates for a lack of lipopolysaccharide aminoarabinose modification-dependent resistance to the antimicrobial peptide polymyxin B in Salmonella enterica. J. Bacteriol. 2007, 189, 4911–4919. [Google Scholar] [CrossRef]


| Samples * | Types of Meat Analog | Positive Samples/Total Sample (% Prevalence) |
|---|---|---|
| Raw PBM | Ground pork analog | 1/28 (3.57) |
| (n = 41) | Mushroom meat | 0/2 |
| Plant-based burger | 0/11 | |
| Total | 1/41 (2.44) | |
| Cooked PBM | Chicken tender analog | 0/14 |
| (n = 22) | Chicken breast analog | 0/2 |
| Nugget analog | 0/2 | |
| Beef-style strip | 0/4 | |
| Total | 0/22 (0.0) | |
| Total | 1/63 (1.59) |
| Region | Region Length (Kb) | Total Proteins | Region Position | Most Common Phage | %GC |
|---|---|---|---|---|---|
| a | 39.9 | 56 | 100,364–140,281 | PHAGE_Salmon_118970_sal3 | 50.13 |
| b | 31.3 | 27 | 328,604–359,952 | PHAGE_Salmon_Fels_1 | 48.15 |
| c | 37.6 | 27 | 497,528–549,520 | PHAGE_Escher_500465_1 | 53.38 |
| d | 35.0 | 14 | 159,972–195,020 | PHAGE_Entero_P4 | 48.71 |
| e | 18.1 | 22 | 462,691–480,845 | PHAGE_Burkho_BcepMu | 51.29 |
| Source ID | Gene | Product |
|---|---|---|
| YP_492255.1 | PmrB | Sensor protein BasS/PmrB (activates BasR/PmrA) |
| NP_417177.1 | alaS | Alanyl-tRNA synthetase |
| NP_415791.1 | cysB | Cys regulon transcriptional activator CysB |
| NP_415222.1 | kdpE | DNA-binding response regulator KdpE |
| AAF03531.1 | AAC(6′)-Iy | Aminoglycoside N(6′)-acetyltransferase |
| CDO13981.1 | PhoP | Transcriptional regulatory protein PhoP |
| AAC74603.2 | marR | Multiple antibiotic resistance protein MarR |
| NP_458564.1 | soxR | Redox-sensitive transcriptional activator SoxR |
| NP_414997.1 | acrR | Transcriptional regulator of acrAB operon, AcrR |
| ACH50230.1 | ramR | Transcriptional regulator, AcrR family |
| NP_463130.1 | soxS | DNA-binding transcriptional dual regulator SoxS |
| AAA50993.1 | Translation elongation factor Tu | |
| AAA50993.1 | Translation elongation factor Tu | |
| AAA50993.1 | Translation elongation factor Tu | |
| AAA50993.1 | Translation elongation factor Tu | |
| NP_461214.1 | gyrA | DNA gyrase subunit A |
| NP_462735.1 | gyrB | DNA gyrase subunit B |
| NP_462089.1 | parC | DNA topoisomerase IV subunit A |
| NP_462096.1 | parE | DNA topoisomerase IV subunit B |
| CDJ72593 | GlpT | Glycerol-3-phosphate transporter |
| CDJ73208 | UhpT | Hexose phosphate transport protein UhpT |
| AIL15701 | murA | UDP-N-acetylglucosamine 1-carboxyvinyltransferase |
| NP_415372.1 | nfsA | Oxygen-insensitive NADPH nitroreductase |
| NP_312937.1 | rpoB | DNA-directed RNA polymerase beta subunit |
| YP_491362.1 | folP | Dihydropteroate synthase |
| NP_415632.1 | mfd | Transcription-repair coupling factor |
| NP_416715.1 | YojI | ABC-type siderophore export system, fused ATPase and permease components |
| YP_490697.1 | acrD | Aminoglycosides efflux system AcrAD-TolC, inner-membrane proton/drug antiporter AcrD (RND type) |
| NP_415434.1 | msbA | Lipid A export permease/ATP-binding protein MsbA |
| AFH35853.1 | mdfA | Multidrug efflux pump MdfA/Cmr (of MFS type), broad spectrum |
| AAC77293.1 | mdtM | Multidrug efflux pump MdtM (of MFS type) |
| ABG77966.1 | acrB | Multidrug efflux system AcrAB-TolC, inner-membrane proton/drug antiporter AcrB (RND type) |
| ABG77965.1 | acrA | Multidrug efflux system AcrAB-TolC, membrane fusion component AcrA |
| AAC76298.1 | acrF | Multidrug efflux system AcrEF-TolC, inner-membrane proton/drug antiporter AcrF (RND type) |
| AAC76297.1 | acrE | Multidrug efflux system AcrEF-TolC, membrane fusion component AcrE |
| AAC76297.1 | acrE | Multidrug efflux system AcrEF-TolC, membrane fusion component AcrE |
| AAC75733.1 | emrB | Multidrug efflux system EmrAB-OMF, inner-membrane proton/drug antiporter EmrB (MFS type) |
| BAA16547.1 | emrA | Multidrug efflux system EmrAB-OMF, membrane fusion component EmrA |
| AAC75136.1 | mdtB | Multidrug efflux system MdtABC-TolC, inner-membrane proton/drug antiporter MdtB (RND type) |
| AAC75137.1 | mdtC | Multidrug efflux system MdtABC-TolC, inner-membrane proton/drug antiporter MdtC (RND type) |
| AAC75135.2 | mdtA | Multidrug efflux system MdtABC-TolC, membrane fusion component MdtA |
| NP_459346.1 | mdsB | Multidrug efflux system, inner membrane proton/drug antiporter (RND type) |
| NP_459347.2 | mdsA | Multidrug efflux system, membrane fusion component |
| NP_459345.2 | mdsC | Multidrug efflux system, outer membrane factor lipoprotein of OprM/OprM family |
| YP_489321.1 | mdtG | Multidrug resistance protein MdtG |
| AAC74149.2 | mdtH | Multidrug resistance protein MdtH |
| NP_417544.5 | patA | Putrescine aminotransferase |
| AAC75138.1 | mdtD | Uncharacterized transporter MdtD of major facilitator superfamily (MFS) |
| AML99881.1 | mdtK | Uncharacterized transporter YeeO |
| NP_416340.1 | mgrB | PhoP/PhoQ regulator MgrB |
| NP_312864.1 | cpxA | Copper sensory histidine kinase CpxA |
| NP_312865.1 | cpxR | Copper-sensing two-component system response regulator CpxR |
| BAE77933.1 | CRP | Cyclic AMP receptor protein |
| NP_309766.1 | H-NS | DNA-binding protein H-NS |
| NP_417169.1 | emrR | Multidrug resistance regulator EmrR (MprA) |
| NP_460903.1 | sdiA | N-(3-oxohexanoyl)-L-homoserine lactone-binding transcriptional activator @ N-(3-oxooctanoyl)-L-homoserine lactone-binding transcriptional activator |
| YP_490321.1 | baeR | Response regulator BaeR |
| BAA15934.1 | baeS | Sensory histidine kinase BaeS |
| NP_459349.1 | golS | Transcriptional regulator, MerR family |
| YP_489794.1 | marA | Multiple antibiotic resistance protein MarA |
| AFK13828.1 | ramA | Transcriptional activator RamA |
| BAE78116.1 | PmrC | Lipid A phosphoethanolamine transferase EptA/PmrC |
| AAC75315.1 | arnA | UDP-4-amino-4-deoxy-L-arabinose formyltransferase/UDP-glucuronic acid oxidase (UDP-4-keto-hexauronic acid decarboxylating) |
| AAC75089.1 | PmrE | UDP-glucose 6-dehydrogenase |
| AAC75314.1 | PmrF | Undecaprenyl-phosphate 4-deoxy-4-formamido-L-arabinose transferase |
| AAC76093.1 | bacA | Undecaprenyl-diphosphatase |
| NP_414618.4 | leuO | LysR family transcriptional activator LeuO |
| Antibiotics | Diameter Zone (mm) | Interpretation |
|---|---|---|
| Ampicillin | 25 | S |
| Amoxicillin-Clavulanic acid | 26 | S |
| Gentamicin | 16 | S |
| Streptomycin | 12 | I |
| Ceftriaxone | 29 | S |
| Tetracycline | 19 | S |
| Ciprofloxacin | 29 | I |
| Nalidixic acid | 22 | S |
| Trimethoprim-Sulfamethoxazole | 24 | S |
| Chloramphenicol | 26 | S |
| Colistin | 12 | I |
| Tobramycin | 16 | S |
| Amikacin | 20 | S |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phayakka, P.; Vongkamjan, K.; Khrongsee, P.; Subramaniam, K.; Mordmueng, A.; Pelyuntha, W. Detection, Genomic Characterization, and Antibiotic Susceptibility of Salmonella Anatum SPBM3 Isolated from Plant-Based Meat. Foods 2025, 14, 3710. https://doi.org/10.3390/foods14213710
Phayakka P, Vongkamjan K, Khrongsee P, Subramaniam K, Mordmueng A, Pelyuntha W. Detection, Genomic Characterization, and Antibiotic Susceptibility of Salmonella Anatum SPBM3 Isolated from Plant-Based Meat. Foods. 2025; 14(21):3710. https://doi.org/10.3390/foods14213710
Chicago/Turabian StylePhayakka, Phatchara, Kitiya Vongkamjan, Pacharapong Khrongsee, Kuttichantran Subramaniam, Auemphon Mordmueng, and Wattana Pelyuntha. 2025. "Detection, Genomic Characterization, and Antibiotic Susceptibility of Salmonella Anatum SPBM3 Isolated from Plant-Based Meat" Foods 14, no. 21: 3710. https://doi.org/10.3390/foods14213710
APA StylePhayakka, P., Vongkamjan, K., Khrongsee, P., Subramaniam, K., Mordmueng, A., & Pelyuntha, W. (2025). Detection, Genomic Characterization, and Antibiotic Susceptibility of Salmonella Anatum SPBM3 Isolated from Plant-Based Meat. Foods, 14(21), 3710. https://doi.org/10.3390/foods14213710

