Evaluation of Commercial Carob Syrups (Ceratonia siliqua L.) in Randomized Controlled Trials: Effects on Lipid, Glycaemic, and Anthropometric Parameters
Abstract
1. Introduction
2. Materials and Methods
2.1. Carob Syrup
2.2. Study Design
- (i)
- Glycaemic index (GI);
- (ii)
- Serum cholesterol levels and anthropometric measurements.

2.2.1. Glycaemic Index (GI)
2.2.2. Evaluation of Serum Cholesterol Levels
- (i)
- Control group (CG), including 35 participants who consumed the same quantity of a syrup product that maintained an identical sugar concentration yet did not contain carob or D-pinitol and matched the colour and consistency of the carob syrup.
- (ii)
- Intervention group (IG), including 37 participants who ingested Ceratonia+ Black Essence® carob syrup.
- (i)
- Biochemical parameters, including total cholesterol (TC), high-density lipoprotein (HDL), low-density lipoprotein (LDL), and triglycerides (TAG).
- (ii)
- Anthropometric parameters, including weight, height, waist and hip circumferences, percentage of muscle mass, and fat mass.
2.3. Data and Statistical Analyses
3. Results and Discussion
3.1. Glycaemic Index
3.2. Serum Cholesterol Evaluation
3.2.1. Biochemical Parameters
3.2.2. Anthropometric Parameters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| NCDs | Non-communicable diseases |
| K | Phosphorus |
| P | Potassium |
| Ca | Calcium |
| HMGR | HMG-CoA reductase |
| ACAT | Acyl-CoA-cholesterol acyltransferase |
| CYP2E1 | Cytochrome P4502E1 |
| GI | Glycaemic index |
| AUC | Area under curve |
SD | Standard deviation |
| CG | Control group |
| IG | Intervention group |
| TC | Total cholesterol |
| HDL | High-density lipoprotein |
| LDL | Low-density lipoprotein |
| TAG | Triglycerides |
| BMR | Basal metabolic rate |
| TEE | Total energy expenditure |
| TEF | Thermic effect of food |
| SREBP-2 | Sterol regulatory element-binding protein 2 |
| BMI | Body mass index |
References
- World Health Organization. World Health Statistics 2025: Monitoring Health for the SDGs, Sustainable Development Goals; World Health Organization: Geneva, Switzerland, 2025. [Google Scholar]
- Zhou, B.; Rayner, A.W.; Gregg, E.W.; Sheffer, K.E.; Carrillo-Larco, R.M.; Bennett, J.E.; Shaw, J.E.; Paciorek, C.J.; Singleton, R.K.; Barradas Pires, A.; et al. Worldwide Trends in Diabetes Prevalence and Treatment from 1990 to 2022: A Pooled Analysis of 1108 Population-Representative Studies with 141 Million Participants. Lancet 2024, 404, 2077–2093. [Google Scholar] [CrossRef]
- Ahmed, S.K.; Mohammed, R.A. Obesity: Prevalence, Causes, Consequences, Management, Preventive Strategies and Future Research Directions. Metab. Open 2025, 27, 100375. [Google Scholar] [CrossRef]
- World Health Organization. Diabetes. Available online: https://www.who.int/es/news-room/fact-sheets/detail/diabetes (accessed on 2 July 2025).
- Yousri, N.A.; Suhre, K.; Yassin, E.; Al-Shakaki, A.; Robay, A.; Elshafei, M.; Chidiac, O.; Hunt, S.C.; Crystal, R.G.; Fakhro, K.A. Metabolic and Metabo-Clinical Signatures of Type 2 Diabetes, Obesity, Retinopathy, and Dyslipidemia. Diabetes 2022, 71, 184–205. [Google Scholar] [CrossRef]
- Moszak, M.; Szulińska, M.; Bogdański, P. You Are What You Eat—The Relationship between Diet, Microbiota, and Metabolic Disorders—A Review. Nutrients 2020, 12, 1096. [Google Scholar] [CrossRef]
- Zinöcker, M.K.; Lindseth, I.A. The Western Diet–Microbiome-Host Interaction and Its Role in Metabolic Disease. Nutrients 2018, 10, 365. [Google Scholar] [CrossRef]
- Martins-Loução, M.A.; Correia, P.J.; Romano, A. Carob: A Mediterranean Resource for the Future. Plants 2024, 13, 1188. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W. Carob (Ceratonia siliqua L.), Pharmacological and Phytochemical Activities of Neglected Legume of the Mediterranean Basin, as Functional Food. Rev. Recent Clin. Trials 2024, 19, 127–142. [Google Scholar] [CrossRef]
- Rodríguez-Solana, R.; Romano, A.; Moreno-Rojas, J.M. Carob Pulp: A Nutritional and Functional by-Product Worldwide Spread in the Formulation of Different Food Products and Beverages. A Review. Processes 2021, 9, 1146. [Google Scholar] [CrossRef]
- Loullis, A.; Pinakoulaki, E. Carob as Cocoa Substitute: A Review on Composition, Health Benefits and Food Applications. Eur. Food Res. Technol. 2018, 244, 959–977. [Google Scholar] [CrossRef]
- Özcan, M.M.; Arslan, D.; Gökçalik, H. Some Compositional Properties and Mineral Contents of Carob (Ceratonia Siliqua) Fruit, Flour and Syrup. Int. J. Food Sci. Nutr. 2007, 58, 652–658. [Google Scholar] [CrossRef] [PubMed]
- Zannini, M.; Cattivelli, A.; Nissen, L.; Conte, A.; Gianotti, A.; Tagliazucchi, D. Identification, Bioaccessibility, and Antioxidant Properties of Phenolic Compounds in Carob Syrup. Foods 2024, 13, 2196. [Google Scholar] [CrossRef]
- Rico, D.; Martín-Diana, A.B.; Martínez-Villaluenga, C.; Aguirre, L.; Silván, J.M.; Dueñas, M.; De Luis, D.A.; Lasa, A. In Vitro Approach for Evaluation of Carob By-Products as Source Bioactive Ingredients with Potential to Attenuate Metabolic Syndrome (MetS). Heliyon 2019, 5, 1175. [Google Scholar] [CrossRef] [PubMed]
- Brassesco, M.E.; Brandão, T.R.S.; Silva, C.L.M.; Pintado, M. Carob Bean (Ceratonia siliqua L.): A New Perspective for Functional Food. Trends Food Sci. Technol. 2021, 114, 310–322. [Google Scholar] [CrossRef]
- Goulas, V.; Stylos, E.; Chatziathanasiadou, M.V.; Mavromoustakos, T.; Tzakos, A.G. Functional Components of Carob Fruit: Linking the Chemical and Biological Space. Int. J. Mol. Sci. 2016, 17, 1875. [Google Scholar] [CrossRef] [PubMed]
- Christou, C.; Poulli, E.; Yiannopoulos, S.; Agapiou, A. GC–MS Analysis of D-Pinitol in Carob: Syrup and Fruit (Flesh and Seed). J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2019, 1116, 60–64. [Google Scholar] [CrossRef]
- Edmond, V.D.V.; Hong, Z.; Nelson, A.S. Sugar Alcohols in Plants: Implications for Enhancing Tree Seedlings Drought Tolerance and Production Strategies. BMC Plant Biol. 2025, 25, 891. [Google Scholar] [CrossRef]
- Turhan, I. Optimization of Extraction of D-Pinitol and Phenolics from Cultivated and Wild Types of Carob Pods Using Response Surface Methodology. Int. J. Food Eng. 2011, 7, p1. [Google Scholar] [CrossRef]
- Monastra, G.; Dinicola, S.; Unfer, V. Physiological and Pathophysiological Roles of Inositols. In A Clinical Guide to Inositols; Academic Press: Cambridge, MA, USA, 2023; pp. 9–29. [Google Scholar] [CrossRef]
- Navarro, J.A.; Díaz, C.; Decara, J.; Medina-Vera, D.; Lopez-Gambero, A.J.; Suarez, J.; Pavón, F.J.; Serrano, A.; Vargas, A.; Gavito, A.L.; et al. Pharmacokinetics and Endocrine Effects of an Oral Dose of D-Pinitol in Human Fasting Healthy Volunteers. Nutrients 2022, 14, 4094. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, M.; Wu, T.; Xu, M.; Cai, H.; Zhang, Z. Effects of D-Pinitol on Insulin Resistance through the PI3K/Akt Signaling Pathway in Type 2 Diabetes Mellitus Rats. J. Agric. Food Chem. 2015, 63, 6019–6026. [Google Scholar] [CrossRef]
- Sánchez-Hidalgo, M.; León-González, A.J.; Gálvez-Peralta, M.; González-Mauraza, N.H.; Martin-Cordero, C. D-Pinitol: A Cyclitol with Versatile Biological and Pharmacological Activities. Phytochem. Rev. 2021, 20, 211–224. [Google Scholar] [CrossRef]
- Geethan, P.K.M.A.; Stanely, P.; Prince, M. Antihyperlipidemic Effect of D-Pinitol on Streptozotocin-Induced Diabetic Wistar Rats. J. Biochem. Mol. Toxicol. 2008, 22, 220–224. [Google Scholar] [CrossRef]
- Navarro, J.A.; Decara, J.; Medina-Vera, D.; Tovar, R.; Suarez, J.; Pavón, J.; Serrano, A.; Vida, M.; Gutierrez-Adan, A.; Sanjuan, C.; et al. D-Pinitol from Ceratonia Siliqua Is an Orally Active Natural Inositol That Reduces Pancreas Insulin Secretion and Increases Circulating Ghrelin Levels in Wistar Rats. Nutrients 2020, 12, 2030. [Google Scholar] [CrossRef]
- Hopewell, S.; Chan, A.-W.; Collins, G.S.; Hróbjartsson, A.; Moher, D.; Schulz, K.F.; Tunn, R.; Aggarwal, R.; Berkwits, M.; Berlin, J.A.; et al. CONSORT 2025 Statement: Updated Guideline for Reporting Randomised Trials. Lancet 2025, 405, 1633–1640. [Google Scholar] [CrossRef] [PubMed]
- Brouns, F.; Bjorck, I.; Frayn, K.N.; Gibbs, A.L.; Lang, V.; Slama, G.; Wolever, T.M.S. Glycaemic Index Methodology. Nutr. Res. Rev. 2005, 18, 145–171. [Google Scholar] [CrossRef]
- Tetik, N.; Turhan, I.; Oziyci, H.R.; Karhan, M. Determination of D-Pinitol in Carob Syrup. Int. J. Food Sci. Nutr. 2011, 62, 572–576. [Google Scholar] [CrossRef]
- Kim, H.J.; Park, K.S.; Lee, S.K.; Min, K.W.; Han, K.A.; Kim, Y.K.; Ku, B.J. Effects of Pinitol on Glycemic Control, Insulin Resistance and Adipocytokine Levels in Patients with Type 2 Diabetes Mellitus. Ann. Nutr. Metab. 2012, 60, 1–5. [Google Scholar] [CrossRef]
- Navarro, J.A.; Decara, J.; Medina-Vera, D.; Tovar, R.; Lopez-Gambero, A.J.; Suarez, J.; Pavón, F.J.; Serrano, A.; de Ceglia, M.; Sanjuan, C.; et al. Endocrine and Metabolic Impact of Oral Ingestion of a Carob-Pod-Derived Natural-Syrup-Containing D-Pinitol: Potential Use as a Novel Sweetener in Diabetes. Pharmaceutics 2022, 14, 1594. [Google Scholar] [CrossRef] [PubMed]
- Papakonstantinou, E.; Orfanakos, N.; Farajian, P.; Kapetanakou, A.E.; Makariti, I.P.; Grivokostopoulos, N.; Ha, M.A.; Skandamis, P.N. Short-Term Effects of a Low Glycemic Index Carob-Containing Snack on Energy Intake, Satiety, and Glycemic Response in Normal-Weight, Healthy Adults: Results from Two Randomized Trials. Nutrition 2017, 42, 12–19. [Google Scholar] [CrossRef]
- López-Sánchez, J.I.; Moreno, D.A.; García-Viguera, C. D-Pinitol, a Highly Valuable Product from Carob Pods: Health-Promoting Effects and Metabolic Pathways of This Natural Super-Food Ingredient and Its Derivatives. AIMS Agric. Food 2018, 3, 41–63. [Google Scholar] [CrossRef]
- Bañuls, C.; Rovira-Llopis, S.; López-Doménech, S.; Veses, S.; Víctor, V.M.; Rocha, M.; Hernández-Mijares, A. Effect of Consumption of a Carob Pod Inositol-Enriched Beverage on Insulin Sensitivity and Inflammation in Middle-Aged Prediabetic Subjects. Food Funct. 2016, 7, 4379–4387. [Google Scholar] [CrossRef] [PubMed]
- White, M.F. The Insulin Signalling System and the IRS Proteins. Diabetologia 1997, 40, S2–S17. [Google Scholar] [CrossRef]
- Holman, G.D.; Kasuga, M. From Receptor to Transporter: Insulin Signalling to Glucose Transport. Diabetologia 1997, 40, 991–1003. [Google Scholar] [CrossRef]
- Dang, N.T.; Mukai, R.; Yoshida, K.I.; Ashida, H. D-Pinitol and Myo-Inositol Stimulate Translocation of Glucose Transporter 4 in Skeletal Muscle of C57BL/6 Mice. Biosci. Biotechnol. Biochem. 2010, 74, 1062–1067. [Google Scholar] [CrossRef] [PubMed]
- Restuccia, D.; Esposito, L.; Spizzirri, U.G.; Martuscelli, M.; Caputo, P.; Rossi, C.O.; Clodoveo, M.L.; Pujia, R.; Mazza, E.; Pujia, A.; et al. Formulation of a Gluten-Free Carob-Based Bakery Product: Evaluation of Glycemic Index, Antioxidant Activity, Rheological Properties, and Sensory Features. Fermentation 2023, 9, 748. [Google Scholar] [CrossRef]
- Papakonstantinou, E.; Chaloulos, P.; Papalexi, A.; Mandala, I. Effects of Bran Size and Carob Seed Flour of Optimized Bread Formulas on Glycemic Responses in Humans: A Randomized Clinical Trial. J. Funct. Foods 2018, 46, 345–355. [Google Scholar] [CrossRef]
- Edwards, C.A.; Havlik, J.; Cong, W.; Mullen, W.; Preston, T.; Morrison, D.J.; Combet, E. Polyphenols and Health: Interactions between Fibre, Plant Polyphenols and the Gut Microbiota. Nutr. Bull. 2017, 42, 356–360. [Google Scholar] [CrossRef] [PubMed]
- Macho-González, A.; Garcimartín, A.; López-Oliva, M.E.; Bertocco, G.; Naes, F.; Bastida, S.; Sánchez-Muniz, F.J.; Benedí, J. Fiber Purified Extracts of Carob Fruit Decrease Carbohydrate Absorption. Food Funct. 2017, 8, 2258–2265. [Google Scholar] [CrossRef]
- Golovinskaia, O.; Wang, C.K. The Hypoglycemic Potential of Phenolics from Functional Foods and Their Mechanisms. Food Sci. Hum. Wellness 2023, 12, 986–1007. [Google Scholar] [CrossRef]
- Cao, J.; Yan, S.; Xiao, Y.; Han, L.; Sun, L.; Wang, M. Number of Galloyl Moiety and Intramolecular Bonds in Galloyl-Based Polyphenols Affect Their Interaction with Alpha-Glucosidase. Food Chem 2022, 367, 129846. [Google Scholar] [CrossRef]
- Milek dos Santos, L.; Tomzack Tulio, L.; Fuganti Campos, L.; Ramos Dorneles, M.; Carneiro Hecke Krüger, C.; Carneiro Hecke Krüger Lothário Meisnner, C.R. Glycemic Response to Carob (Ceratonia siliqua L) in Healthy Subjects and with the in Vitro Hydrolysis Index. Nutr. Hosp. 2015, 31, 482–487. [Google Scholar] [CrossRef]
- Gioxari, A.; Amerikanou, C.; Nestoridi, I.; Gourgari, E.; Pratsinis, H.; Kalogeropoulos, N.; Andrikopoulos, N.K.; Kaliora, A.C. Carob: A Sustainable Opportunity for Metabolic Health. Foods 2022, 11, 2154. [Google Scholar] [CrossRef]
- Choi, J.H.; Park, S.E.; Kim, S. Effect of Mesembryanthemum Crystallinum and Its Derived D-Pinitol on HMG-CoA Reductase and Tyloxapol-Induced Hyperlipedemia. eFood 2024, 5, e70020. [Google Scholar] [CrossRef]
- Wang, T.; Liu, L.; Deng, J.; Jiang, Y.; Yan, X.; Liu, W. Analysis of the Mechanism of Action of Quercetin in the Treatment of Hyperlipidemia Based on Metabolomics and Intestinal Flora. Food Funct. 2023, 14, 2112–2127. [Google Scholar] [CrossRef] [PubMed]
- Xiao, P.; Liu, S.; Kuang, Y.; Jiang, Z.; Lin, Y.; Xie, Z.; Liu, E.H. Network Pharmacology Analysis and Experimental Validation to Explore the Mechanism of Sea Buckthorn Flavonoids on Hyperlipidemia. J. Ethnopharmacol. 2021, 264, 113380. [Google Scholar] [CrossRef]
- Liao, C.C.; Ou, T.T.; Wu, C.H.; Wang, C.J. Prevention of Diet-Induced Hyperlipidemia and Obesity by Caffeic Acid in C57BL/6 Mice through Regulation of Hepatic Lipogenesis Gene Expression. J. Agric. Food Chem. 2013, 61, 11082–11088. [Google Scholar] [CrossRef] [PubMed]
- Zunft, H.J.F.; Lüder, W.; Harde, A.; Haber, B.; Graubaum, H.J.; Koebnick, C.; Grünwald, J. Carob Pulp Preparation Rich in Insoluble Fibre Lowers Total and LDL Cholesterol in Hypercholesterolemic Patients. Eur. J. Nutr. 2003, 42, 235–242. [Google Scholar] [CrossRef]
- Ruiz-Roso, B.; Quintela, J.C.; De La Fuente, E.; Haya, J.; Pérez-Olleros, L. Insoluble Carob Fiber Rich in Polyphenols Lowers Total and LDL Cholesterol in Hypercholesterolemic Subjects. Plant Foods Hum. Nutr. 2010, 65, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Rodríguez, R.; Navarro-Alarcón, M.; Rodríguez-Martínez, C.; Fonollá-Joya, J. Efectos Sobre El Perfil Lipídico En Humanos de Un Extracto de Algarroba (Ceratonia siliqua L.) Rico En Polifenoles, Incluido En Un Lácteo Como Alimento Funcional; Estudio Piloto. Nutr. Hosp. 2013, 28, 2107–2114. [Google Scholar] [CrossRef]
- Júnior, J.A.D.S.; DA Silva, A.C.; Figueiredo, L.S.; Araujo, T.R.; Freitas, I.N.; Carneiro, E.M.; Ribeiro, E.S.; Ribeiro, R.A. D-Pinitol Increases Insulin Secretion and Regulates Hepatic Lipid Metabolism in MSG-Obese Mice. An. Acad. Bras. Cienc. 2020, 92, e20201382. [Google Scholar] [CrossRef] [PubMed]
- Ikram, A.; Khalid, W.; ul Wajeeha Zafar, K.; Ali, A.; Afzal, M.F.; Aziz, A.; Faiz ul Rasool, I.; Al-Farga, A.; Aqlan, F.; Koraqi, H. Nutritional, Biochemical, and Clinical Applications of Carob: A Review. Food Sci. Nutr. 2023, 11, 3641–3654. [Google Scholar] [CrossRef]
- Bañuls, C.; Rovira-Llopis, S.; Falcón, R.; Veses, S.; Monzó, N.; Víctor, V.M.; Rocha, M.; Hernández-Mijares, A. Chronic Consumption of an Inositol-Enriched Carob Extract Improves Postprandial Glycaemia and Insulin Sensitivity in Healthy Subjects: A Randomized Controlled Trial. Clin. Nutr. 2016, 35, 600–607. [Google Scholar] [CrossRef]
- Carnauba, R.A.; Sarti, F.M.; Coutinho, C.P.; Hassimotto, N.M.; Marchioni, D.M.; Lotufo, P.A.; Bensenor, I.M.; Lajolo, F.M. Associations Between Polyphenol Intake, Cardiometabolic Risk Factors and Metabolic Syndrome in the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). J. Nutr. 2025, 155, 570–579. [Google Scholar] [CrossRef]
- Lambert, C.; Cubedo, J.; Padró, T.; Vilahur, G.; López-Bernal, S.; Rocha, M.; Hernández-Mijares, A.; Badimon, L. Effects of a Carob-Pod-Derived Sweetener on Glucose Metabolism. Nutrients 2018, 10, 271. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Su, Z.; Wang, S. The Anti-Obesity Effects of Polyphenols: A Comprehensive Review of Molecular Mechanisms and Signal Pathways in Regulating Adipocytes. Front. Nutr. 2024, 11, 1393575. [Google Scholar] [CrossRef]
- López-Domènech, S.; Bañuls, C.; de Marañón, A.M.; Abab-Jiménez, Z.; Morillas, C.; Gómez-Abril, S.Á.; Rovira-Llopis, S.; Víctor, V.M.; Hernández-Mijares, A.; Rocha, M. Pinitol Alleviates Systemic Inflammatory Cytokines in Human Obesity by a Mechanism Involving Unfolded Protein Response and Sirtuin 1. Clin. Nutr. 2018, 37, 2036–2044. [Google Scholar] [CrossRef] [PubMed]






| Value | Units | ||
|---|---|---|---|
| Black Essence® | Gold Essence® | ||
| Physico-chemical characteristics | |||
| Brix at 20 °C | 65–69 | 65–69 | ºBrix |
| Density | 1.35 | 1.35 | g/mL |
| pH | 5.5 | 5.5 | |
| Sweetening power | 45–50 | 45–50 | |
| Nutritional composition | |||
| Carbohydrates | 66.3 | 66.3 | % |
| of which sugars | 58.3 | 58.3 | % |
| Energy | 1197.8 | 1197.8 | kJul/100 g |
| 282.2 | 282.2 | kcal/100 g | |
| Fat | 1.2 | 1.2 | % |
| of which saturates | <0.1 | <0.1 | % |
| Protein | 1.5 | 1.5 | % |
| Salt | 0.2 | 0.2 | % |
| Fibre | <0.1 | <0.1 | % |
| Bioactive constituents | |||
| No Flavonoids | |||
| Caffeoyl 4-O-glucoside | 293.1 | 117.9 | ppm |
| Caffeoyl-galloyl-hexoside | 80.7 | 36.2 | ppm |
| Galloyl-hexoside | 420.2 | 302.4 | ppm |
| Flavonoids | |||
| Procyanidin dimer | 23.1 | 21.2 | ppm |
| Quercetin-glucoside | 27.1 | - | ppm |
| Myricetin-glucoside | 85.2 | - | ppm |
| Myricetin deoxihexoside | 131.6 | - | ppm |
| Quercetin deoxihexoside | 71.5 | 21.8 | ppm |
| Total polyphenols | 1132.5 | 499.5 | ppm |
| Parameter | Black Essence® | Gold Essence® | Glucose Control | Units | Comments |
|---|---|---|---|---|---|
| Postprandial glucose | 123.13 ± 17.41 | 123.53 ± 11.06 | 140.93 ± 21.98 | mg/dL | Gold and black syrups significantly reduced the glycaemic responses by 16% compared with the control |
| GI | 56.04 ± 13.75 | 60.46 ± 26.92 | 100 | % | The GI values for gold and black syrups were significantly lower than those of the control |
| TC | −14.68 ± 25.60 | - | −9.57 ± 27.46 | mg/dL | Statistically major reduction with respect to the control |
| Waist Circumference | −3.58 ± 1.79 | - | +3.99 ± 4.28 | cm | Statistically major reduction with respect to the control |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Planes-Muñoz, D.; Rosell, M.d.l.Á.; Frontela-Saseta, C.; López-Nicolás, R. Evaluation of Commercial Carob Syrups (Ceratonia siliqua L.) in Randomized Controlled Trials: Effects on Lipid, Glycaemic, and Anthropometric Parameters. Foods 2025, 14, 3676. https://doi.org/10.3390/foods14213676
Planes-Muñoz D, Rosell MdlÁ, Frontela-Saseta C, López-Nicolás R. Evaluation of Commercial Carob Syrups (Ceratonia siliqua L.) in Randomized Controlled Trials: Effects on Lipid, Glycaemic, and Anthropometric Parameters. Foods. 2025; 14(21):3676. https://doi.org/10.3390/foods14213676
Chicago/Turabian StylePlanes-Muñoz, David, María de los Ángeles Rosell, Carmen Frontela-Saseta, and Rubén López-Nicolás. 2025. "Evaluation of Commercial Carob Syrups (Ceratonia siliqua L.) in Randomized Controlled Trials: Effects on Lipid, Glycaemic, and Anthropometric Parameters" Foods 14, no. 21: 3676. https://doi.org/10.3390/foods14213676
APA StylePlanes-Muñoz, D., Rosell, M. d. l. Á., Frontela-Saseta, C., & López-Nicolás, R. (2025). Evaluation of Commercial Carob Syrups (Ceratonia siliqua L.) in Randomized Controlled Trials: Effects on Lipid, Glycaemic, and Anthropometric Parameters. Foods, 14(21), 3676. https://doi.org/10.3390/foods14213676

