Multispectral and Colorimetric Approaches for Non-Destructive Maturity Assessment of Specialty Arabica Coffee
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area for Sample Collection
2.2. Acquisition of Near-Infrared Spectral Images
2.3. Image Processing
2.4. Predictive Models Based on Colorimetric Data
- Color Analysis
- Multiple Linear Regression Model (MLR)
3. Results
3.1. Spectral Signature
3.2. Colorimetry Analysis
3.3. Distribution of Ripeness States
3.4. Multivariate Linear Regression Modeling for Colorimetric Predictors
- Caturra Amarillo Variety (CAM)
- Milenio Variety (MI)
- Excelencia Variety (E)
- Típica variety (T)
4. Discussion
- Generation of Spectral Signatures
- Colorimetry and Models
- Limitations and Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tamru, S.; Minten, B.; Swinnen, J. Trade, value chains, and rent distribution with foreign exchange controls: Coffee exports in Ethiopia. Agric. Econ. 2021, 52, 81–95. [Google Scholar] [CrossRef]
- Costa, A.G.; De Sousa, D.A.G.; Paes, J.L.; Cunha, J.P.B.; De Oliveira, M.V.M. Classification of robusta coffee fruits at different maturation stages using colorimetric characteristics. Eng. Agric. 2020, 40, 518–525. [Google Scholar] [CrossRef]
- Alsaad, A.A.; Moon, W.; Rendleman, C.M. International Trade in Specialty Agricultural Products: Demand for Organic Green Coffee—A Case Study. Indian J. Ecol. 2021, 48, 249–253. [Google Scholar]
- Feria-Morales, A.M. Examining the case of green coffee to illustrate the limitations of grading systems/expert tasters in sensory evaluation for quality control. Food Qual. Prefer. 2002, 13, 355–367. [Google Scholar] [CrossRef]
- SCA. El Café Arábica Lavado Guía de Defectos del Café Verde: Un Manual de la Specialty Coffe Association, 3rd ed.; Oak Lodge Farm: Essex, UK, 2019; ISBN 9780999580714. [Google Scholar]
- Craig, A.P.; Franca, A.S.; Oliveira, L.S. Discrimination between Immature and Mature Green Coffees by Attenuated Total Reflectance and Diffuse Reflectance Fourier Transform Infrared Spectroscopy. J. Food Sci. 2011, 76, C1162–C1168. [Google Scholar] [CrossRef]
- Scholz, M.B.d.S.; Prudencio, S.H.; Kitzberger, C.S.G.; Silva, R.S.d.S.F.d. Physico-chemical characteristics and sensory attributes of coffee beans submitted to two post-harvest processes. J. Food Meas. Charact. 2019, 13, 831–839. [Google Scholar] [CrossRef]
- Velásquez, S.; Banchón, C. Influence of pre-and post-harvest factors on the organoleptic and physicochemical quality of coffee: A short review. J. Food Sci. Technol. 2023, 60, 2526–2538. [Google Scholar] [CrossRef]
- Bazame, H.C.; Molin, J.P.; Althoff, D.; Martello, M. Detection, classification, and mapping of coffee fruits during harvest with computer vision. Comput. Electron. Agric. 2021, 183, 106066. [Google Scholar] [CrossRef]
- Fracarolli, J.A.; Adimari Pavarin, F.F.; Castro, W.; Blasco, J. Computer vision applied to food and agricultural products. Rev. Cienc. Agron. 2020, 51, e20207749. [Google Scholar] [CrossRef]
- Sivaranjani, A.; Senthilrani, S.; Kumar, B.A.; Murugan, A.S. An Overview of Various Computer Vision-based Grading System for Various Agricultural Products. J. Hortic. Sci. Biotechnol. 2022, 97, 137–159. [Google Scholar] [CrossRef]
- García, M.; Candelo-Becerra, J.E.; Hoyos, F.E. Quality and defect inspection of green coffee beans using a computer vision system. Appl. Sci. 2019, 9, 4195. [Google Scholar] [CrossRef]
- Ramos Giraldo, P.J.; Sanz Uribe, J.R.; Oliveros Tascón, C.E. Identificación y clasificación de frutos de café en tiempo real, a través de la medición de color. Cenicafé 2010, 61, 315–326. [Google Scholar]
- He, D.; Wang, E.; Wang, J.; Robertson, M.J. Data requirement for effective calibration of process-based crop models. Agric. For. Meteorol. 2017, 234–235, 136–148. [Google Scholar] [CrossRef]
- Sandoval Niño, C.; Liliana, Z.; Ortiz, P.; Augusto, F. Revista Facultad Nacional de Agronomía-Medellín. Rev. Fac. Nac. Agron. 2007, 60, 4105–4127. [Google Scholar]
- Oliveira, L.S.; Franca, A.S.; Mendonça, J.C.F.; Barros-Júnior, M.C. Proximate composition and fatty acids profile of green and roasted defective coffee beans. LWT 2006, 39, 235–239. [Google Scholar] [CrossRef]
- Tsegay, G.; Redi-Abshiro, M.; Chandravanshi, B.S.; Ele, E.; Mohammed, A.M.; Mamo, H. Effect of altitude of coffee plants on the composition of fatty acids of green coffee beans. BMC Chem. 2020, 14, 36. [Google Scholar] [CrossRef]
- Vasconcelos, A.L.S.; Franca, A.S.; Glória, M.B.A.; Mendonça, J.C.F. A comparative study of chemical attributes and levels of amines in defective green and roasted coffee beans. Food Chem. 2007, 101, 26–32. [Google Scholar] [CrossRef]
- Mendonça, J.C.F.; Franca, A.S.; Oliveira, L.S.; Nunes, M. Chemical characterisation of non-defective and defective green arabica and robusta coffees by electrospray ionization-mass spectrometry (ESI-MS). Food Chem. 2008, 111, 490–497. [Google Scholar] [CrossRef]
- Allwood, J.W.; Goodacre, R. An introduction to liquid chromatography-mass spectrometry instrumentation applied in plant metabolomic analyses. Phytochem. Anal. 2010, 21, 33–47. [Google Scholar] [CrossRef]
- Bernardes, T.; Moreira, M.A.; Adami, M.; Giarolla, A.; Rudorff, B.F.T. Monitoring biennial bearing effect on coffee yield using MODIS remote sensing imagery. Remote Sens. 2012, 4, 2492–2509. [Google Scholar] [CrossRef]
- Bertrand, B.; Etienne, H.; Lashermes, P.; Guyot, B.; Davrieux, F. Can near-infrared reflectance of green coffee be used to detect introgression in Coffea arabica cultivars? J. Sci. Food Agric. 2005, 85, 955–962. [Google Scholar] [CrossRef]
- Putra Olasari, T.; Otong Bustomi, A.; Setyawan, E. Optimization of Coffee Farmers in Modern and Traditional Coffee Processing to Increase Selling Price in Lemah Putih Village. Cirebon Int. J. Econ. Bus. 2023, 1, 125–132. [Google Scholar] [CrossRef]
- Sayyida Beegam, K.; Shenoy, M.V. Cherry Plucking Strategies for Coffee Harvester. In Proceedings of the 2021 7th International Conference on Control, Automation and Robotics (ICCAR), Singapore, 23–26 April 2021; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2021; pp. 151–155. [Google Scholar]
- Hu, G.; Peng, X.; Wang, X.; Li, X.; Li, X.; Qiu, M. Excavation of coffee maturity markers and further research on their changes in coffee cherries of different maturity. Food Res. Int. 2020, 132, 109121. [Google Scholar] [CrossRef] [PubMed]
- Olsson, P.O.; Vivekar, A.; Adler, K.; Garcia Millan, V.E.; Koc, A.; Alamrani, M.; Eklundh, L. Radiometric correction of multispectral uas images: Evaluating the accuracy of the parrot sequoia camera and sunshine sensor. Remote Sens. 2021, 13, 577. [Google Scholar] [CrossRef]
- Veneros, J.; Chavez, S.; Oliva, M.; Arellanos, E.; Maicelo, J.L.; García, L. Comparing Six Vegetation Indexes between Aquatic Ecosystems Using a Multispectral Camera and a Parrot Disco-Pro Ag Drone, the ArcGIS, and the Family Error Rate: A Case Study of the Peruvian Jalca. Water 2023, 15, 3103. [Google Scholar] [CrossRef]
- Gómez-Sanchis, J.; Moltó, E.; Camps-Valls, G.; Gómez-Chova, L.; Aleixos, N.; Blasco, J. Automatic correction of the effects of the light source on spherical objects. An application to the analysis of hyperspectral images of citrus fruits. J. Food Eng. 2008, 85, 191–200. [Google Scholar] [CrossRef]
- Franzini, M.; Ronchetti, G.; Sona, G.; Casella, V. Geometric and radiometric consistency of parrot sequoia multispectral imagery for precision agriculture applications. Appl. Sci. 2019, 9, 5314. [Google Scholar] [CrossRef]
- Martins, R.N.; Pinto, F. de A. de C.; Queiroz, D.M. de; Valente, D.S.M.; Rosas, J.T.F. A novel vegetation index for coffee ripeness monitoring using aerial imagery. Remote Sens. 2021, 13, 263. [Google Scholar] [CrossRef]
- Bento, N.L.; Ferraz, G.A.E.S.; Barata, R.A.P.; Soares, D.V.; dos Santos, L.M.; Santana, L.S.; Ferraz, P.F.P.; Conti, L.; Palchetti, E. Characterization of Recently Planted Coffee Cultivars from Vegetation Indices Obtained by a Remotely Piloted Aircraft System. Sustainability 2022, 14, 1446. [Google Scholar] [CrossRef]
- Zhang, P.; Zhou, Z. Postharvest ethephon degreening improves fruit color, flavor quality and increases antioxidant capacity in ‘Eureka’ lemon (Citrus limon (L.) Burm. f.). Sci. Hortic. 2019, 248, 70–80. [Google Scholar] [CrossRef]
- Kang, S.Y.; Yon, E.Z.; Nam, K.H.; Kang, W.H. Evaluation of Physicochemical Characteristics of Kenyan Coffee Variety ‘Ruiru 11’ according to Green Bean Processing Method. J. Korean Soc. Food Sci. Nutr. 2024, 53, 726–733. [Google Scholar] [CrossRef]
- Rocha, R.A.R.; Silva, L.C.F.; da Cruz, M.A.D.; Cardoso, L.M.A.B.; Sousa, A.d.B.M.; Alonso, L.; Machado, M.V.C.; Costa, G.X.R.; Amaral, L.R.; Bertarini, P.L.L.; et al. Coffee Biotransformation in Volcanic Process: A Chemical and Sensory Analysis. Foods 2025, 14, 1368. [Google Scholar] [CrossRef] [PubMed]
- Shams, S.R.; Jahani, A.; Kalantary, S.; Moeinaddini, M.; Khorasani, N. The evaluation on artificial neural networks (ANN) and multiple linear regressions (MLR) models for predicting SO2 concentration. Urban Clim. 2021, 37, 100837. [Google Scholar] [CrossRef]
- Kittichotsatsawat, Y.; Tippayawong, N.; Tippayawong, K.Y. Prediction of arabica coffee production using artificial neural network and multiple linear regression techniques. Sci. Rep. 2022, 12, 14488. [Google Scholar] [CrossRef] [PubMed]
- Utomo, B.; Soedarto, T.; Winarno, S.T.; Hendrarini, H. Predicting the Success of Coffee Farmer Partnerships Using Factor Analysis and Multiple Linear Regression. Org. Farming 2025, 11, 61–71. [Google Scholar] [CrossRef]
- Yirga, M.; Gebreselassie, W.; Tesfaye, A. Correlation and Path Coefficient Analysis in Coffee (Coffea arabica L.) Germplasm Accessions in Ethiopia. Sci. Res. 2021, 9, 27. [Google Scholar] [CrossRef]
- Silva, S.d.A.; de Queiroz, D.M.; Pinto, F.d.A.C.; Santos, N.T. Coffee quality and its relationship with Brix degree and colorimetric information of coffee cherries. Precis. Agric. 2014, 15, 543–554. [Google Scholar] [CrossRef]
- Glazer, A.N. Structure and Molecular Organization of the Photosynthetic Accessory Pigments of Cyanobacteria and Red Algae. Mol. Cell. Biochem. 1977, 18, 125–140. [Google Scholar] [CrossRef]
- Merzlyak, M.; Gitelson, A.A.; Pogosyan, S.; Lekhimena, L.; Chivkunova, O.B. Ligrth-induced pigment degradation in leaves and ripening fruits studied in situ with reflectance spectroscopy. Physiol. Plant. 1998, 104, 661–667. [Google Scholar] [CrossRef]
- Maimaitiyiming, M.; Ghulam, A.; Bozzolo, A.; Wilkins, J.L.; Kwasniewski, M.T. Early detection of plant physiological responses to different levels of water stress using reflectance spectroscopy. Remote Sens. 2017, 9, 745. [Google Scholar] [CrossRef]
- Li, X.; Feng, Y.; Sun, X.; Liu, W.; Yang, W.; Ge, X.; Jia, Y. Effects of Various Levels of Water Stress on Morpho-Physiological Traits and Spectral Reflectance of Maize at Seedling Growth Stage. Agronomy 2024, 14, 2173. [Google Scholar] [CrossRef]
- Stuart, M.B.; McGonigle, A.J.S.; Willmott, J.R. Hyperspectral imaging in environmental monitoring: A review of recent developments and technological advances in compact field deployable systems. Sensors 2019, 19, 3071. [Google Scholar] [CrossRef]
- Wallach, D.; Thorburn, P.J. Estimating uncertainty in crop model predictions: Current situation and future prospects. Eur. J. Agron. 2017, 88, A1–A7. [Google Scholar] [CrossRef]
- Gomes, L.; Nobre, T.; Sousa, A.; Rei, F.; Guiomar, N. Hyperspectral Reflectance as a Basis to Discriminate Olive Varieties-A Tool for Sustainable Crop Management. Sustainability 2020, 12, 3059. [Google Scholar] [CrossRef]
- Orlando, V.S.W.; de Lourdes Bueno Trindade Galo, M.; Martins, G.D.; Lingua, A.M.; Andaló, V. UAV imaging for spectral characterization of Coffee Leaf Miner (Leucoptera coffeella) infestation in the Cerrado Mineiro region. In Proceedings of the ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Belém, Brazil, 4–8 November 2024; Copernicus Publications: Göttingen, Germany, 2024; Volume 10, pp. 285–291. [Google Scholar]





| Variety/Wavelength (nm) | Unripe | Slightly Unripe | Semi-Ripe | Ripe 1 | Ripe 2 | Overripe 1 | Overripe 2 | Dry | Band |
|---|---|---|---|---|---|---|---|---|---|
| Caturra amarillo/550 | 0.57 | 0.7 | 0.7 | 0.7 | 0.6 | 0.7 | 0.3 | - | Green |
| Caturra amarillo/660 | 0.3 | 0.6 | 0.7 | 0.6 | 0.6 | 0.7 | 0.6 | - | Red |
| Caturra amarillo/735 | 0.7 | 0.7 | 0.7 | 0.7 | 0.6 | 0.6 | 0.4 | - | RedEdge |
| Caturra amarillo/790 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | - | NIR |
| Excelencia/550 | 0.59 | 0.6 | 0.6 | 0.6 | 0.6 | 0.3 | 0.2 | 0.2 | Green |
| Excelencia/660 | 0.4 | 0.5 | 0.5 | 0.6 | 0.7 | 0.7 | 0.6 | 0.6 | Red |
| Excelencia/735 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.6 | RedEdge |
| Excelencia/790 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | NIR |
| Milenio/550 | 0.52 | 0.6 | 0.6 | 0.3 | 0.3 | 0.2 | 0.2 | 0.2 | Green |
| Milenio/660 | 0.4 | 0.6 | 0.5 | 0.7 | 0.7 | 0.7 | 0.7 | 0.6 | Red |
| Milenio/735 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | RedEdge |
| Milenio/790 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | NIR |
| Típica/550 | 0.6 | 0.6 | 0.6 | 0.7 | 0.5 | 0.5 | 0.2 | 0.2 | Green |
| Típica/660 | 0.4 | 0.5 | 0.5 | 0.7 | 0.6 | 0.7 | 0.7 | 0.6 | Red |
| Típica/735 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.6 | RedEdge |
| Típica/790 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | NIR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cuchca Ramos, S.; Veneros, J.; Bolaños-Carriel, C.; Guadalupe, G.A.; Mestanza, M.; Garcia, H.; Chavez, S.G.; Garcia, L. Multispectral and Colorimetric Approaches for Non-Destructive Maturity Assessment of Specialty Arabica Coffee. Foods 2025, 14, 3644. https://doi.org/10.3390/foods14213644
Cuchca Ramos S, Veneros J, Bolaños-Carriel C, Guadalupe GA, Mestanza M, Garcia H, Chavez SG, Garcia L. Multispectral and Colorimetric Approaches for Non-Destructive Maturity Assessment of Specialty Arabica Coffee. Foods. 2025; 14(21):3644. https://doi.org/10.3390/foods14213644
Chicago/Turabian StyleCuchca Ramos, Seily, Jaris Veneros, Carlos Bolaños-Carriel, Grobert A. Guadalupe, Marilu Mestanza, Heyton Garcia, Segundo G. Chavez, and Ligia Garcia. 2025. "Multispectral and Colorimetric Approaches for Non-Destructive Maturity Assessment of Specialty Arabica Coffee" Foods 14, no. 21: 3644. https://doi.org/10.3390/foods14213644
APA StyleCuchca Ramos, S., Veneros, J., Bolaños-Carriel, C., Guadalupe, G. A., Mestanza, M., Garcia, H., Chavez, S. G., & Garcia, L. (2025). Multispectral and Colorimetric Approaches for Non-Destructive Maturity Assessment of Specialty Arabica Coffee. Foods, 14(21), 3644. https://doi.org/10.3390/foods14213644

