Omics Insights into Cylindrospermopsin’s Molecular Toxicity
Abstract
1. Introduction
2. Literature Search Strategy
Eligibility and Exclusion Criteria
3. The Role of Omics in Understanding Cylindrospermopsin
3.1. Transcriptomics
3.1.1. Transcriptomic Studies on CYN-Mediated Liver Toxicity
| Experimental Model | Exposure Concentration/Doses | Exposure Time | Route | Omics Type | Omics Technique | Pathway and Genes Analyzed | Reference |
|---|---|---|---|---|---|---|---|
| HepG2 cells | 1, 2.5, 5 µg/mL | 6 h | In vitro | Transcriptomics | qRT-PCR | DNA damage: CDKN1A, GADD45a, MDM2 Apoptosis/survival: BAX | [27] |
| 1 µg/mL | 24 h | ||||||
| HepG2 cells | 0.005, 0.05, 0.5 µg/mL | 4, 12, 24 h | In vitro | Transcriptomics | qRT-PCR | Metabolism: CYP1A1 and CYP1A2 DNA damage: P53, CDKN1A, GADD45, MDM2 | [31] |
| HepG2 cells | 0.5 µg/mL | 12, 24 h | In vitro | Transcriptomics | qPCR-arrays | Immediate–early response/signaling: FOSB, FOS, JUNB, TGFB2, JUN, GDF15, NFKB1, GAB1 Metabolism: CAT, ALDH1A2, CYP1A1, CYP1B1, UGT1, TXNRD1, NAT1, GCLC, CES2, GSTM3, UGT1A1, CYP2A6, CYP2A13, CYP3A43, CYP3A7, GSTM2, CYP2F1, GSTA2, CES1, GNMT, SULT1A1 Cell cycle/proliferation: GADD45B, GADD45A, CDKN1A, CDKN2B, HUS1, CHEK1, CDK7, CCNE2, E2F4, PCNA, CDKN2C, CCNG1, TFDP1, RAD1 DNA damage repair: XPC, ERCC4, LIG4, MSH3, XRCC2, RAD51, MRE11A, MRE11, BRCA2, POLB Apoptosis/survival: FAS, DIABLO, TIMP1, BCL2L1, TNF, TNFAIP3, TNFRSF10A, MCL1, CASP9, BAK1, TRADD, CASP3, FOXO3, CASP8, DDIT3, BCL2, TNFSF10, BID, APAF1, CASP7 | [32] |
| HepG2 cells | 0.01, 0.5 µg/mL | 4, 24 h | In vitro | Transcriptomics | qRT-PCR | Immediate–early response/signaling: FOS, JUNB, MYC, TGFB2 Metabolism: CYP1A1, CYP1A2, CYP3A4, CYP1B1, NAT, GSTA1, UGT1A1 DNA damage: TP53, MDM2, CDKN1A, GADD45A, CHEK1, ERCC4 | [29] |
| HepG2 cells | 0.5 µg/mL /bisphenol A | 24 h | In vitro | Transcriptomics | qRT-PCR | Metabolism: CYP1A1, GCLC DNA damage: P53, CDKN1A, GADD45, MDM2, CHEK1 Oxidative stress: GPX1, GR, SOD1A, CAT | [33] |
| HepG2 cells | 0.5 µg/mL CYN 1 µg/mL MC-LR 0.5 µg/mL CYN + 1 µg/mL MC-LR | 72 h | In vitro | Transcriptomics | qRT-PCR | Immediate–early response/signaling: JUNB Metabolism: CYP1A1, UGT1A1 DNA damage: TP53, MDM2, CDKN1A, GADD45A | [28] |
| HepG2 SK-Hep1 cells Hepatocytes HepG2 HepaRG | 250 nM | 72 h | In vitro | Transcriptomics | RT-qPCR | Pro-inflammatory: IL-6, TNF-α, TNFAIP8 UPR: IRE1a, eIF2a, ATF4, ATF6, and BIP Lipogenic genes: SREPB1, FABP1, SCD1, FASN, ACC, PPAR-α Fibrosis: TIMP2, TGFB1, FGF-23, CX3CR NAFLD development and progression | [34] |
| RNA-Seq | |||||||
| Hepatic differentiation from human embryonic stem cells | 1 µM | 48 h | In vitro | Transcriptomics | PCR | Apoptosis/survival: FOXA2, HNF4A, AFP, TTR, ALB, Fibrosis: CX42 and CX32 | [36] |
| Differentiated HepaRG cells | 0.8 µM | 24 h | In vitro | Transcriptomics | microarray | Modified the expression of genes involved in metabolism, RNA processing, cell cycle | [37] |
| Liver stem cells | 1 µM | 24, 48 h | In vitro | Transcriptomics | RT-PCR | UPR: ATF3, HSPA5 | [38] |
| HepG2 3D cell spheroids | 0.125, 0.25, 0.5 µg/mL | 72 h | In vitro | Transcriptomics | RT-qPCR | Metabolism: CYP1A1, CYP1A2, CYP3A4; ALDH3A1; AHR, NAT1, NAT2, SULT1B1, SULT1C2, UGT1A1, UGT2B7 Oxidative stress: H1F1A DNA damage: CDKN1A, GADD45, ERCC4 Cell cycle arrest: CCND1 Apoptosis/survival: BBC3 Cell cycle/proliferation: PCNA, TOP2α, MK167 | [30] |
| HepG2 3D cell spheroids | 1 µM | 48 h | In vitro | Transcriptomics | RT-PCR | Fatty acid synthesis genes: ACLY, ACCA, FASN, SCD1 Triacylglycerol synthesis genes: DGAT1, DGAT2 lipogenesis-regulating gene: SREBF1 Fatty acid uptake: FAT/CD36 fatty acid Oxidation: CPT1A lipid efflux genes: APOB | [39] |
| Zebrafish (Danio rerio) | 20 µg/L CYN | 14 d | Waterborne exposure | Transcriptomics | RT-PCR | Metabolism: Cyp1a, Cyp26, Ephx1 DNA damage detection and repair: Gadd45, Rad51, Jun, Xpc Apoptosis/survival: Caspase 3a and 3b, Bcl-2, Bax, p53, Mapk, Nrf2 Lipid metabolism: Ppara, Fabp1, Pla2 Phosphorylation/dephosphorylation: Ppp6c, Ppm1 Cytoskeleton: actin, tubulin | [43] |
| Tilapia (Oreochromis niloticus) | 200–400 µg/kg CYN | 24 h | Gavage | Transcriptomics | RT-PCR | Oxidative stress: Gpx, Gst | [47] |
| Tilapia (Oreochromis niloticus) | Pure and Lyoph 200 µg/mL + (NAC) | 24 h | Oral | Transcriptomics | RT-PCR | Oxidative stress: Gpx, Gst | [44] |
| Tilapia (Oreochromis niloticus) | 200 µg/mL | 24 h, 5 d | Gavage i.p. injection | Transcriptomics | RT-PCR | Oxidative stress: Gpx, Gst | [45] |
| Pregnant mice | 50 µg/kg | 7 weeks (gestational periods) | i.p. injection | Transcriptomics | Microarray | Lipid metabolism, ribosomal biogenesis, metabolism, inflammatory responses and oxidative stress. | [41] |
| RT-PCR | |||||||
| Mice | 75–300 µg/kg/day | 90 d | Oral | Transcriptomics | RT-PCR | Liver regeneration: Rpl6 Pancreatic disease: Nupr1 Apoptosis/survival: Bax, Trp53, c-Jun Blood coagulation: Proc. Klkb1, Thbs1, Thpo Fatty acid metabolism: Fabp4 | [42] |
| Liver cancer patients | Tumor tissue | (Oral) | In vivo | Transcriptomics | Nanostring nCounter | CYN detected in sera of all patients 700 genes analyzed in tissue mainly correlated with tumor expression of genes functioning in PPAR signaling and lipid metabolism | [46] |
3.1.2. Transcriptomic Studies on CYN-Mediated Kidney Toxicity
3.1.3. Transcriptomic Studies on CYN-Mediated Intestinal Toxicity
| Experimental Model | Exposure Concentration/Doses | Exposure Time | Route | Omics Type | Omics Technique | Pathway and Genes Analyzed | Reference |
|---|---|---|---|---|---|---|---|
| LLC-PK1 cells | 0.1, 0.5, 1.0 µg/mL | 12 h | In vitro | Transcriptomics | qRT-PCR | Tubular transport and endocytosis: Megalin, Dab2, Cubilin, Atp1a1 | [49] |
| HEK293 cells | 0.5, 5 µg/mL | 4 h, 24 h | In vitro | Transcriptomics | qRT-PCR | Metabolism: CYP1A1, CYP1A2 DNA damage: TP53, CDKN1A Oxidative stress: CAT, GPX1, SOD1 Apoptosis/survival: BCL2, BAX | [48] |
| Tilapia (Oreochromis niloticus) | 200 and 400 µg/kg bw | 24 h | Gavage | Transcriptomics | RT-PCR | Oxidative stress: Gpx, Gst | [47] |
| Tilapia (Oreochromis niloticus) | Pure and liophilized cells 200 µg/kg + NAC | 24 h | Oral | Transcriptomics | RT-PCR | Oxidative stress: Gst | [44] |
| Tilapia (Oreochromis niloticus) | 200 µg/kg bw | 24 h, 5 d | Gavage | Transcriptomics | RT-PCR | Oxidative stress: Gpx, Gst | [45] |
| i.p. injection |
3.1.4. Transcriptomic Studies on CYN-Mediated Immunotoxicity
3.1.5. Transcriptomic Studies on CYN-Mediated Neurotoxicity
| Experimental Model | Exposure Concentration/Doses | Exposure Time | Route | Omics Type | Omics Technique | Pathway and Genes Analyzed | Reference |
|---|---|---|---|---|---|---|---|
| In vitro | |||||||
| Intestinal models | |||||||
| Caco-2 cells | 1 µg/mL | 24 h | In vitro | Transcriptomics | qRT-PCR | DNA damage: CDKN1A | [27] |
| Differentiated Caco-2 cells | 1.6 µM | 24 h | In vitro | Transcriptomics | RT-qPCR | Transcription, post-transcriptional modifications of RNA, and histone proteins post-transcriptional modification: POLR2D, POLR2L, MED6, DDX20, KAT5, MYST1, EHMT2, RPLP0 | [50] |
| Immune models | |||||||
| HPBLs | 0.5 µg/mL | 4 h 24 h | In vitro | Transcriptomics | qRT-PCR | Metabolism: CYP1A1 and CYP1A2 DNA damage responsive genes: P53, MDM2, GADD45α and CDKN1A Oxidative stress: GPX1, SOD1, GSR, GCLC and CAT Apoptosis/survival: BCL-2 and BAX | [51] |
| Jurkat cells | 2.14 µM | 4 h 24 h | In vitro | Transcriptomics | RT-qPCR | Adaptive immunity: IL-2 Pro-inflammatory: IL-6, IL-8, TNF-α, INF-γ | [52] |
| THP-1 cells | 2.56 µM | 4 h 24 h | In vitro | Transcriptomics | RT-qPCR | Adaptive immunity: IL-2 Pro-inflammatory: IL-6, IL-8, TNF-α, INF-γ | [52] |
| Neural models | |||||||
| Undifferentiated D3 mES cells and differentiated EBs | 1 µg/L | Up to 9 days | In vitro | Transcriptomics | RT-PCR | Differentiation: Oct4, Brachyury, Nestin | [56] |
| SH-SY5Y cells | 0.097 µM | 6 days | In vitro | Transcriptomics | RT-qPCR | 93 selected genes. Signal Transduction; Cell Adhesion/Extracellular Matrix; Cytoskeleton; Neurotransmission; Cell Signaling; Protein Metabolism. ACTA2, ADCY5, AGRN, APLNR, APOE, BDNF, BHLHE40, BMP7, CACNA1E, CACNA1G, CACNA2D2, CDH23, CHRM1, CHRM2, CHRM3, CHRNA7, CNR1, CREB1, CRHR1, CSPG5, CYP26A1, DPYSL3, EDNRA, EFNB2, EGFR, EIF4EBP1, ERBB3, FGF1, FGFR4, GABRD, GABRG3, GABRP, GAL, GAP43, GCH1, GDF15, GFRA1, GFRA2, GNG7, GRIN2C, GRIN2D, GRM1, GRM7, GSN, HSP90AB1, ITGA1, ITGA3, ITGB4, KCNJ11, KCNN3, KCNQ2, MAPT, MYC, NFKB2, NLGN1, NLGN3, NR3C1, NRXN1, NTNG2, NTRK1, NTRK2, OPRD1, PAK6, PARK2, PDE4A, PDGFRA, PDLIM7, PGF, PIK3CD, PRKCG, RAPGEF4, RASD2 RASGRP2, RET, RGS9, RHOQ, RND2, RPLP1, RYR1, RYR2, S1PR3, SEMA3F, SEMA4A, SEMA5A, SEMA6B, SH2D3C, SLC18A3, SLIT1, SNCA, SNCAIP, SRGAP3, TGFB1, TP53, TUBA4A VCAN | [57] |
| Dermal models | |||||||
| HDFs | 1, 2.5, or 5 µg/mL 1 µg/mL | 6 h 24 h | In vitro | Transcriptomics | qRT-PCR | DNA damage: CDKN1A, GADD45α, MDM2 Apoptosis/survival: BAX | [27] |
| Endothelial model | |||||||
| HUVECs | 2, 20, 200, and 2000 nM | 24 h | In vitro | Transcriptomics | RT-PCR | Cytoskeleton: ITGB1, RHO, ROCK, MLC-1, VIM-1 Apoptosis/survival: BAX, BCL-2 | [58] |
| In vivo | |||||||
| Immune models | |||||||
| Phagocytic cells from common carp (Cyprinus carpio L.) | 0.05, 0.1, 0.5 or 1 µg/ml | 24 h | In vivo | Transcriptomics | RT-PCR | Pro-inflammatory: Il-1β, Tnf-α Anti-inflammatory: Il-10, Tgf-β | [53] |
| Sprague Dawley rats (thymus, spleen) | 18.75, 37.5 and 75 µg/kg bw/day | 28 days | In vivo oral | Transcriptomics | RT-qPCR | Pro-inflammatory: Il-1β, Il-6, Tnfα, Inf-γ Anti-inflammatory: Il-2 | [54] |
3.1.6. Transcriptomic Studies on CYN in Other In Vitro Models
3.1.7. Transcriptomic Studies with CYN in Other In Vivo Models
3.2. Proteomics
3.2.1. Proteomic Studies on CYN-Mediated Liver Toxicity
3.2.2. Proteomic Studies on CYN-Mediated Kidney Toxicity
3.2.3. Proteomic Studies on CYN-Mediated Intestinal Toxicity
3.2.4. Proteomic Studies on CYN-Mediated Bronchial Epithelial Cell Toxicity
3.2.5. Proteomic Studies with CYN in Different Vivo Models
| Experimental Model | Exposure Concentration/Doses | Exposure Time | Route | Omics Type | Omics Technique | Pathway and Proteins Analyzed | Reference |
|---|---|---|---|---|---|---|---|
| Hepatic models | |||||||
| HDFs, HepG2 and C3A cells | 10–1000 ng/mL | 48 h | In vitro | Proteomics | Inmunoblotting | DNA damage: P53 protein | [27] |
| Liver of tilapia (Oreochromis niloticus) | 200 or 400 µg/kg bw | Single dose and sacrificed 24 h after administration | Gavage | Proteomics | Western blot | Oxidative stress: GST | [47] |
| Liver of tilapia (Oreochromis niloticus) | 200 µg/kg bw | Sacrificed 24 h or 5 days after administration | Gavage or i.p. injection | Proteomics | Western blot | Oxidative stress: GST | [45] |
| HepG2 cells | 10 µg/L | 24 h | In vitro | Proteomics | 2-DE gels and MALDI-TOF-TOF | Protein folding: HSP70, GRP75, HSC71, HSP90, protein disulfide isomerase-related 5, PDI isomerase precursor, GRP78, and HSP60. Antioxidant defense: GSHPx, MRP3 Energy metabolism, and biosynthesis: glutathione-insulin transhydrogenase, fructose 1,6-bisphosphate aldolase complexed with fructose 1,6-biphosphate, GADPHe, lactate dehydrogenase, and GRP78. Cell signaling and tumorigenic potential: protein kinase A catalytic subunit β, chain A, tapasin ERP57 heterodimer, GPCRs, and heterogeneous nuclear ribonucleoproteins A2/B1. Cytoskeleton structure: keratin, α-actin, β-actin, α-spectrina, α-tubulin, and β-5 tubulin. | [65] |
| hESCs CCTL14 at various stages of differentiation to hepatocytes | 1 µM | 24 or 48 h | In vitro | Proteomics | Western blotting | Apoptosis/survival: cleaved caspase 3, uncleaved procaspase 3, and cleaved PARP. | [36] |
| HL1-hT1 | 0.1 and 1 µM | Series of time points between 0.1 and 48 h | In vitro | Proteomics | SDS-PAGE and Western blotting | MAPK signal transduction pathways: ERK1/2, p38 | [38] |
| HepG2 and SK-Hep1 cells | 1 to 250 nM | 72 h | In vitro | Proteomics | NuPAGE and Western blotting | Apoptosis/survival: PARP, pro-caspase-3, and cleaved caspase 3. Inflammatory signaling: IL-6, TNFAIP8. Oxidative stress: SOD1 and CAT. UPR: pERK, BIP, peIF2α, and ATF6. Lipogenic proteins: FASN, ACC, SCD1, FABP1, SREBP1, and PPARα. AKT/mTOR pathways: pS2448-mTOR, mTOR, pS473-AKT, and AKT. Cellular autophagy pathways: LC3B, beclin1, 4EBP1, p62. Fibrosis signaling: p21, TIMP2, MMP2, TGFβ. | [34] |
| HepG2 3D cell spheroids | 1 µM | 48 h | In vitro | Proteomics | LC-MS/MS | Lipid metabolism: PAT proteins analysis. | [39] |
| Intestinal models | |||||||
| Differentiated Caco-2 cells | 1.6 µM | 24 h | In vitro | Proteomics | Immunolabelling | Chromatin remodeling: KAT5, MYST1, EHMT2, H2A, H4, and H3. | [50] |
| Renal models | |||||||
| Kidney of tilapia (Oreochromis niloticus) | 200 or 400 µg/kg bw | Single dose and sacrificed 24 h after administration | Gavage | Proteomics | Western blot | Oxidative stress: GST. | [47] |
| Kidney of tilapia (Oreochromis niloticus) | 200 µg/kg bw | Single dose and sacrificed 24 h or 5 days after administration | Gavage or i.p. injection | Proteomics | Western blot | Oxidative stress: GST. | [45] |
| HEK293 cells | 0.5 and 1 µg/mL CYN alone or mixed with 1 µg/mL MC-LR | 24 h | In vitro | Proteomics | FASP, LC-MS/MS | Cellular metabolism: CBR1 and PGM2. Lipid metabolism: prosaposin and ACAA2. Cell adhesion: moesin, ITGB1, and FERMT2. Protein metabolism: BLMH. Protein regulation: RANBP2, STUB1, SUGT1, and CLPP. Protein synthesis: EIF2B1, TCOF1, RPS5, and LUC7L3. Protein transport: COPG1. | [48] |
| Bronchial epithelial models | |||||||
| Immortalized human bronchial epithelial cells (16HBE14o-) | 5 µmol/L CYN for SDS-PAGE and 1, 2.5 or 5 µmol/L for Western blotting | 20 h for SDS-PAGE and between 0 and 36 h for Western blotting | In vitro | Proteomics | 1 D SDS-PAGE, QExactive Plus and Western blotting | Protein stability: Cystatin-C and SPINT2. Cellular adhesion and integration in the extracellular. matrix: ITIH, SPARC, agrin, laminin subunit α-5, TIMP2, and claudin-6. Synthesis of membrane or secretory proteins: ribosome binding protein 1. Cell proliferation, cell cycle regulation and cytokinesis: FAM83D, SAPCD2, CEP55, p16Ink4a, p21Cip1, Arf, ASF1A, mitotic cyclin B1, G1/S-specific cyclin D1, cyclin D3, and RecQ-mediated genome instability protein 2. | [66] |
| Other in vivo models | |||||||
| Mytilus galloprovincialis and Corbicula fluminea | 5 × 105 cells/mL CYN-producing Cylindrospermopsis raciborskii (equivalent to 0.072 µg CYN/L) | 6 days | In vivo | Proteomics | 2-DE gels and MALDI-TOF-TOF MS | Cytoskeleton structure: actin and tubulin isoforms. Oxidative stress: HSP60. Energy production: ATPase β subunit and triosephosphate isomerase. Calcium-binding and metal transport: EP. | [67] |
| Lettuce (Lactuca sativa L.) | 1–100 µg/L CYN alone or mixed with 1–100 µg/L MC-LR | 5 days | Immersion of roots | Proteomics | 2-DE gels and MALDI-TOF-TOF MS | Photosynthesis/carbon metabolism and ATP synthesis: PC, ATPα, ATPβ, NADP-MDH, chlorophyll a-b-binding proteins, oxygen-evolving enhancer proteins, quinone oxido-reductase-like protein At1g23740, ATPε, RuBP activase, RuBisCO activase 1, PRK, SBPase, chloroplast Psb04 precursor, Cyt b6f, PsaD, PS II stability/assembly factor HCF136, FNR, γCA2, β-xylosidase/α-L-arabinofuranosidase 2-like, 1-FEH IIa, triosephosphate isomerase, 2,3-bisphosphoglycerate-independent phosphoglycerate mutase, PGK3, ribose-5-phosphate transaldolase, mitochondrial DLST, mitochondrial ATP5δ, PPase1, PDH-E1β, transaldolase-like, chloroplastic soluble inorganic pyrophosphatase 1, ATPγ, chloroplastic-like isoform 1, TK, PFP-β, GADPH, putative cytosolic NADP-malic enzyme, IPMS, SDH, IDH, MDH Stress/defense response: S-formyglutathione hydrolase, IN2-1B, chloroplastic 2-cys peroxiredoxin BAS1, PRX2, TPX, oxidoreductase, CSD2, AKR2, chloroplastic peroxiredoxin-2E, HSP70, PPIase, CPN60α, CPN20, PDI, PDI-L2/3, calreticulin, HSP90, Lea14-A, ClpC, GRXS16, tAPX, TRXR2, PITH domain-containing protein At3g94780, CIpB3, EGS1, HrBP1, and TLP. Protein synthesis and signal transduction: chloroplast putative ribonucleoprotein, cp31-RNP, transcription factor Pur-α 1-like, U2 small nuclear ribonucleoprotein A, zinc finger protein, PCNA, minor allergen Alt a, NACA, EIF3D, elongation factor 1-β, EIF3F, EIF3J, cpRSP1, RPLP0, cpRPL12, PABP, RRAA, EIF5A, 40S ribosomal protein, EIF3K, EEF2, 14-3-3-like protein D-like, 14-3-3-like protein 1-like, and YWHA. Transport activity: TIL, CPP, TIC62, apoD, Ran1A Structural activity: fibrillin, plastid-dividing ring protein, UAM1, and XTH. Other metabolism: KARI, AHAS1, DAPDC2, vitamin b12 independent methionine synthase 5-methyltetrahydropteroyltriglutamate-homocysteine, putative thiosulfate sulfurtransferase, CPOX, GDSL esterase/lipase At5g45670, GDSL esterase/lipase LTL1-like, bifunctional epoxide hydrolase 2-like, ENR1, HACL1-like, PMM, THI1, MIPS, auxin-binding protein ABP20-like, and abscisic acid receptor PYR1-like. | [70] |
| Male BALB/C mice | 0–64 µg CYN/kg bw | Analysis 7 or 14 days after administration | Single i.p. injections | Proteomics | Immunoblotting, SDS-PAGE and ESI-QUAD-TOF | Glomerular integrity: nephrin. Urinary protein profile: serum albumin. | [69] |
| Marine mussels (Mytilus galloprovincialis) | 1 × 105 cells/mL CYN-producing Cylindrospermopsis raciborskii (equivalent to 7.854 pg/cell of CYN/L) alone or mixed with Microcystis aeruginosa (equivalent to 0.023 pg/cell of MC-LR) | 15 days | Feeding | Proteomics | FASP, LC-MS/MS | Signaling and communication: RGP51, mec-2, MgC1q12. Cell structure, cytoskeleton and movement: paramyosin, plastin-2, actin, paramyiosin, tropomyosin, α-actin, collagen α-2(I) chain, LCP1, fascin, tubulin β-4B chain Regulation of protein activity: YWHAE, RPN2, cathesin D, CTSB, meprin A subunit α, HSP90, and RPN1. Cell proliferation and migration: ITIH3. Germ cell functions: VEZP9. Energy metabolism: Aldoa, ETFA, and enolase. Gene transcription/translation: RPL30, RPS5, RNA-binding protein, RPL5, and RGN. Cellular calcium ion homeostasis: regucalcin. Embryogenesis: vitellogenin, egg surface protein. Extracellular matrix structure: collagen-like protein-2. Endocytosis: flotillin-1. Regulation of protein activity: arginine kinase. Cellular transport: ARL, MVP, and ATP6V1A. Melatonin biosynthesis: dopamine N-acetyltransferase. Shell structure: nacrein-like protein. Mussel adhesion: byssal protein. Digestive-gland function: trefoil factor. | [68] |
3.3. Metabolomic: Lipidomic
3.4. Microbiomic
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CYN | Cylindrospermopsin |
| MCs | Microcystins |
| CYP450 | Cytochrome P450 |
| AChE | Acetylcholinesterase |
| WHO | World Health Organization |
| TDI | Tolerable daily intake |
| Bw | Body weight |
| EFSA | European Food Safety Authority |
| CYP1A1 | Family 1, subfamily A, polypeptide 1 |
| CYP1A2 | Cytochrome P450, family 1, subfamily A, polypeptide 2 |
| TP53 | Tumor Protein p53 |
| GADD45 | Growth arrest and DNA-damage-inducible |
| CDKN1A | Cyclin-Dependent Kinase Inhibitor 1A |
| FOS | FBJ murine osteosarcoma viral oncogene homolog |
| FOSB | FBJ murine osteosarcoma viral oncogene homolog B |
| JUNB | Jun B pro-to-oncogene |
| UPR | Unfolded protein response |
| ER | Endoplasmic reticulum |
| RT-qPCR | Reverse transcription quantitative polymerase chain reaction |
| NAFLD | Non-alcoholic fatty liver disease |
| hESCs | Human embryonic stem cells |
| FOXA2 | Forkhead box A2 |
| AFP | Alpha fetoprotein |
| CX43 | Gap Junction Protein Alpha 1 |
| ALB | Albumin |
| TTR | Transthyretin |
| CX32 | Gap Junction Protein Beta 1 |
| LSCs | Liver stem cells |
| HSPA5 | Heat Shock Protein Family A (Hsp70) Member 5 |
| ATF3 | Activating Transcription Factor 3 |
| NAT1 | N-Acetyltransferase 1 |
| NAT2 | N-Acetyltransferase 2 |
| SULT1B1 | Sulfotransferase Family 1B Member 1 |
| SULT1C2 | Sulfotransferase Family 1C Member 2 |
| UGT1A1 | UDP Glucuronosyltransferase Family 1 Member A1 |
| UGT2B7 | UDP Glucuronosyltransferase Family 2 Member B7 |
| BBC3 | BCL2 Binding Component 3 |
| SREBF1 | Sterol regulatory element-binding protein 1 |
| DGAT1/2 | Diacylglycerol O-acyltransferase 1/2 |
| i.p. | Intraperitoneal |
| Nrf2 | Nuclear factor erythroid 2-related factor 2 |
| Fabp4 | Fatty acid-binding protein 4 |
| NASH | Non-alcoholic steatohepatitis |
| PPAR | Peroxisome proliferator-activated receptor |
| Gpx | Glutathione peroxidase |
| Gst | Glutathione-S-transferase |
| CAT | Catalase |
| SOD1 | Superoxide Dismutase 1 |
| dab2 | DAB Adaptor Protein 2 |
| ATP1A1 | ATPase Na+/K+ transporting subunit alpha 1 |
| BCL2 | B-cell CLL/lymphoma 2 |
| BAX | Bcl2-Associated X protein |
| HPBLs | Human peripheral blood lymphocytes |
| MDM2 | Human homologue of mouse double minute 2 |
| GSR | Glutathione-disulfide reductase |
| GCLC | Glutamate-cysteine ligase catalytic subunit |
| IL-2 | Interleukin 2 |
| IL-6 | Interleukin 6 |
| IFN-γ | Interferon Gamma |
| TNF-α | Tumor Necrosis Factor |
| IL-1β | Interleukin 1 Beta |
| IL-10 | Interleukin 10 |
| TGF-β | Transforming Growth Factor Beta 1 |
| mES | Mouse embryonic stem |
| EBs | Embryoid bodies |
| NTNG2 | Netrin G2 |
| KCNJ11 | Potassium Inwardly Rectifying Channel Subfamily J Member 11 |
| SLC18A3 | Solute Carrier Family 18 Member A3 |
| APOE | Apolipoprotein E |
| SEMA6B | Semaphorin 6B |
| HDFs | Human dermal fibroblasts |
| HUVECs | Human umbilical vein endothelial cells |
| ITGB1 | Integrin β-1 |
| Rho | Rhodopsin |
| ROCK | Rho-associated coiled-coil containing protein kinase 1 |
| MLC-1 | Megalencephalic leukoencephalopathy with subcortical cysts 1 |
| VIM-1 | Vimentin |
| prkg1 | Protein kinase cGMP-dependent 1 |
| gucy1A1 | Guanylate cyclase 1 soluble subunit alpha 1 |
| akt | Serine/threonine-protein kinase |
| ALP | Alkaline phosphatase |
| leuB | 3-isopropylmalate dehydrogenase |
| sds | Serine dehydratase |
| phoD | Alkaline phosphatase |
| sec1β | SEC61 translocon subunit beta |
| fshr | Follicle-stimulating hormone receptor |
| lhr | Luteinizing hormone/choriogonadotropin receptor |
| igf3 | Insulin-like growth factor 3 |
| hCG | Human chorionic gonadotropin |
| srd5a2 | Steroid-5-alpha-reductase, alpha polypeptide 2a |
| 3βhsd | Hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 2 |
| cyp19a1a | Cytochrome p450 family 19 subfamily A polypeptide 1a |
| cyp11a2 | Cytochrome p450 family 11 subfamily A member 2 |
| hsd17b1 | Hydroxysteroid (17-beta) dehydrogenase 1 |
| hsd17b3 | Hydroxysteroid (17-beta) dehydrogenase 3 |
| aldob | Aldolase |
| pgm2 | Phosphoglucomutase 2 |
| g6pca.2 | Glucose-6-phosphatase catalytic subunit 1a, tandem duplicate 2 |
| lamb1a | Laminin beta 1a |
| col4a5 | Collagen type IV alpha 5 chain |
| itga3b | Integrin alpha 3b |
| MRP3 | Multidrug resistance protein 3 |
| HSP70 | Heat shock protein 70 kDa isoform 8 variant 2 |
| GRP75 | 75 kDa glucose-regulated protein |
| HSC71 | Heat shock cognate 71 kDa isoform 1 |
| HSP90 | Heat shock protein 90α isoform 1 |
| GRP78 | 78 kDa glucose-regulated protein |
| HSP60 | Mitochondrial heat shock 60 kDa protein 1 variant 1 |
| ACC | Acetyl-CoA carboxylase |
| SCD1 | Stearoyl-CoA desaturase-1 |
| SREBP-1 | Sterol regulatory element-binding protein-1 |
| FABP1 | Fatty acid-binding protein-1 |
| FASN | Fatty Acid Synthase |
| PPARα | Peroxisome Proliferator-Activated Receptor alpha |
| ADRP | Perilipin 2 |
| MAPK | Mitogen-activated protein kinase |
| ERK1/2 | Extracellular signal-regulated kinase 1/2 |
| KAT5 | Lysine acetyltransferase 5 |
| MYST1 | Histone acetyltransferase 1 |
| EHMT2 | Euchromatic histone lysine methyltransferase 2 |
| SPINT2 | Serine peptidase inhibitor, Kunitz type 2 |
| SPARC | Secreted protein acidic and rich in cysteine |
| Agrin | APLNR |
| FAM83D | Family with sequence similarity 83 member D |
| SAPCD2 | Suppressor anaphase-promoting complex domain 2 |
| CEP55 | Centrosomal protein of 55 kDa |
| EP | Extrapallial fluid protein |
| PC | Phosphatidylcholine |
| PS | Phosphatidylserine |
| DG | Diacylglycerols |
| TG | Triacylglycerols |
| CE | Cholesteryl esters |
| SM | Sphingomyelins |
| LPC | Lysophosphatidylcholines |
| PL | Phospholipid |
| H1F1A | Hypoxia Inducible Factor 1 Alpha |
| ROS | Reactive oxygen species |
| ACAA2 | 3-ketoacyl-CoA thiolase mitochondrial |
References
- Massey, I.Y.; Al Osman, M.; Yang, F. An Overview on Cyanobacterial Blooms and Toxins Production: Their Occurrence and Influencing Factors. Toxin Rev. 2020, 41, 326–346. [Google Scholar] [CrossRef]
- Bashir, F.; Bashir, A.; Bouaïcha, N.; Chen, L.; Codd, G.A.; Neilan, B.; Xu, W.-L.; Ziko, L.; Rajput, V.D.; Minkina, T.; et al. Cyanotoxins, Biosynthetic Gene Clusters, and Factors Modulating Cyanotoxin Biosynthesis. World J. Microbiol. Biotechnol. 2023, 39, 241. [Google Scholar] [CrossRef]
- Scarlett, K.R.; Kim, S.; Lovin, L.M.; Chatterjee, S.; Scott, J.T.; Brooks, B.W. Global Scanning of Cylindrospermopsin: Critical Review and Analysis of Aquatic Occurrence, Bioaccumulation, Toxicity and Health Hazards. Sci. Total Environ. 2020, 738, 139807. [Google Scholar] [CrossRef]
- Sha, J.; Xiong, H.; Li, C.; Lu, Z.; Zhang, J.; Zhong, H.; Zhang, W.; Yan, B. Harmful Algal Blooms and Their Eco-Environmental Indication. Chemosphere 2021, 274, 129912. [Google Scholar] [CrossRef] [PubMed]
- Svirčev, Z.; Lalić, D.; Bojadžija Savić, G.; Tokodi, N.; Drobac Backović, D.; Chen, L.; Meriluoto, J.; Codd, G.A. Global Geographical and Historical Overview of Cyanotoxin Distribution and Cyanobacterial Poisonings. Arch. Toxicol. 2019, 93, 2429–2481. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yu, G.; Chen, Y.; Jia, N.; Li, R. Four Decades of Progress in Cylindrospermopsin Research: The Ins and Outs of a Potent Cyanotoxin. J. Hazard. Mater. 2021, 406, 124653. [Google Scholar] [CrossRef]
- Adamski, M.; Wołowski, K.; Kaminski, A.; Hindáková, A. Cyanotoxin Cylindrospermopsin Producers and the Catalytic Decomposition Process: A Review. Harmful Algae 2020, 98, 101894. [Google Scholar] [CrossRef]
- Diez-Quijada, L.; Benítez-González, M.D.M.; Puerto, M.; Jos, A.; Cameán, A.M. Immunotoxic Effects Induced by Microcystins and Cylindrospermopsin: A Review. Toxins 2021, 13, 711. [Google Scholar] [CrossRef]
- Casas-Rodriguez, A.; Cameán, A.M.; Jos, A. Potential Endocrine Disruption of Cyanobacterial Toxins, Microcystins and Cylindrospermopsin: A Review. Toxins 2022, 14, 882. [Google Scholar] [CrossRef]
- Casas-Rodríguez, A.; López-Vázquez, C.M.; Guzmán-Guillén, R.; Ayala, N.; Cameán, A.M.; Jos, A.; Chicano-Gálvez, E. A MALDI-MSI-Based Approach to Characterize the Spatial Distribution of Cylindrospermopsin and Lipid Alterations in Rat Intestinal Tissue. Chem. Biol. Interact. 2025, 412, 111479. [Google Scholar] [CrossRef]
- Plata-Calzado, C.; Prieto, A.I.; Cameán, A.M.; Jos, A. Alterations in Acetylcholinesterase Activity and Oxidative Stress Parameters Induced by Pure Cylindrospermopsin in Brain of Orally Exposed Rats and Determination of Potential Metabolites. Arch. Toxicol. 2025, 99, 3297–3308. [Google Scholar] [CrossRef]
- Backović, D.; Tokodi, N. Cyanotoxins in Food: Exposure Assessment and Health Impact. Food Res. Int. 2024, 184, 114271. [Google Scholar] [CrossRef] [PubMed]
- Pichardo, S.; Cameán, A.M.; Jos, A. In Vitro Toxicological Assessment of Cylindrospermopsin: A Review. Toxins 2017, 9, 402. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro-Araújo, M.K.; Chia, M.A.; Bittencourt-Oliveira, M.d.C. Potential Human Health Risk Assessment of Cylindrospermopsin Accumulation and Depuration in Lettuce and Arugula. Harmful Algae 2017, 68, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Llana-Ruiz-Cabello, M.; Jos, A.; Cameán, A.; Oliveira, F.; Barreiro, A.; Machado, J.; Azevedo, J.; Pinto, E.; Almeida, A.; Campos, A.; et al. Analysis of the Use of Cylindrospermopsin and/or Microcystin-Contaminated Water in the Growth, Mineral Content, and Contamination of Spinacia Oleracea and Lactuca Sativa. Toxins 2019, 11, 624. [Google Scholar] [CrossRef]
- Falfushynska, H.; Kasianchuk, N.; Siemens, E.; Henao, E.; Rzymski, P. A Review of Common Cyanotoxins and Their Effects on Fish. Toxics 2023, 11, 118. [Google Scholar] [CrossRef]
- Ferreira, M.A.; Brandão, C.C.S.; Ginoris, Y.P. Oxidation of Cylindrospermopsin by Fenton Process: A Bench-Scale Study of the Effects of Dose and Ratio of H2O2 and Fe(II) and Kinetics. Toxins 2021, 13, 604. [Google Scholar] [CrossRef]
- World Health Organization. Cyanobacterial toxins: Cylindrospermopsins. In Background Document for Development of WHO Guidelines for Drinking-Water Quality and Guidelines for Safe Recreational Water Environments; World Health Organization: Geneva, Switzerland, 2020; WHO/HEP/ECH/WSH/2020.4. [Google Scholar]
- Testai, E.; Buratti, F.M.; Funari, E.; Manganelli, M.; Vichi, S.; Arnich, N.; Biré, R.; Fessard, V.; Sialehaamoa, A. Review and analysis of occurrence, exposure and toxicity of cyanobacteria toxins in food. EFSA Support. Publ. 2016, 13, 309. [Google Scholar] [CrossRef]
- Canzler, S.; Schor, J.; Busch, W.; Schubert, K.; Rolle-Kampczyk, U.E.; Seitz, H.; Kamp, H.; von Bergen, M.; Buesen, R.; Hackermüller, J. Prospects and Challenges of Multi-Omics Data Integration in Toxicology. Arch. Toxicol. 2020, 94, 371–388. [Google Scholar] [CrossRef]
- Buesen, R.; Chorley, B.N.; da Silva Lima, B.; Daston, G.; Deferme, L.; Ebbels, T.; Gant, T.W.; Goetz, A.; Greally, J.; Gribaldo, L.; et al. Applying ’omics Technologies in Chemicals Risk Assessment: Report of an ECETOC Workshop. Regul. Toxicol. Pharmacol. 2017, 91 (Suppl. 1), S3–S13. [Google Scholar] [CrossRef]
- Santiago-Rodriguez, T.M.; Hollister, E.B. Multi ’omic Data Integration: A Review of Concepts, Considerations, and Approaches. Semin. Perinatol. 2021, 45, 151456. [Google Scholar] [CrossRef] [PubMed]
- Robinson, J.M.; Pasternak, Z.; Mason, C.E.; Elhaik, E. Forensic Applications of Microbiomics: A Review. Front. Microbiol. 2021, 11, 608101. [Google Scholar] [CrossRef] [PubMed]
- Andjelković, U.; Šrajer Gajdošik, M.; Gašo-Sokač, D.; Martinović, T.; Josić, D. Foodomics and Food Safety: Where We Are. Food Technol. Biotechnol. 2017, 55, 290–307. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Chen, J.; Gao, F.; Su, W.; Li, T.; Wang, Y. Foodomics as a Tool for Evaluating Food Authenticity and Safety from Field to Table: A Review. Foods 2024, 14, 15. [Google Scholar] [CrossRef]
- Li, S.; Tian, Y.; Jiang, P.; Lin, Y.; Liu, X.; Yang, H. Recent Advances in the Application of Metabolomics for Food Safety Control and Food Quality Analyses. Crit. Rev. Food Sci. Nutr. 2021, 61, 1448–1469. [Google Scholar] [CrossRef]
- Bain, P.; Shaw, G.; Patel, B. Induction of P53-Regulated Gene Expression in Human Cell Lines Exposed to the Cyanobacterial Toxin Cylindrospermopsin. J. Toxicol. Environ. Health Part A 2007, 70, 1687–1693. [Google Scholar] [CrossRef]
- Díez-Quijada, L.; Hercog, K.; Štampar, M.; Filipič, M.; Cameán, A.M.; Jos, Á.; Žegura, B. Genotoxic Effects of Cylindrospermopsin, Microcystin-LR and Their Binary Mixture in Human Hepatocellular Carcinoma (HepG2) Cell Line. Toxins 2020, 12, 778. [Google Scholar] [CrossRef]
- Hercog, K.; Maisanaba, S.; Filipič, M.; Jos, Á.; Cameán, A.M.; Žegura, B. Genotoxic Potential of the Binary Mixture of Cyanotoxins Microcystin-LR and Cylindrospermopsin. Chemosphere 2017, 189, 319–329. [Google Scholar] [CrossRef]
- Hercog, K.; Štampar, M.; Štern, A.; Filipič, M.; Žegura, B. Application of Advanced HepG2 3D Cell Model for Studying Genotoxic Activity of Cyanobacterial Toxin Cylindrospermopsin. Environ. Pollut. 2020, 265, 114965. [Google Scholar] [CrossRef]
- Straser, A.; Filipič, M.; Zegura, B. Genotoxic Effects of the Cyanobacterial Hepatotoxin Cylindrospermopsin in the HepG2 Cell Line. Arch. Toxicol. 2011, 85, 1617–1626. [Google Scholar] [CrossRef]
- Straser, A.; Filipič, M.; Zegura, B. Cylindrospermopsin Induced Transcriptional Responses in Human Hepatoma HepG2 Cells. Toxicol. Vitr. 2013, 27, 1809–1819. [Google Scholar] [CrossRef] [PubMed]
- Hercog, K.; Štern, A.; Maisanaba, S.; Filipič, M.; Žegura, B. Plastics in Cyanobacterial Blooms-Genotoxic Effects of Binary Mixtures of Cylindrospermopsin and Bisphenols in HepG2 Cells. Toxins 2020, 12, 219. [Google Scholar] [CrossRef] [PubMed]
- Niture, S.; Gadi, S.; Qi, Q.; Rios-Colon, L.; Khatiwada, S.; Vandana; Fernando, R.A.; Levine, K.E.; Kumar, D. Cyanotoxins Increase Cytotoxicity and Promote Nonalcoholic Fatty Liver Disease Progression by Enhancing Cell Steatosis. Toxins 2023, 15, 411. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Green, R.M. Endoplasmic Reticulum Stress and Liver Diseases. Liver Res. 2019, 3, 55–64. [Google Scholar] [CrossRef]
- Vanova, T.; Raska, J.; Babica, P.; Sovadinova, I.; Kunova Bosakova, M.; Dvorak, P.; Blaha, L.; Rotrekl, V. Freshwater Cyanotoxin Cylindrospermopsin Has Detrimental Stage-Specific Effects on Hepatic Differentiation from Human Embryonic Stem Cells. Toxicol. Sci. 2019, 168, 241–251. [Google Scholar] [CrossRef]
- Huguet, A.; Lanceleur, R.; Quenault, H.; Le Hégarat, L.; Fessard, V. Identification of Key Pathways Involved in the Toxic Response of the Cyanobacterial Toxin Cylindrospermopsin in Human Hepatic HepaRG Cells. Toxicol. Vitr. 2019, 58, 69–77. [Google Scholar] [CrossRef]
- Raška, J.; Čtveráčková, L.; Dydowiczová, A.; Sovadinová, I.; Bláha, L.; Babica, P. Cylindrospermopsin Induces Cellular Stress and Activation of ERK1/2 and P38 MAPK Pathways in Adult Human Liver Stem Cells. Chemosphere 2019, 227, 43–52. [Google Scholar] [CrossRef]
- Chowdhury, R.R.; Grosso, M.F.; Gadara, D.C.; Spáčil, Z.; Vidová, V.; Sovadinová, I.; Babica, P. Cyanotoxin Cylindrospermopsin Disrupts Lipid Homeostasis and Metabolism in a 3D in Vitro Model of the Human Liver. Chem. Biol. Interact. 2024, 397, 111046. [Google Scholar] [CrossRef]
- Ramaiahgari, S.C.; den Braver, M.W.; Herpers, B.; Terpstra, V.; Commandeur, J.N.M.; van de Water, B.; Price, L.S. A 3D in Vitro Model of Differentiated HepG2 Cell Spheroids with Improved Liver-like Properties for Repeated Dose High-Throughput Toxicity Studies. Arch. Toxicol. 2014, 88, 1083–1095. [Google Scholar] [CrossRef]
- Chernoff, N.; Rogers, E.H.; Zehr, R.D.; Gage, M.I.; Malarkey, D.E.; Bradfield, C.A.; Liu, Y.; Schmid, J.E.; Jaskot, R.H.; Richards, J.H.; et al. Toxicity and Recovery in the Pregnant Mouse after Gestational Exposure to the Cyanobacterial Toxin, Cylindrospermopsin. J. Appl. Toxicol. 2011, 31, 242–254. [Google Scholar] [CrossRef]
- Chernoff, N.; Hill, D.J.; Chorus, I.; Diggs, D.L.; Huang, H.; King, D.; Lang, J.R.; Le, T.-T.; Schmid, J.E.; Travlos, G.S.; et al. Cylindrospermopsin Toxicity in Mice Following a 90-d Oral Exposure. J. Toxicol. Environ. Health Part A 2018, 81, 549–566. [Google Scholar] [CrossRef]
- Falfushynska, H.; Horyn, O.; Osypenko, I.; Rzymski, P.; Wejnerowski, Ł.; Dziuba, M.K.; Sokolova, I.M. Multibiomarker-Based Assessment of Toxicity of Central European Strains of Filamentous Cyanobacteria Aphanizomenon gracile and Raphidiopsis raciborskii to Zebrafish Danio rerio. Water Res. 2021, 194, 116923. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Praena, D.; Puerto, M.; Prieto, A.I.; Jos, Á.; Pichardo, S.; Vasconcelos, V.; Cameán, A.M. Protective Role of Dietary N-Acetylcysteine on the Oxidative Stress Induced by Cylindrospermopsin in Tilapia (Oreochromis niloticus). Environ. Toxicol. Chem. 2012, 31, 1548–1555. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Praena, D.; Jos, A.; Pichardo, S.; Puerto, M.; Cameán, A.M. Influence of the Exposure Way and the Time of Sacrifice on the Effects Induced by a Single Dose of Pure Cylindrospermopsin on the Activity and Transcription of Glutathione Peroxidase and Glutathione-S-Transferase Enzymes in Tilapia (Oreochromis niloticus). Chemosphere 2013, 90, 986–992. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, B.Y.; Zhu, X.; Nagata, M.; Loo, L.; Chan, O.; Wong, L.L. Cyanotoxin Exposure and Hepatocellular Carcinoma. Toxicology 2023, 487, 153470. [Google Scholar] [CrossRef]
- Puerto, M.; Jos, A.; Pichardo, S.; Gutiérrez-Praena, D.; Cameán, A.M. Acute Effects of Pure Cylindrospermopsin on the Activity and Transcription of Antioxidant Enzymes in Tilapia (Oreochromis niloticus) Exposed by Gavage. Ecotoxicology 2011, 20, 1852–1860. [Google Scholar] [CrossRef]
- Diez-Quijada, L.; Puerto, M.; Gutiérrez-Praena, D.; Turkina, M.V.; Campos, A.; Vasconcelos, V.; Cameán, A.M.; Jos, Á. In Vitro Toxicity Evaluation of Cyanotoxins Cylindrospermopsin and Microcystin-LR on Human Kidney HEK293 Cells. Toxins 2022, 14, 429. [Google Scholar] [CrossRef]
- Moraes, A.C.N.; Freire, D.S.; Habibi, H.; Lowe, J.; Magalhães, V.F. Cylindrospermopsin Impairs Tubular Transport Function in Kidney Cells LLC-PK1. Toxicol. Lett. 2021, 344, 26–33. [Google Scholar] [CrossRef]
- Huguet, A.; Hatton, A.; Villot, R.; Quenault, H.; Blanchard, Y.; Fessard, V. Modulation of Chromatin Remodelling Induced by the Freshwater Cyanotoxin Cylindrospermopsin in Human Intestinal Caco-2 Cells. PLoS ONE 2014, 9, e99121. [Google Scholar] [CrossRef]
- Žegura, B.; Gajski, G.; Štraser, A.; Garaj-Vrhovac, V. Cylindrospermopsin Induced DNA Damage and Alteration in the Expression of Genes Involved in the Response to DNA Damage, Apoptosis and Oxidative Stress. Toxicon 2011, 58, 471–479. [Google Scholar] [CrossRef]
- Casas-Rodríguez, A.; Cebadero-Dominguez, Ó.; Puerto, M.; Cameán, A.M.; Jos, A. Immunomodulatory Effects of Cylindrospermopsin in Human T Cells and Monocytes. Toxins 2023, 15, 301. [Google Scholar] [CrossRef] [PubMed]
- Sieroslawska, A.; Rymuszka, A.; Adaszek, Ł. Effects of Cylindrospermopsin on the Phagocytic Cells of the Common Carp (Cyprinus Carpio L.): Effects of Cylindrospermopsin on the Phagocytic Cells. J. Appl. Toxicol. 2015, 35, 1406–1414. [Google Scholar] [CrossRef]
- Diez-Quijada, L.; Casas-Rodriguez, A.; Guzmán-Guillén, R.; Molina-Hernández, V.; Albaladejo, R.G.; Cameán, A.M.; Jos, A. Immunomodulatory Effects of Pure Cylindrospermopsin in Rats Orally Exposed for 28 Days. Toxins 2022, 14, 144. [Google Scholar] [CrossRef] [PubMed]
- Hinojosa, M.G.; Gutiérrez-Praena, D.; Prieto, A.I.; Guzmán-Guillén, R.; Jos, A.; Cameán, A.M. Neurotoxicity Induced by Microcystins and Cylindrospermopsin: A Review. Sci. Total Environ. 2019, 668, 547–565. [Google Scholar] [CrossRef]
- Reid, K.J.; Lang, K.; Froscio, S.; Humpage, A.J.; Young, F.M. Undifferentiated Murine Embryonic Stem Cells Used to Model the Effects of the Blue-Green Algal Toxin Cylindrospermopsin on Preimplantation Embryonic Cell Proliferation. Toxicon 2015, 106, 79–88. [Google Scholar] [CrossRef]
- Hinojosa, M.G.; Johansson, Y.; Jos, A.; Cameán, A.M.; Forsby, A. Effects of Cylindrospermopsin, Chlorpyrifos and Their Combination in a SH-SY5Y Cell Model Concerning Developmental Neurotoxicity. Ecotoxicol. Environ. Saf. 2024, 269, 115804. [Google Scholar] [CrossRef]
- Wang, L.; Chen, G.; Xiao, G.; Han, L.; Wang, Q.; Hu, T. Cylindrospermopsin Induces Abnormal Vascular Development through Impairing Cytoskeleton and Promoting Vascular Endothelial Cell Apoptosis by the Rho/ROCK Signaling Pathway. Environ. Res. 2020, 183, 109236. [Google Scholar] [CrossRef]
- He, Z.; Chen, Y.; Huo, D.; Gao, J.; Xu, Y.; Yang, R.; Yang, Y.; Yu, G. Combined Methods Elucidate the Multi-Organ Toxicity of Cylindrospermopsin (CYN) on Daphnia Magna. Environ. Pollut. 2023, 324, 121250. [Google Scholar] [CrossRef]
- He, Z.; Chen, Y.; Gao, J.; Xu, Y.; Zhou, X.; Yang, R.; Geng, R.; Li, R.; Yu, G. Comparative Toxicology of Algal Cell Extracts and Pure Cyanotoxins: Insights into Toxic Effects and Mechanisms of Harmful Cyanobacteria Raphidiopsis Raciborskii. Harmful Algae 2024, 135, 102635. [Google Scholar] [CrossRef]
- Lu, Z.; Lei, L.; Lu, Y.; Peng, L.; Han, B. Phosphorus Deficiency Stimulates Dominance of Cylindrospermopsis through Facilitating Cylindrospermopsin-Induced Alkaline Phosphatase Secretion: Integrating Field and Laboratory-Based Evidences. Environ. Pollut. 2021, 290, 117946. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Q.; Xiao, G.; Chen, G.; Han, L.; Hu, T. Adverse Effect of Cylindrospermopsin on Embryonic Development in Zebrafish (Danio rerio). Chemosphere 2020, 241, 125060. [Google Scholar] [CrossRef] [PubMed]
- Moraes, A.C.N.; Fallah, H.P.; Magalhães, V.F.; Habibi, H.R. Cylindrospermopsin Directly Disrupts Spermatogenesis in Isolated Male Zebrafish Testis. Gen. Comp. Endocrinol. 2021, 313, 113891. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Kang, S.; Gu, X.; Yang, H.; Chen, H.; Mao, Z.; Zeng, Q.; Chen, Y.; Wang, W.; Gong, C. The Toxicological Effects of Life-Cycle Exposure to Harmful Benthic Cyanobacteria Oscillatoria on Zebrafish Growth and Reproduction: A Comparative Study with Planktonic Microcystis. Sci. Total Environ. 2024, 912, 169302. [Google Scholar] [CrossRef]
- Liebel, S.; Regina Grötzner, S.; Dietrich Moura Costa, D.; Antônio Ferreira Randi, M.; Alberto de Oliveira Ribeiro, C.; Filipak Neto, F. Cylindrospermopsin Effects on Protein Profile of HepG2 Cells. Toxicol. Mech. Methods 2016, 26, 554–563. [Google Scholar] [CrossRef]
- Ziesemer, S.; Meyer, S.; Edelmann, J.; Vennmann, J.; Gudra, C.; Arndt, D.; Effenberg, M.; Hayas, O.; Hayas, A.; Thomassen, J.S.; et al. Target Mechanisms of the Cyanotoxin Cylindrospermopsin in Immortalized Human Airway Epithelial Cells. Toxins 2022, 14, 785. [Google Scholar] [CrossRef]
- Puerto, M.; Campos, A.; Prieto, A.; Cameán, A.; de Almeida, A.M.; Coelho, A.V.; Vasconcelos, V. Differential Protein Expression in Two Bivalve Species; Mytilus galloprovincialis and Corbicula fluminea; Exposed to Cylindrospermopsis Raciborskii Cells. Aquat. Toxicol. 2011, 101, 109–116. [Google Scholar] [CrossRef]
- Oliveira, F.; Diez-Quijada, L.; Turkina, M.V.; Morais, J.; Felpeto, A.B.; Azevedo, J.; Jos, A.; Camean, A.M.; Vasconcelos, V.; Martins, J.C.; et al. Physiological and Metabolic Responses of Marine Mussels Exposed to Toxic Cyanobacteria Microcystis aeruginosa and Chrysosporum ovalisporum. Toxins 2020, 12, 196. [Google Scholar] [CrossRef]
- Moraes, A.C.N.; Magalhães, V.F. Renal Tubular Damage Caused by Cylindrospermopsin (Cyanotoxin) in Mice. Toxicol. Lett. 2018, 286, 89–95. [Google Scholar] [CrossRef]
- Freitas, M.; Campos, A.; Azevedo, J.; Barreiro, A.; Planchon, S.; Renaut, J.; Vasconcelos, V. Lettuce (Lactuca sativa L.) Leaf-Proteome Profiles after Exposure to Cylindrospermopsin and a Microcystin-LR/Cylindrospermopsin Mixture: A Concentration-Dependent Response. Phytochemistry 2015, 110, 91–103. [Google Scholar] [CrossRef]
- Saha, P.; Upright, M.; Bose, D.; Roy, S.; Trivedi, A.; More, M.; Scott, G.I.; Brooks, B.W.; Chatterjee, S. Subchronic Oral Cylindrospermopsin Exposure Alters the Host Gut Microbiome and Is Associated with Progressive Hepatic Inflammation, Stellate Cell Activation, and Mild Fibrosis in a Preclinical Study. Toxins 2022, 14, 835. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, H.; Du, X.; Shi, Z.; Liu, X.; Wang, R.; Zhang, S.; Tian, Z.; Shi, L.; Guo, H.; et al. Advances in the Toxicology Research of Microcystins Based on Omics Approaches. Environ. Int. 2021, 154, 106661. [Google Scholar] [CrossRef]
- Guzmán-Guillén, R.; Prieto, A.I.; Vasconcelos, V.M.; Cameán, A.M. Cyanobacterium Producing Cylindrospermopsin Cause Oxidative Stress at Environmentally Relevant Concentrations in Sub-Chronically Exposed Tilapia (Oreochromis niloticus). Chemosphere 2013, 90, 1184–1194. [Google Scholar] [CrossRef]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.D.; Mazur, M.; Telser, J. Free Radicals and Antioxidants in Normal Physiological Functions and Human Disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef] [PubMed]
- Wen, C.; Yang, S.; Zheng, S.; Feng, X.; Chen, J.; Yang, F. Analysis of Long Non-Coding RNA Profiled Following MC-LR-Induced Hepatotoxicity Using High-Throughput Sequencing. J. Toxicol. Environ. Health Part A 2018, 81, 1165–1172. [Google Scholar] [CrossRef] [PubMed]
- Ou-Yang, K.; He, Y.; Yang, H.; Wang, L.; Zhang, Q.; Li, D.; Li, L. Microcystin-LR Induces Fatty Liver Metabolic Disease in Zebrafish through the PPARα-NOD1 Pathway: In Vivo, in Vitro, and in Silico Investigations. J. Hazard. Mater. 2025, 485, 136813. [Google Scholar] [CrossRef] [PubMed]
- Clish, C.B. Metabolomics: An Emerging but Powerful Tool for Precision Medicine. Cold Spring Harb. Mol. Case Stud. 2015, 1, a000588. [Google Scholar] [CrossRef]
- He, J.; Chen, J.; Wu, L.; Li, G.; Xie, P. Metabolic Response to Oral Microcystin-LR Exposure in the Rat by NMR-Based Metabonomic Study. J. Proteome Res. 2012, 11, 5934–5946. [Google Scholar] [CrossRef]
- Lin, J.; Chen, J.; He, J.; Chen, J.; Yan, Q.; Zhou, J.; Xie, P. Effects of Microcystin-LR on Bacterial and Fungal Functional Genes Profile in Rat Gut. Toxicon 2015, 96, 50–56. [Google Scholar] [CrossRef]
- Metcalf, J.S.; Codd, G.A. Co-Occurrence of Cyanobacteria and Cyanotoxins with Other Environmental Health Hazards: Impacts and Implications. Toxins 2020, 12, 629. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). EFSA Strategy 2027—Science, Safe Food, Sustainability; European Food Safety Authority: Parma, Italy, 2022; Available online: https://www.efsa.europa.eu/en/corporate-pubs/efsa-strategy-2027-science-safe-food-sustainability (accessed on 14 October 2025).



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borja, R.F.; Plata-Calzado, C.; Diez-Quijada, L.; Puerto, M. Omics Insights into Cylindrospermopsin’s Molecular Toxicity. Foods 2025, 14, 3620. https://doi.org/10.3390/foods14213620
Borja RF, Plata-Calzado C, Diez-Quijada L, Puerto M. Omics Insights into Cylindrospermopsin’s Molecular Toxicity. Foods. 2025; 14(21):3620. https://doi.org/10.3390/foods14213620
Chicago/Turabian StyleBorja, Ronald F., Cristina Plata-Calzado, Leticia Diez-Quijada, and María Puerto. 2025. "Omics Insights into Cylindrospermopsin’s Molecular Toxicity" Foods 14, no. 21: 3620. https://doi.org/10.3390/foods14213620
APA StyleBorja, R. F., Plata-Calzado, C., Diez-Quijada, L., & Puerto, M. (2025). Omics Insights into Cylindrospermopsin’s Molecular Toxicity. Foods, 14(21), 3620. https://doi.org/10.3390/foods14213620

