Effects of Extrusion on Protein Textures of Hydrolysed Rice and Pea Isolates
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Mixtures and Preparation of Texturised Protein
- •
- HPPI blend (30% moisture): 749.9 g HPPI + 250.1 g added water.
- •
- HRPI blend (30% moisture): 731.2 g HRPI + 268.8 g added water.
2.3. Physico-Chemical Properties of Texturised Protein
2.3.1. Instrumental Colour
2.3.2. Water Content (Xw)
2.3.3. Swelling Index (SWE)
2.3.4. Fat Adsorption Index (FAI)
2.3.5. Texture Profile Analysis (TPA)
2.3.6. Water-Holding Capacity (WHC)
2.3.7. Water Solubility Index (WSI) and Water Absorption Index (WAI)
2.3.8. Cooking Loss (CL)
2.3.9. Hygroscopicity (Hy)
2.3.10. Water Activity
2.4. Nutritional Properties of Texturised Protein
2.4.1. Ash
2.4.2. Protein
2.4.3. Fat
2.4.4. Carbohydrates
2.5. Statistical Analysis
3. Results and Discussion
3.1. Protein Texturisation
3.2. Functional Characterisation of Textured Protein
3.3. Nutritional Value of the Textured Proteins
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McKenzie, F.C.; Williams, J. Sustainable Food Production: Constraints, Challenges and Choices by 2050. Food Sec. 2015, 7, 221–233. [Google Scholar] [CrossRef]
- Green, A.; Blattmann, C.; Chen, C.; Mathys, A. The Role of Alternative Proteins and Future Foods in Sustainable and Contextually-Adapted Flexitarian Diets. Trends Food Sci. Technol. 2022, 124, 250–258. [Google Scholar] [CrossRef]
- Guilbeault, N. The Good Eater: A Vegan’s Search for the Future of Food; Bloomsbury Publishing: New York, NY, USA, 2024. [Google Scholar]
- Shurtleff, W.; Aoyagi, A. History of Vegetarianism and Veganism Worldwide (1430 BCE to 1969): Extensively Annotated Bibliography and Sourcebook; Soyinfo Center: Lafayette, CA, USA, 2022. [Google Scholar]
- McMichael, A.J.; Powles, J.W.; Butler, C.D.; Uauy, R. Food, Livestock Production, Energy, Climate Change, and Health. Lancet 2007, 370, 1253–1263. [Google Scholar] [CrossRef]
- Ismail, I.; Hwang, Y.-H.; Joo, S.-T. Meat Analog as Future Food: A Review. J. Anim. Sci. Technol. 2020, 62, 111–120. [Google Scholar] [CrossRef]
- Coda, R.; Varis, J.; Verni, M.; Rizzello, C.G.; Katina, K. Improvement of the Protein Quality of Wheat Bread through Faba Bean Sourdough Addition. LWT—Food Sci. Technol. 2017, 82, 296–302. [Google Scholar] [CrossRef]
- Tuśnio, A.; Taciak, M.; Barszcz, M.; Święch, E.; Bachanek, I.; Skomiał, J. Effect of Replacing Soybean Meal by Raw or Extruded Pea Seeds on Growth Performance and Selected Physiological Parameters of the Ileum and Distal Colon of Pigs. PLoS ONE 2017, 12, e0169467. [Google Scholar] [CrossRef] [PubMed]
- López, D.N.; Galante, M.; Robson, M.; Boeris, V.; Spelzini, D. Amaranth, Quinoa and Chia Protein Isolates: Physicochemical and Structural Properties. Int. J. Biol. Macromol. 2018, 109, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Dou, W.; Zhang, X.; Zhao, Y.; Zhang, Y.; Jiang, L.; Sui, X. High Moisture Extrusion Cooking on Soy Proteins: Importance Influence of Gums on Promoting the Fibre Formation. Food Res. Int. 2022, 156, 111189. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, L.; Czaja, T.P.; Bakalis, S.; Zhang, W.; Lametsch, R. Structural Characteristics of High-Moisture Extrudates with Oil-in-Water Emulsions. Food Res. Int. 2022, 158, 111554. [Google Scholar] [CrossRef] [PubMed]
- Woo Choi, H.; Ryoo, C.; Hahn, J.; Choi, Y.J. Development of a Novel Technology for High-Moisture Textured Soy Protein Using a Vacuum Packaging and Pressurized Heat (Vacuum-Autoclaving) Treatment. Food Chem. 2023, 399, 133887. [Google Scholar] [CrossRef]
- Schreuders, F.K.G.; Dekkers, B.L.; Bodnár, I.; Erni, P.; Boom, R.M.; Van Der Goot, A.J. Comparing Structuring Potential of Pea and Soy Protein with Gluten for Meat Analogue Preparation. J. Food Eng. 2019, 261, 32–39. [Google Scholar] [CrossRef]
- Kudełka, W.; Kowalska, M.; Popis, M. Quality of Soybean Products in Terms of Essential Amino Acids Composition. Molecules 2021, 26, 5071. [Google Scholar] [CrossRef]
- Dinani, S.T.; Van der Harst, J.P.; Boom, R.; Van der Goot, A.J. Effect of L-cysteine and L-ascorbic acid addition on properties of meat analogues. Food Hydrocoll. 2023, 134, 108059. [Google Scholar] [CrossRef]
- He, R.; Zhu, D.; Chen, X.; Cao, Y.; Chen, Y.; Wang, X. How the Trade Barrier Changes Environmental Costs of Agricultural Production: An Implication Derived from China’s Demand for Soybean Caused by the US-China Trade War. J. Clean. Prod. 2019, 227, 578–588. [Google Scholar] [CrossRef]
- Altenburg, T. Donor Approaches to Supporting Pro-Poor Value Chains; German Development Institute: Bonn, Germany, 2007. [Google Scholar]
- Ercin, A.E.; Aldaya, M.M.; Hoekstra, A.Y. The Water Footprint of Soy Milk and Soy Burger and Equivalent Animal Products. Ecol. Indic. 2012, 18, 392–402. [Google Scholar] [CrossRef]
- Ferreira, M.E.; Ferreira, L.G.; Latrubesse, E.M.; Miziara, F. Considerations about the Land Use and Conversion Trends in the Savanna Environments of Central Brazil under a Geomorphological Perspective. J. Land Use Sci. 2016, 11, 33–47. [Google Scholar] [CrossRef]
- Sha, L.; Xiong, Y.L. Plant Protein-Based Alternatives of Reconstructed Meat: Science, Technology, and Challenges. Trends Food Sci. Technol. 2020, 102, 51–61. [Google Scholar] [CrossRef]
- Roy, T.; Singh, A.; Sari, T.P.; Homroy, S. Rice Protein: Emerging Insights of Extraction, Structural Characteristics, Functionality, and Application in the Food Industry. J. Food Compos. Anal. 2023, 123, 105581. [Google Scholar] [CrossRef]
- Dai, T.; Li, T.; Li, R.; Zhou, H.; Liu, C.; Chen, J.; McClements, D.J. Utilization of Plant-Based Protein-Polyphenol Complexes to Form and Stabilize Emulsions: Pea Proteins and Grape Seed Proanthocyanidins. Food Chem. 2020, 329, 127219. [Google Scholar] [CrossRef]
- Ge, J.; Sun, C.; Corke, H.; Gul, K.; Gan, R.; Fang, Y. The Health Benefits, Functional Properties, Modifications, and Applications of Pea (Pisum sativum L.) Protein: Current Status, Challenges, and Perspectives. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1835–1876. [Google Scholar] [CrossRef]
- WHO. Protein and Amino Acid Requirements in Human Nutrition: Report of a Joint WHO/FAO/UNU Expert Consultation; World Health Organization: Albany, NY, USA, 2007; ISBN 978-92-4-120935-9. [Google Scholar]
- Shuai, X.; Gao, L.; Geng, Q.; Li, T.; He, X.; Chen, J.; Liu, C.; Dai, T. Effects of Moderate Enzymatic Hydrolysis on Structure and Functional Properties of Pea Protein. Foods 2022, 11, 2368. [Google Scholar] [CrossRef]
- Lan, Y.; Xu, M.; Ohm, J.-B.; Chen, B.; Rao, J. Solid Dispersion-Based Spray-Drying Improves Solubility and Mitigates Beany Flavour of Pea Protein Isolate. Food Chem. 2019, 278, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Gu, B.-J.; Kowalski, R.J.; Ganjyal, G.M. Food Extrusion Processing: An Overview; Washington State University: Pullman, WA, USA, 2017. [Google Scholar]
- Arêas, J.A.G.; Rocha-Olivieri, C.M.; Marques, M.R. Extrusion Cooking: Chemical and Nutritional Changes. In Encyclopedia of Food and Health; Elsevier: Amsterdam, The Netherlands, 2016; pp. 569–575. ISBN 978-0-12-384953-3. [Google Scholar]
- Sukumar, A.; Athmaselvi, K.A. Optimization of Process Parameters for the Development of Finger Millet Based Multigrain Extruded Snack Food Fortified with Banana Powder Using RSM. J. Food Sci. Technol. 2019, 56, 705–712. [Google Scholar] [CrossRef]
- Choton, S.; Gupta, N.; Bandral, J.D.; Anjum, N.; Choudary, A. Extrusion Technology and Its Application in Food Processing: A Review. Pharma Innov. J. 2020, 9, 162–168. [Google Scholar] [CrossRef]
- Lee, J.-S.; Oh, H.; Choi, I.; Yoon, C.S.; Han, J. Physico-Chemical Characteristics of Rice Protein-Based Novel Textured Vegetable Proteins as Meat Analogues Produced by Low-Moisture Extrusion Cooking Technology. LWT 2022, 157, 113056. [Google Scholar] [CrossRef]
- Fiocchi, A.; Travaini, M.; D’Auria, E.; Banderali, G.; Bernardo, L.; Riva, E. Tolerance to a Rice Hydrolysate Formula in Children Allergic to Cow’s Milk and Soy. Clin. Exp. Allergy 2003, 33, 1576–1580. [Google Scholar] [CrossRef]
- Reche, M.; Pascual, C.; Fiandor, A.; Polanco, I.; Rivero-Urgell, M.; Chifre, R.; Johnston, S.; Martín-Esteban, M. The Effect of a Partially Hydrolysed Formula Based on Rice Protein in the Treatment of Infants with Cow’s Milk Protein Allergy: Hydrolysed Rice Protein Formula in the Treatment of Infants with Cow’s Milk Protein Allergy. Pediatr. Allergy Immunol. 2010, 21, 577–585. [Google Scholar] [CrossRef]
- Osen, R.; Toelstede, S.; Eisner, P.; Schweiggert-Weisz, U. Effect of High Moisture Extrusion Cooking on Protein–Protein Interactions of Pea (Pisum sativum L.) Protein Isolates. Int. J. Food Sci. Technol. 2015, 50, 1390–1396. [Google Scholar] [CrossRef]
- AINIA. Meat Analogues and Textured Protein: What Technology Is Behind These Products? Available online: https://www.ainia.com/ainia-news/analogos-carnicos-proteina-texturizada-tecnologia-productos/ (accessed on 22 July 2025).
- Zhang, S.; Huang, W.; Roopesh, M.S.; Chen, L. Pre-Treatment by Combining Atmospheric Cold Plasma and pH-Shifting to Prepare Pea Protein Concentrate Powders with Improved Gelling Properties. Food Res. Int. 2022, 154, 111028. [Google Scholar] [CrossRef]
- Lee, J.-S.; Kim, S.; Jeong, Y.J.; Choi, I.; Han, J. Impact of Interactions between Soy and Pea Proteins on Quality Characteristics of High-Moisture Meat Analogues Prepared via Extrusion Cooking Process. Food Hydrocoll. 2023, 139, 108567. [Google Scholar] [CrossRef]
- Conde, J.M.; Del Mar Yust Escobar, M.; Pedroche Jiménez, J.J.; Rodríguez, F.M.; Rodríguez Patino, J.M. Effect of Enzymatic Treatment of Extracted Sunflower Proteins on Solubility, Amino Acid Composition, and Surface Activity. J. Agric. Food Chem. 2005, 53, 8038–8045. [Google Scholar] [CrossRef]
- Adenekan, M.K.; Fadimu, G.J.; Odunmbaku, L.A.; Oke, E.K. Effect of Isolation Techniques on the Characteristics of Pigeon Pea (Cajanus cajan) Protein Isolates. Food Sci. Nutr. 2018, 6, 146–152. [Google Scholar] [CrossRef]
- Sá, A.G.A.; Moreno, Y.M.F.; Carciofi, B.A.M. Food Processing for the Improvement of Plant Proteins Digestibility. Crit. Rev. Food Sci. Nutr. 2020, 60, 3367–3386. [Google Scholar] [CrossRef]
- Silvestre-De-León, R.; Espinosa-Ramírez, J.; Heredia-Olea, E.; Pérez-Carrillo, E.; Serna-Saldívar, S.O. Biocatalytic Degradation of Proteins and Starch of Extruded Whole Chickpea Flours. Food Bioprocess Technol. 2020, 13, 1703–1716. [Google Scholar] [CrossRef]
- Pismag, R.Y.; Polo, M.P.; Hoyos, J.L.; Bravo, J.E.; Roa, D.F. Effect of Extrusion Cooking on the Chemical and Nutritional Properties of Instant Flours: A Review. F1000Research 2024, 12, 1356. [Google Scholar] [CrossRef]
- Cui, Q.; Sun, Y.; Zhou, Z.; Cheng, J.; Guo, M. Effects of Enzymatic Hydrolysis on Physicochemical Properties and Solubility and Bitterness of Milk Protein Hydrolysates. Foods 2021, 10, 2462. [Google Scholar] [CrossRef]
- Zheng, Z.; Li, J.; Li, J.; Sun, H.; Liu, Y. Physicochemical and Antioxidative Characteristics of Black Bean Protein Hydrolysates Obtained from Different Enzymes. Food Hydrocoll. 2019, 97, 105222. [Google Scholar] [CrossRef]
- Zhang, Y.; Gu, B.-J.; Hwang, N.; Ryu, G.-H. Optimization of High-Moisture Meat Analog Production with the Addition of Isolated Mung Bean Protein Using Response Surface Methodology. Foods 2025, 14, 1323. [Google Scholar] [CrossRef] [PubMed]
- Schmid, E.-M.; Farahnaky, A.; Adhikari, B.; Torley, P.J. High Moisture Extrusion Cooking of Meat Analogs: A Review of Mechanisms of Protein Texturization. Compr. Rev. Food Sci. Food Saf. 2022, 21, 4573–4609. [Google Scholar] [CrossRef]
- Hülsebusch, L.; Heyn, T.R.; Amft, J.; Schwarz, K. Extrusion of Plant Proteins: A Review of Lipid and Protein Oxidation and Their Impact on Functional Properties. Food Chem. 2025, 470, 142607. [Google Scholar] [CrossRef] [PubMed]
- Webb, D.; Dogan, H.; Li, Y.; Alavi, S. Physico-Chemical Properties and Texturization of Pea, Wheat and Soy Proteins Using Extrusion and Their Application in Plant-Based Meat. Foods 2023, 12, 1586. [Google Scholar] [CrossRef]
- Zhang, Y.; Ryu, G.H. Effects of Process Variables on the Physicochemical, Textural, and Structural Properties of an Isolated Pea Protein-Based High-Moisture Meat Analog. Foods 2023, 12, 4413. [Google Scholar] [CrossRef]
- Horwitz, W.; AOAC International (Eds.) Official Methods of Analysis of AOAC International, 18th ed.; current through rev. 1, 2006; AOAC International: Gaithersburg, MD, USA, 2006; ISBN 978-0-935584-77-6. [Google Scholar]
- Robertson, J.A.; De Monredon, F.D.; Dysseler, P.; Guillon, F.; Amado, R.; Thibault, J.-F. Hydration Properties of Dietary Fibre and Resistant Starch: A European Collaborative Study. LWT—Food Sci. Technol. 2000, 33, 72–79. [Google Scholar] [CrossRef]
- Navarro-González, I.; García-Valverde, V.; García-Alonso, J.; Periago, M.J. Chemical Profile, Functional and Antioxidant Properties of Tomato Peel Fibre. Food Res. Int. 2011, 44, 1528–1535. [Google Scholar] [CrossRef]
- Noguerol, A.T.; Marta Igual, M.; Pagán, M.J. Developing Psyllium Fibre Gel-Based Foods: Physicochemical, Nutritional, Optical and Mechanical Properties. Food Hydrocoll. 2022, 122, 107108. [Google Scholar] [CrossRef]
- Lee, E.-J.; Hong, G.-P. Effects of Microbial Transglutaminase and Alginate on the Water-Binding, Textural and Oil Absorption Properties of Soy Patties. Food Sci. Biotechnol. 2020, 29, 777–782. [Google Scholar] [CrossRef]
- Wi, G.; Bae, J.; Kim, H.; Cho, Y.; Choi, M.-J. Evaluation of the Physicochemical and Structural Properties and the Sensory Characteristics of Meat Analogues Prepared with Various Non-Animal Based Liquid Additives. Foods 2020, 9, 461. [Google Scholar] [CrossRef]
- Grau, R.; Hamm, R. Eine einfache Methode zur Bestimmung der Wasserbindung im Muskel. Naturwissenschaften 1953, 40, 29–30. [Google Scholar] [CrossRef]
- Singh, N.; Smith, A.C. A Comparison of Wheat Starch, Whole Wheat Meal and Oat Flour in the Extrusion Cooking Process. J. Food Eng. 1997, 34, 15–32. [Google Scholar] [CrossRef]
- Uribe-Wandurraga, Z.N.; Igual, M.; García-Segovia, P.; Martínez-Monzó, J. Influence of Microalgae Addition in Formulation on Colour, Texture, and Extrusion Parameters of Corn Snacks. Food Sci. Technol. Int. 2020, 26, 685–695. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.Z.; Corke, H. Production and Properties of Spray-dried Amaranthus Betacyanin Pigments. J. Food Sci. 2000, 65, 1248–1252. [Google Scholar] [CrossRef]
- ISO 18787; Determination of Water Activity. International Organization for Standardization: Geneva, Switzerland, 2017.
- ISO 13944; Lubricated Metal-Powder Mixes—Determination of Lubricant Content—Soxhlet Extraction Method. International Organization for Standardization: Geneva, Switzerland, 2012.
- FAO/WHO. Carbohydrates in Human Nutrition: Report of a Joint FAO/WHO Expert Consultation; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998. [Google Scholar]
- Onwulata, C.I.; Smith, P.W.; Konstance, R.P.; Holsinger, V.H. Incorporation of Whey Products in Extruded Corn, Potato or Rice Snacks. Food Res. Int. 2001, 34, 679–687. [Google Scholar] [CrossRef]
- Logié, N.; Della Valle, G.; Rolland-Sabaté, A.; Descamps, N.; Soulestin, J. How Does Temperature Govern Mechanisms of Starch Changes during Extrusion? Carbohydr. Polym. 2018, 184, 57–65. [Google Scholar] [CrossRef]
- Bisharat, G.I.; Oikonomopoulou, V.P.; Panagiotou, N.M.; Krokida, M.K.; Maroulis, Z.B. Effect of Extrusion Conditions on the Structural Properties of Corn Extrudates Enriched with Dehydrated Vegetables. Food Res. Int. 2013, 53, 1–14. [Google Scholar] [CrossRef]
- Maung, T.-T.; Gu, B.-Y.; Ryu, G.-H. Influence of Extrusion Process Parameters on Specific Mechanical Energy and Physical Properties of High-Moisture Meat Analog. Int. J. Food Eng. 2021, 17, 149–157. [Google Scholar] [CrossRef]
- Wild, F. Manufacture of Meat Analogues Through High Moisture Extrusion. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2016; p. B9780081005965032819. ISBN 978-0-08-100596-5. [Google Scholar]
- Rosentrater, K.A.; Evers, A.D. Extrusion Processing of Pasta and Other Products. In Kent’s Technology of Cereals; Elsevier: Amsterdam, The Netherlands, 2018; pp. 657–698. ISBN 978-0-08-100529-3. [Google Scholar]
- Kristiawan, M.; Della Valle, G.; Kansou, K.; Ndiaye, A.; Vergnes, B. Validation and Use for Product Optimization of a Phenomenological Model of Starch Foods Expansion by Extrusion. J. Food Eng. 2019, 246, 160–178. [Google Scholar] [CrossRef]
- Rosniyana, A.; Khalid, K.H.; Syed Abdullah, S.N. Characteristics of Local Rice Flour (MR 220) Produced by Wet and Dry Milling Methods. J. Trop. Agric. Food Sci. 2016, 44, 147–155. [Google Scholar]
- Oliveira, L.C.; Schmiele, M.; Steel, C.J. Development of Whole Grain Wheat Flour Extruded Cereal and Process Impacts on Color, Expansion, and Dry and Bowl-Life Texture. LWT 2017, 75, 261–270. [Google Scholar] [CrossRef]
- Salgado, N.; Giraldo, G.I.; Orrego, C.E. Influence of the Extrusion Operating Conditions on the Antioxidant, Hardness and Color Properties of Extruded Mango. LWT 2017, 86, 209–218. [Google Scholar] [CrossRef]
- Altan, A.; McCarthy, K.L.; Maskan, M. Twin-Screw Extrusion of Barley–Grape Pomace Blends: Extrudate Characteristics and Determination of Optimum Processing Conditions. J. Food Eng. 2008, 89, 24–32. [Google Scholar] [CrossRef]
- Sui, X.; Zhang, T.; Zhang, X.; Jiang, L. High-Moisture Extrusion of Plant Proteins: Fundamentals of Texturization and Applications. Annu. Rev. Food Sci. Technol. 2024, 15, 125–149. [Google Scholar] [CrossRef]
- Fan, F.H.; Ma, Q.; Ge, J.; Peng, Q.Y.; Riley, W.W.; Tang, S.Z. Prediction of Texture Characteristics from Extrusion Food Surface Images Using a Computer Vision System and Artificial Neural Networks. J. Food Eng. 2013, 118, 426–433. [Google Scholar] [CrossRef]
- Zhang, W.; Li, S.; Zhang, B.; Drago, S.R.; Zhang, J. Relationships between the Gelatinization of Starches and the Textural Properties of Extruded Texturised Soybean Protein-Starch Systems. J. Food Eng. 2016, 174, 29–36. [Google Scholar] [CrossRef]
- Chen, F.L.; Wei, Y.M.; Zhang, B.; Ojokoh, A.O. System Parameters and Product Properties Response of Soybean Protein Extruded at Wide Moisture Range. J. Food Eng. 2010, 96, 208–213. [Google Scholar] [CrossRef]
- Fang, Y.; Zhang, B.; Wei, Y. Effects of the Specific Mechanical Energy on the Physicochemical Properties of Texturised Soy Protein during High-Moisture Extrusion Cooking. J. Food Eng. 2014, 121, 32–38. [Google Scholar] [CrossRef]
- Wang, P.; Fu, Y.; Wang, L.; Saleh, A.S.M.; Cao, H.; Xiao, Z. Effect of Enrichment with Stabilized Rice Bran and Extrusion Process on Gelatinization and Retrogradation Properties of Rice Starch. Starch Stärke 2017, 69, 1600201. [Google Scholar] [CrossRef]
- Leonard, W.; Zhang, P.; Ying, D.; Fang, Z. Application of Extrusion Technology in Plant Food Processing Byproducts: An Overview. Compr. Rev. Food Sci. Food Saf. 2020, 19, 218–246. [Google Scholar] [CrossRef]
- Rathod, R.P.; Annapure, U.S. Physicochemical Properties, Protein and Starch Digestibility of Lentil Based Noodle Prepared by Using Extrusion Processing. LWT 2017, 80, 121–130. [Google Scholar] [CrossRef]
- Sakai, K.; Sato, Y.; Okada, M.; Yamaguchi, S. Improved Functional Properties of Meat Analogs by Laccase Catalyzed Protein and Pectin Crosslinks. Sci. Rep. 2021, 11, 16631. [Google Scholar] [CrossRef]
- Chen, F.L.; Wei, Y.M.; Zhang, B. Chemical Cross-Linking and Molecular Aggregation of Soybean Protein during Extrusion Cooking at Low and High Moisture Content. LWT—Food Sci. Technol. 2011, 44, 957–962. [Google Scholar] [CrossRef]
- BEDCA. Available online: https://www.bedca.net/ (accessed on 22 July 2025).
- Dey, D.; Richter, J.K.; Ek, P.; Gu, B.-J.; Ganjyal, G.M. Utilization of Food Processing By-Products in Extrusion Processing: A Review. Front. Sustain. Food Syst. 2021, 4, 603751. [Google Scholar] [CrossRef]
- Han, M.; Bertram, H.C. Designing Healthier Comminuted Meat Products: Effect of Dietary Fibres on Water Distribution and Texture of a Fat-Reduced Meat Model System. Meat Sci. 2017, 133, 159–165. [Google Scholar] [CrossRef]
- Prabha, K.; Ghosh, P.; Joseph, R.M.; Krishnan, R.; Rana, S.S.; Pradhan, R.C. Recent Development, Challenges, and Prospects of Extrusion Technology. Future Foods 2021, 3, 100019. [Google Scholar] [CrossRef]
- Banti, M.; Bajo, W. Review on Nutritional Importance and Anti-Nutritional Factors of Legumes. Int. J. Food Sci. Nutr. 2020, 9, 138. [Google Scholar] [CrossRef]
- Camire, M.E.; Camire, A.; Krumhar, K. Chemical and Nutritional Changes in Foods during Extrusion. Crit. Rev. Food Sci. Nutr. 1990, 29, 35–57. [Google Scholar] [CrossRef] [PubMed]
- Verbeek, C.J.R.; Van Den Berg, L.E. Extrusion Processing and Properties of Protein--Based Thermoplastics. Macro Mater. Eng. 2010, 295, 10–21. [Google Scholar] [CrossRef]
- Lal, M.K.; Singh, B.; Sharma, S.; Singh, M.P.; Kumar, A. Glycemic Index of Starchy Crops and Factors Affecting Its Digestibility: A Review. Trends Food Sci. Technol. 2021, 111, 741–755. [Google Scholar] [CrossRef]



| Sample | Nozzle | T1 (°C) | P (Pa) | SME (J/g) |
|---|---|---|---|---|
| Pea | 3 mm | 74.33 ± 2.082 d | 20.00 ± 4.000 d | 1814.80 ± 10.000 d |
| Rice | 3 mm | 88.67 ± 1.528 b | 24.00 ± 5.000 c | 2177.90 ± 19.000 c |
| Pea | 1 mm | 78.33 ± 2.082 c | 40.00 ± 6.000 b | 3629.80 ± 24.000 b |
| Rice | 1 mm | 93.33 ± 2.082 a | 43.00 ± 5.000 a | 3901.90 ± 20.000 a |
| Rice | Pea | |||
|---|---|---|---|---|
| Nozzle | 1 mm | 3 mm | 1 mm | 3 mm |
| Instrumentalcolour | ||||
| L* | 98.51 ± 0.264 ax | 85.76 ± 0.038 ay | 69.18 ± 0.487 bx | 66.52 ± 0.444 by |
| a* | −0.18 ± 0.042 by | 1.29 ± 0.012 bx | 7.67 ± 0.148 ay | 8.19 ± 0.149 ax |
| b* | 1.43 ± 0.239 by | 16.19 ± 0.073 bx | 19.76 ± 0.287 ay | 25.60 ± 0.225 ax |
| C | 1.44 ± 0.242 by | 16.24 ± 0.073 bx | 21.19 ± 0.298 ay | 26.88 ± 0.236 ax |
| H | −82.70 ± 0.634 by | 85.48 ± 0.053 ax | 68.80 ± 0.339 ay | 72.29 ± 0.279 bx |
| Mechanical properties | ||||
| HA1 | 73.50 ± 7.047 by | 235.50 ± 7.188 x | 1194.75 ± 329.933 ax | 200.25 ± 86.596 y |
| DAH | 4.31 ± 1.030 | 4.65 ± 0.648 | 4.95 ± 0.095 | 4.90 ± 0.122 |
| AD | 0.08 ± 0.045 | 0.06 ± 0.055 | 0.08 ± 0.084 | 0.22 ± 0.228 |
| RE | 0.04 ± 0.018 b | 0.11 ± 0.099 | 0.09 ± 0.027 a | 0.15 ± 0.061 |
| HA2 | 59.00 ± 10.424 b | 56.75 ± 19.721 | 655.75 ± 81.586 ax | 91.25 ± 30.956 y |
| CO | 0.10 ± 0.050 b | 0.05 ± 0.064 | 0.20 ± 0.079 ax | 0.10 ± 0.066 y |
| GU | 8.00 ± 2.449 b | 6.66 ± 3.786 | 254.25 ± 49.513 ax | 10.00 ± 4.082 y |
| CH | 0.10 ± 0.000 bx | 0.02 ± 0.030 by | 4.45 ± 1.678 ax | 0.12 ± 0.096 ay |
| EL | 1.15 ± 0.117 bx | 0.66 ± 0.063 by | 1.64 ± 0.387 a | 1.45 ± 0.392 a |
| Sample | Nozzle | Xw | Hy2hrs | Hy1d | Hy4d | Hy7d | Aw |
|---|---|---|---|---|---|---|---|
| Rice | 1 mm | 10.00 ± 0.000 y | −1.69 ± 0.256 ax | 1.96 ± 0.970 ax | 3.31 ± 0.597 ax | 1.23 ± 0.367 ax | 0.68 ± 0.109 a |
| 3 mm | 17.22 ± 0.522 bx | −7.28 ± 0.773 by | −8.81 ± 1.918 ay | −9.76 ± 0.953 ay | −10.35 ± 0.789 ay | 0.70 ± 0.134 | |
| Pea | 1 mm | 10.00 ± 0.000 y | −3.78 ± 0.925 b | −1.61 ± 0.600 bx | 0.91 ± 0.117 bx | −2.17 ± 0.730 bx | 0.56 ± 0.053 b |
| 3 mm | 23.92 ± 0.387 ax | −4.89 ± 0.839 a | −12.771 ± 0.535 by | −16.90 ± 0.676 by | −19.78 ± 0.836 by | 0.72 ± 0.293 |
| Sample | Nozzle | Protein | Ashes | Fat | Carbohydrates |
|---|---|---|---|---|---|
| Rice | 1 mm | 26.06 ± 3.848 | 1.16 ± 0.121 b | 0.59 ± 0.195 | 62.18 ± 3.531 |
| 3 mm | 44.59 ± 5.068 | 1.27 ± 0.012 b | 0.67 ± 0.135 | 60.76 ± 0.142 | |
| Pea | 1 mm | 14.69 ± 5.983 | 3.19 ± 0.066 ay | 0.83 ± 0.227 | 71.28 ± 5.691 |
| 3 mm | 30.36 ± 9.461 | 4.40 ± 0.167 ax | 0.72 ± 0.276 | 40.79 ± 9.524 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz, M.M.; Garrido, M.D.; Peñaranda, I. Effects of Extrusion on Protein Textures of Hydrolysed Rice and Pea Isolates. Foods 2025, 14, 3590. https://doi.org/10.3390/foods14213590
Muñoz MM, Garrido MD, Peñaranda I. Effects of Extrusion on Protein Textures of Hydrolysed Rice and Pea Isolates. Foods. 2025; 14(21):3590. https://doi.org/10.3390/foods14213590
Chicago/Turabian StyleMuñoz, Mª Melchora, Mª Dolores Garrido, and Irene Peñaranda. 2025. "Effects of Extrusion on Protein Textures of Hydrolysed Rice and Pea Isolates" Foods 14, no. 21: 3590. https://doi.org/10.3390/foods14213590
APA StyleMuñoz, M. M., Garrido, M. D., & Peñaranda, I. (2025). Effects of Extrusion on Protein Textures of Hydrolysed Rice and Pea Isolates. Foods, 14(21), 3590. https://doi.org/10.3390/foods14213590

