Natural Deep Eutectic Solvents Enhance the Bioavailability and Antioxidant Activity of Oleanolic Acid in Self-Constructed Pickering High Internal Phase Emulsions
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Construction of the Digestive Medium
2.3. In Vitro Digestion Analysis
2.3.1. Oral Phase
2.3.2. Gastric Phase
2.3.3. Intestinal Phase
2.4. Measurement of Digestive Properties
2.4.1. Particle Size Analysis Throughout the Digestion Process
2.4.2. Microstructural Analysis
2.4.3. Bioavailability
2.5. Construction of a Caco-2 Cell Model
2.5.1. Culture of Caco-2 Cells
2.5.2. Establishment of a Caco-2 Cell Monolayer
2.5.3. Determination of the Transepithelial Electrical Resistance (TEER) of Caco-2 Cells
2.5.4. Cytotoxicity Assay
2.5.5. Cellular Uptake
2.5.6. Transcellular Transport
2.5.7. Calculation of the Bioavailability of OA
2.6. Antioxidant Activity of Cells
2.6.1. Establishment of the Oxidative Stress Model of Caco-2 Cells
2.6.2. Measurement of MDA, SOD, GSH-Px, CAT, and GSH
2.6.3. Measurement of Reactive Oxygen Species (ROS)
2.7. Statistical Analysis
3. Results and Discussion
3.1. Bioaccessibility of OA in Different Delivery Systems
3.2. Bioavailability of OA in Different Delivery Systems
3.2.1. Assessment of Cytotoxicity and Establishment of the Caco-2 Cell Model
3.2.2. Effects of Different Delivery Systems on the Bioavailability of OA
3.3. Antioxidant Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, J. Oleanolic acid and ursolic acid: Research perspectives. J. Ethnopharmacol. 2005, 100, 92–94. [Google Scholar] [CrossRef] [PubMed]
- Eloy, J.O.; Saraiva, J.; Albuquerque, S.D.; Marchetti, J.M. Preparation, characterization and evaluation of the in vivo trypanocidal activity of ursolic acid-loaded solid dispersion with poloxamer 407 and sodium caprate. Braz. J. Pharm. Sci. 2015, 51, 101–109. [Google Scholar] [CrossRef]
- Feng, A.; Yang, S.; Sun, Y.; Zhang, L.; Bo, F.; Li, L. Development and evaluation of oleanolic acid dosage forms and its derivatives. BioMed Res. Int. 2020, 2020, 1308749. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.-Y.; Li, Y.; Tang, Y.-T.; Ma, X.-D.; Tang, Z.-Y. Anticancer activity of oleanolic acid and its derivatives: Recent advances in evidence, target profiling and mechanisms of action. Biomed. Pharmacother. 2022, 145, 112397. [Google Scholar] [CrossRef]
- Milan, A.; Mioc, A.; Prodea, A.; Mioc, M.; Buzatu, R.; Ghiulai, R.; Racoviceanu, R.; Caruntu, F.; Şoica, C. The optimized delivery of triterpenes by liposomal nanoformulations: Overcoming the challenges. Int. J. Mol. Sci. 2022, 23, 1140. [Google Scholar] [CrossRef]
- Liang, W.; Zhan, X.; Wang, P.; Li, C.; Zhang, L.; Rong, J.; Liu, R.; Xiong, S.; Hu, Y. Recent progress in protein-based high internal-phase pickering emulsions: Composition, stabilization, applications, and future trends. Food Res. Int. 2025, 208, 116245. [Google Scholar] [CrossRef]
- Li, B.; Li, H.; Su, S.; Shi, M.; Qin, S.; Zeng, C. Enhanced bioaccessibility of interfacial delivered oleanolic acid through self-constructed pickering emulsion: Effects of oil types. Food Res. Int. 2024, 191, 114708. [Google Scholar] [CrossRef]
- Hikmawanti, N.P.E.; Ramadon, D.; Jantan, I.; Mun’im, A. Natural deep eutectic solvents (NADES): Phytochemical extraction performance enhancer for pharmaceutical and nutraceutical product development. Plants 2021, 10, 2091. [Google Scholar] [CrossRef]
- Dai, Y.; Van Spronsen, J.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y.H. Natural deep eutectic solvents as new potential media for green technology. Anal. Chim. Acta 2013, 766, 61–68. [Google Scholar] [CrossRef]
- Oscar, O.; Pashazadeh, H.; Ghellam, M.; Koca, I.; Kaddour, A.A.; Leriche, F. Appraisal of phenolic compounds, antioxidant activity and in vitro gastrointestinal digestion of borage (Echium amoenum) flowers using natural deep eutectic solvent (NADES). Biomass Convers. Biorefinery 2024, 14, 8523–8535. [Google Scholar] [CrossRef]
- Da Silva, D.T.; Smaniotto, F.A.; Costa, I.F.; Baranzelli, J.; Muller, A.; Somacal, S.; Monteiro, C.S.; Vizzotto, M.; Rodrigues, E.; Barcia, M.T.; et al. Natural deep eutectic solvent (NADES): A strategy to improve the bioavailability of blueberry phenolic compounds in a ready-to-use extract. Food Chem. 2021, 364, 130370. [Google Scholar] [CrossRef]
- Sut, S.; Faggian, M.; Baldan, V.; Poloniato, G.; Castagliuolo, I.; Grabnar, I.; Perissutti, B.; Brun, P.; Maggi, F.; Voinovich, D.; et al. Natural deep eutectic solvents (NADES) to enhance berberine absorption: An in vivo pharmacokinetic study. Molecules 2017, 22, 1921. [Google Scholar] [CrossRef]
- Saiswani, K.; Narvekar, A.; Jahagirdar, D.; Jain, R.; Dandekar, P. Choline chloride:Glycerol deep eutectic solvents assist in the permeation of daptomycin across caco-2 cells mimicking intestinal bilayer. J. Mol. Liq. 2023, 383, 122051. [Google Scholar] [CrossRef]
- Miao, J.; Zuo, X.; McClements, D.J.; Zou, L.; Liang, R.; Zhang, L.; Liu, W. Fabrication of natural deep eutectic solvent based water-in-oil high internal phase emulsion: Improving loading capacity and stability of curcumin. J. Food Eng. 2024, 366, 111862. [Google Scholar] [CrossRef]
- Liu, Y.; Xia, H.; Guo, S.; Li, P.; Qin, S.; Shi, M.; Zeng, C. Effect and mechanism of edible oil co-digestion on the bioaccessibility and bioavailability of ursolic acid. Food Chem. 2023, 423, 136220. [Google Scholar] [CrossRef] [PubMed]
- Martin, D.; Navarro Del Hierro, J.; Villanueva Bermejo, D.; Fernández-Ruiz, R.; Fornari, T.; Reglero, G. Bioaccessibility and antioxidant activity of calendula officinalis supercritical extract as affected by in vitro codigestion with olive oil. J. Agric. Food Chem. 2016, 64, 8828–8837. [Google Scholar] [CrossRef] [PubMed]
- Sessa, M.; Balestrieri, M.L.; Ferrari, G.; Servillo, L.; Castaldo, D.; D’Onofrio, N.; Donsì, F.; Tsao, R. Bioavailability of encapsulated resveratrol into nanoemulsion-based delivery systems. Food Chem. 2014, 147, 42–50. [Google Scholar] [CrossRef]
- Liang, Q.; Chalamaiah, M.; Ren, X.; Ma, H.; Wu, J. Identification of new anti-inflammatory peptides from zein hydrolysate after simulated gastrointestinal digestion and transport in caco-2 cells. J. Agric. Food Chem. 2018, 66, 1114–1120. [Google Scholar] [CrossRef]
- Li, G.; Lin, D.-H.; Xie, X.-X.; Qin, L.-F.; Wang, J.-T.; Liu, K. Uptake and transport of furanodiene in caco-2 cell monolayers: A comparison study between furanodiene and furanodiene loaded PLGA nanoparticles. Chin. J. Nat. Med. 2013, 11, 49–55. [Google Scholar] [CrossRef]
- Luo, Y.; Teng, Z.; Wang, T.T.Y.; Wang, Q. Cellular uptake and transport of zein nanoparticles: Effects of sodium caseinate. J. Agric. Food Chem. 2013, 61, 7621–7629. [Google Scholar] [CrossRef]
- Tian, X.-J.; Yang, X.-W.; Yang, X.; Wang, K. Studies of intestinal permeability of 36 flavonoids using caco-2 cell monolayer model. Int. J. Pharm. 2009, 367, 58–64. [Google Scholar] [CrossRef]
- Ma, J.-J.; Huang, X.-N.; Yin, S.-W.; Yu, Y.-G.; Yang, X.-Q. Bioavailability of quercetin in zein-based colloidal particles-stabilized pickering emulsions investigated by the in vitro digestion coupled with caco-2 cell monolayer model. Food Chem. 2021, 360, 130152. [Google Scholar] [CrossRef]
- Li, C.; Xu, X.; Tao, Z.; Wang, X.J.; Pan, Y. Resveratrol dimers, nutritional components in grape wine, are selective ROS scavengers and weak Nrf2 activators. Food Chem. 2015, 173, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Jeliński, T.; Przybyłek, M.; Cysewski, P. Natural deep eutectic solvents as agents for improving solubility, stability and delivery of curcumin. Pharm. Res. 2019, 36, 116. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Sun, D.-W.; Xu, L.; Fan, T.-H.; Zhang, S.-T.; Zhu, Z. Bioinspired cryoprotectants enabled by binary natural deep eutectic solvents for sustainable and green cryopreservation. ACS Sustain. Chem. Eng. 2022, 10, 7677–7691. [Google Scholar] [CrossRef]
- Tan, H.; Zhao, L.; Tian, S.; Wen, H.; Gou, X.; Ngai, T. Gelatin particle-stabilized high-internal phase emulsions for use in oral delivery systems: Protection effect and in vitro digestion study. J. Agric. Food Chem. 2017, 65, 900–907. [Google Scholar] [CrossRef]
- Liu, W.; Gao, H.; McClements, D.J.; Zhou, L.; Wu, J.; Zou, L. Stability, rheology, and β-carotene bioaccessibility of high internal phase emulsion gels. Food Hydrocoll. 2019, 88, 210–217. [Google Scholar] [CrossRef]
- Hou, J.; Tan, G.; Hua, S.; Zhang, H.; Wang, J.; Xia, N.; Zhou, S.; An, D. Development of high internal phase pickering emulsions stabilized by egg yolk and carboxymethylcellulose complexes to improve β-carotene bioaccessibility for the elderly. Food Res. Int. 2024, 177, 113835. [Google Scholar] [CrossRef]
- Silva, I.R.; Souza, M.A.C.E.; Machado, R.R.; Oliveira, R.B.D.; Leite, E.A.; César, I.D.C. Enhancing oral bioavailability of an antifungal thiazolylhydrazone derivative: Development and characterization of a self-emulsifying drug delivery system. Int. J. Pharm. 2024, 655, 124011. [Google Scholar] [CrossRef]
- Yi, J.; Gan, C.; Wen, Z.; Fan, Y.; Wu, X. Development of pea protein and high methoxyl pectin colloidal particles stabilized high internal phase pickering emulsions for β-carotene protection and delivery. Food Hydrocoll. 2021, 113, 106497. [Google Scholar] [CrossRef]
- Wei, Z.; Huang, Q. Developing organogel-based pickering emulsions with improved freeze-thaw stability and hesperidin bioaccessibility. Food Hydrocoll. 2019, 93, 68–77. [Google Scholar] [CrossRef]
- Salvia-Trujillo, L.; Qian, C.; Martín-Belloso, O.; McClements, D.J. Influence of particle size on lipid digestion and β-carotene bioaccessibility in emulsions and nanoemulsions. Food Chem. 2013, 141, 1472–1480. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, Z.; Zhang, H.; Decker, E.A.; McClements, D.J. Influence of emulsifier type on gastrointestinal fate of oil-in-water emulsions containing anionic dietary fiber (pectin). Food Hydrocoll. 2015, 45, 175–185. [Google Scholar] [CrossRef]
- Shen, C.; Shen, B.; Zhu, J.; Wang, J.; Yuan, H.; Li, X. Glycyrrhizic acid-based self-assembled micelles for improving oral bioavailability of paeoniflorin. Drug Dev. Ind. Pharm. 2021, 47, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.; Shen, X.; Su, Y.; Gu, L.; Yang, Y.; Li, J. Synergistic effect of egg white protein particles and rhamnolipid on improving the bioavailability of curcumin carried in high internal phase emulsions. Int. J. Food Sci. Tech. 2024, 59, 1281–1290. [Google Scholar] [CrossRef]
- Lu, W.; Kelly, A.L.; Miao, S. Improved bioavailability of encapsulated bioactive nutrients delivered through monoglyceride-structured O/W emulsions. J. Agric. Food Chem. 2017, 65, 3048–3055. [Google Scholar] [CrossRef]
- Zhao, W.; Feng, H.; Sun, W.; Liu, K.; Lu, J.-J.; Chen, X. Tert-butyl hydroperoxide (t-BHP) induced apoptosis and necroptosis in endothelial cells: Roles of NOX4 and mitochondrion. Redox Biol. 2017, 11, 524–534. [Google Scholar] [CrossRef]
- Chi, Z.; Tan, S.; Li, W.; Wen, Z.; Song, X.; Wang, M. In vitro cytotoxicity of decabrominated diphenyl ether (PBDE-209) to human red blood cells (hRBCs). Chemosphere 2017, 180, 312–316. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, J.; Ding, W.; Qin, Q.; Wang, R.; Yu, R.; Yan, J.; Hou, R.; Liu, G.; Cai, X.; et al. Design of anti-depressant phosphodiester amino acidic Keap1-Nrf2 protein-protein interaction inhibitors. Redox Biol. 2025, 82, 103620. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.; Li, C.; Zhang, Q.; Li, B.; Zeng, C. Natural Deep Eutectic Solvents Enhance the Bioavailability and Antioxidant Activity of Oleanolic Acid in Self-Constructed Pickering High Internal Phase Emulsions. Foods 2025, 14, 3568. https://doi.org/10.3390/foods14203568
Yu J, Li C, Zhang Q, Li B, Zeng C. Natural Deep Eutectic Solvents Enhance the Bioavailability and Antioxidant Activity of Oleanolic Acid in Self-Constructed Pickering High Internal Phase Emulsions. Foods. 2025; 14(20):3568. https://doi.org/10.3390/foods14203568
Chicago/Turabian StyleYu, Jie, Chenjia Li, Qin Zhang, Benyang Li, and Chaoxi Zeng. 2025. "Natural Deep Eutectic Solvents Enhance the Bioavailability and Antioxidant Activity of Oleanolic Acid in Self-Constructed Pickering High Internal Phase Emulsions" Foods 14, no. 20: 3568. https://doi.org/10.3390/foods14203568
APA StyleYu, J., Li, C., Zhang, Q., Li, B., & Zeng, C. (2025). Natural Deep Eutectic Solvents Enhance the Bioavailability and Antioxidant Activity of Oleanolic Acid in Self-Constructed Pickering High Internal Phase Emulsions. Foods, 14(20), 3568. https://doi.org/10.3390/foods14203568