Mechanisms Underlying the Changes in the Digestive Properties of Chicken Breasts Induced by the Changes in Protein Structure During Frozen Storage
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Sample Treatment
2.3. Determination of Moisture and Protein Content
2.4. Hardness Measurement
2.5. Shear Force Measurement
2.6. In Vitro Simulated Digestion
2.7. Particle Size Measurement
2.8. Microstructure of the Digestive Samples
2.9. SDS-PAGE
2.10. Fourier Transform Infrared Spectroscopy
2.11. Circular Dichroism Spectra
2.12. Intrinsic Tryptophan Fluorescence
2.13. Statistical Analysis
3. Results
3.1. Moisture and Protein Content
3.2. Hardness and Shear Force
3.3. In Vitro Digestibility
3.4. Particle Size
3.5. Microstructure of the Digestive Samples
3.6. SDS-PAGE
3.7. FT-IR
3.8. Circular Dichroism Spectroscopy
3.9. Intrinsic Tryptophan Fluorescence
3.10. Correlation Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jiang, Q.; Nakazawa, N.; Hu, Y.; Wang, X.; Osako, K.; Okazaki, E. Evolution of Tissue Microstructure, Protein Properties, and Oxidative Stability of Salted Bigeye Tuna (Thunnus obesus) Meat during Frozen Storage. LWT 2021, 149, 111848. [Google Scholar] [CrossRef]
- Wan, W.; Li, W.; Sun, L.; Liu, H.; Xia, X. Effects of Freeze-Thaw Cycles on in-Vitro Digestive Properties of Myofibrillar Protein in Mirror Carp (Cyprinus carpio L.), Based on Protein Degradation, Oxidation, and Structural Properties. Food Chem. 2024, 436, 137662. [Google Scholar]
- Qiu, L.; Zhu, Y.; Zhu, X.; Liu, L.; Lv, M.; Huang, Y.; Sun, B.; Qu, M. Effect of Different Frozen Storage Conditions on Yuba Quality. LWT 2024, 205, 116515. [Google Scholar] [CrossRef]
- Dong, R.; Wu, Y.; Du, Q.; Lu, R.; Benjakul, S.; Zhang, B.; Shui, S. Changes in the Physicochemical Characteristics and Microbial Community Compositions of the Abdomen and Cheliped Muscles in Swimming Crab (Portunus trituberculatus) during Frozen Storage. Food Chem. X 2024, 21, 101210. [Google Scholar] [CrossRef]
- Bai, X.; Li, Y.; Liang, W.; Xia, X.; Bian, C. Formation of Advanced Glycation End Products of Chicken Breast Meat Induced by Freeze–Thaw Cycles and Subsequent Cooking. Int. J. Biol. Macromol. 2023, 244, 125387. [Google Scholar] [CrossRef]
- Narayana, G.P.; Jha, P.K.; Rawson, A.; Le-Bail, A. Changes in the Quality of Apple Tissue Subjected to Different Freezing Rates during Long-Term Frozen Storage at Different Temperatures. Int. J. Refrig. 2023, 151, 397–405. [Google Scholar] [CrossRef]
- Sun, Q.; Kong, B.; Zheng, O.; Liu, S.; Dong, X. Tracking Protein Aggregation Behaviour and Emulsifying Properties Induced by Structural Alterations in Common Carp (Cyprinus carpio) Myofibrillar Protein during Long-Term Frozen Storage. Int. J. Biol. Macromol. 2024, 264, 130171. [Google Scholar] [CrossRef] [PubMed]
- Feng, R.; Liang, W.; Liu, Y.; Luo, Y.; Tan, Y.; Hong, H. Protein Oxidation Affected the Digestibility and Modification Sites of Myofibrillar Proteins from Bighead Carp Fillets Treated with Hydroxyl Radicals and Endogenous Oxidizing System. Food Chem. 2023, 409, 135279. [Google Scholar] [PubMed]
- Wang, R.; Liu, Y.; He, Y.; Feng, C.; Xia, X. Changes in Basic Composition and in Vitro Digestive Characteristics of Pork Induced by Frozen Storage. Front. Nutr. 2025, 11, 1511698. [Google Scholar] [CrossRef]
- Su Hlaing, K.S.; Fall, M.; Xia, W.; Yu, D.; Tristanto, N.A. Comparative Analysis, Nutritional Properties, and in-Vitro Gastrointestinal Digestion of the Antioxidant Potential of Roselle Leaves Using Drying Techniques. Food Biosci. 2024, 62, 105362. [Google Scholar] [CrossRef]
- Li, F.; Du, X.; Ren, Y.; Kong, B.; Wang, B.; Xia, X.; Bao, Y. Impact of Ice Structuring Protein on Myofibrillar Protein Aggregation Behaviour and Structural Property of Quick-Frozen Patty during Frozen Storage. Int. J. Biol. Macromol. 2021, 178, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Pan, N.; Bai, X.; Kong, B.; Liu, Q.; Chen, Q.; Sun, F.; Liu, H.; Xia, X. The Dynamic Change in the Degradation and in Vitro Digestive Properties of Porcine Myofibrillar Protein during Freezing Storage. Int. J. Biol. Macromol. 2023, 234, 123682. [Google Scholar] [CrossRef] [PubMed]
- Bai, M.; Qin, G.; Sun, Z.; Long, G. Relationship between Molecular Structure Characteristics of Feed Proteins and Protein In Vitro Digestibility and Solubility. Asian Australas J. Anim. Sci. 2015, 29, 1159–1165. [Google Scholar] [PubMed]
- Jiang, S.; Zhang, M.; Liu, H.; Li, Q.; Xue, D.; Nian, Y.; Zhao, D.; Shan, K.; Dai, C.; Li, C. Ultrasound Treatment Can Increase Digestibility of Myofibrillar Protein of Pork with Modified Atmosphere Packaging. Food Chem. 2022, 377, 131811. [Google Scholar] [CrossRef]
- Huang, S.; Dong, X.; Zhang, Y.; Chen, Y.; Yu, Y.; Huang, M.; Zheng, Y. Formation of Advanced Glycation End Products in Raw and Subsequently Boiled Broiler Muscle: Biological Variation and Effects of Postmortem Ageing and Storage. Food Sci. Hum. Wellness 2022, 11, 255–262. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analyses of the Association of Analytical Chemists, 18th ed.; Association of Official Analytical Chemists (AOAC): Washington, DC, USA, 2005. [Google Scholar]
- Niu, L.; Sun, X.; Tang, J.; Wang, J.; Rasco, B.A.; Lai, K.; Huang, Y. Free and Protein-Bound N-Carboxymethyllysine and N-Carboxyethyllysine in Fish Muscle: Biological Variation and Effects of Heat Treatment. J. Food Compos. Anal. 2017, 57, 56–63. [Google Scholar] [CrossRef]
- Chatterjee, D.; Zhuang, H.; Bowker, B.C.; Sanchez-Brambila, G.; Rincon, A.M. Instrumental Texture Characteristics of Broiler Pectoralis Major with the Wooden Breast Condition. Poult. Sci. 2016, 95, 2449–2454. [Google Scholar] [CrossRef]
- Haghighi, H.; Belmonte, A.M.; Masino, F.; Minelli, G.; Lo Fiego, D.P.; Pulvirenti, A. Effect of Time and Temperature on Physicochemical and Microbiological Properties of Sous Vide Chicken Breast Fillets. Appl. Sci. 2021, 11, 3189. [Google Scholar] [CrossRef]
- Bai, X.; Shi, S.; Kong, B.; Chen, Q.; Liu, Q.; Li, Z.; Wu, K.; Xia, X. Analysis of the Influencing Mechanism of the Freeze–Thawing Cycles on in Vitro Chicken Meat Digestion Based on Protein Structural Changes. Food Chem. 2023, 399, 134020. [Google Scholar] [CrossRef]
- Ding, M.; Huang, Z.; Jin, Z.; Zhou, C.; Wu, J.; Zhao, D.; Shan, K.; Ke, W.; Zhang, M.; Nian, Y.; et al. The Effect of Fat Content in Food Matrix on the Structure, Rheological Properties and Digestive Properties of Protein. Food Hydrocoll. 2022, 126, 107464. [Google Scholar] [CrossRef]
- Li, Q.; Zhao, D.; Liu, H.; Zhang, M.; Jiang, S.; Xu, X.; Zhou, G.; Li, C. “Rigid” Structure Is a Key Determinant for the Low Digestibility of Myoglobin. Food Chem. X 2020, 7, 100094. [Google Scholar] [CrossRef]
- You, S.; Tian, Y.; Zhang, W.; Zheng, B.; Zhang, Y.; Zeng, H. Quality Properties of Fish Ball with Abalone and Its Relationship with Sensory Properties. Food Chem. X 2024, 21, 101146. [Google Scholar] [CrossRef]
- Khamzaeva, N.; Kunz, C.; Schamann, A.; Pferdmenges, L.; Briviba, K. Bioaccessibility and Digestibility of Proteins in Plant-Based Drinks and Cow’s Milk: Antioxidant Potential of the Bioaccessible Fraction. J. Agric. Food Chem. 2024, 72, 2300–2308. [Google Scholar] [CrossRef]
- Li, R.; Guo, M.; Liao, E.; Wang, Q.; Peng, L.; Jin, W.; Wang, H. Effects of Repeated Freezing and Thawing on Myofibrillar Protein and Quality Characteristics of Marinated Enshi Black Pork. Food Chem. 2022, 378, 131994. [Google Scholar] [CrossRef]
- Zhang, M.; Xia, X.; Liu, Q.; Chen, Q.; Kong, B. Changes in Microstructure, Quality and Water Distribution of Porcine Longissimus Muscles Subjected to Ultrasound-Assisted Immersion Freezing during Frozen Storage. Meat Sci. 2019, 151, 24–32. [Google Scholar] [CrossRef]
- Mohammed, H.H.H.; He, L.; Nawaz, A.; Jin, G.; Huang, X.; Ma, M.; Abdegadir, W.S.; Elgasim, E.A.; Khalifa, I. Effect of Frozen and Refrozen Storage of Beef and Chicken Meats on Inoculated Microorganisms and Meat Quality. Meat Sci. 2021, 175, 108453. [Google Scholar] [CrossRef]
- Santé-Lhoutellier, V.; Engel, E.; Aubry, L.; Gatellier, P. Effect of Animal (Lamb) Diet and Meat Storage on Myofibrillar Protein Oxidation and in Vitro Digestibility. Meat Sci. 2008, 79, 777–783. [Google Scholar] [CrossRef]
- Ma, J.; Wang, X.; Li, Q.; Zhang, L.; Wang, Z.; Han, L.; Yu, Q. Oxidation of Myofibrillar Protein and Crosslinking Behavior during Processing of Traditional Air-Dried Yak (Bos grunniens) Meat in Relation to Digestibility. LWT 2021, 142, 110984. [Google Scholar] [CrossRef]
- Lagerstedt, Å.; Enfält, L.; Johansson, L.; Lundström, K. Effect of Freezing on Sensory Quality, Shear Force and Water Loss in Beef M. longissimus dorsi. Meat Sci. 2008, 80, 457–461. [Google Scholar] [CrossRef] [PubMed]
- Muela, E.; Sañudo, C.; Campo, M.M.; Medel, I.; Beltrán, J.A. Effect of Freezing Method and Frozen Storage Duration on Lamb Sensory Quality. Meat Sci. 2012, 90, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, V.C.S.; Morcuende, D.; Madruga, M.S.; Silva, F.A.P.; Estévez, M. Role of Protein Oxidation in the Nutritional Loss and Texture Changes in Ready-to-eat Chicken Patties. Int. J. Food Sci. Technol. 2018, 53, 1518–1526. [Google Scholar]
- Chen, J.; Gao, Q.; Zhang, X.; Bassey, A.P.; Zeng, X.; Zhou, G.; Xu, X. A Structural Explanation for Protein Digestibility Changes in Different Food Matrices. Food Hydrocoll. 2023, 136, 108281. [Google Scholar]
- Zhou, H.; Hu, Y.; Tan, Y.; Zhang, Z.; McClements, D.J. Digestibility and Gastrointestinal Fate of Meat versus Plant-Based Meat Analogs: An in Vitro Comparison. Food Chem. 2021, 364, 130439. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Li, Y.; Zhou, X.; Li, C.; Liu, Y. Changes in the Extent and Products of In Vitro Protein Digestion during the Ripening Periods of Chinese Dry-Cured Hams. Meat Sci. 2021, 171, 108290. [Google Scholar] [CrossRef]
- Liu, F.; Dong, X.; Shen, S.; Shi, Y.; Ou, Y.; Cai, W.; Chen, Y.; Zhu, B. Changes in the Digestion Properties and Protein Conformation of Sturgeon Myofibrillar Protein Treated by Low Temperature Vacuum Heating during in Vitro Digestion. Food Funct. 2021, 12, 6981–6991. [Google Scholar] [CrossRef]
- Lu, Y.; Pan, D.; Xia, Q.; Cao, J.; Zhou, C.; He, J.; Sun, Y.; Xu, S. Impact of pH-Dependent Succinylation on the Structural Features and Emulsifying Properties of Chicken Liver Protein. Food Chem. 2021, 358, 129868. [Google Scholar] [CrossRef]
- Jiang, S.; Zhao, D.; Nian, Y.; Wu, J.; Zhang, M.; Li, Q.; Li, C. Ultrasonic Treatment Increased Functional Properties and in Vitro Digestion of Actomyosin Complex during Meat Storage. Food Chem. 2021, 352, 129398. [Google Scholar] [CrossRef]
- Cao, H.; Dong, X.; Wang, C.; Song, H.; Huang, K.; Zhang, Y.; Lu, J.; Guan, X. Refining Quinoa Storage Stability through Microwave-Induced Structural Alterations and Activity Suppression of Key Enzymes. Food Chem. 2024, 446, 138786. [Google Scholar] [CrossRef]
- Hu, L.; Ying, Y.; Zhang, H.; Liu, J.; Chen, X.; Shen, N.; Li, Y.; Hu, Y. Advantages of Liquid Nitrogen Freezing in Long-term Frozen Preservation of Hairtail (Trichiurus haumela): Enzyme Activity, Protein Structure, and Tissue Structure. J. Food Process. Eng. 2021, 44, e13789. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, D.; Zhu, S.; Nian, Y.; Xu, X.; Zhou, G.; Li, C. Overheating Induced Structural Changes of Type I Collagen and Impaired the Protein Digestibility. Food Res. Int. 2020, 134, 109225. [Google Scholar] [CrossRef]
- Bhat, Z.F.; Morton, J.D.; Bekhit, A.E.-D.A.; Kumar, S.; Bhat, H.F. Emerging Processing Technologies for Improved Digestibility of Muscle Proteins. Trends Food Sci. Technol. 2021, 110, 226–239. [Google Scholar] [CrossRef]
- Pusara, S. Molecular Dynamics Insights into the Aggregation Behavior of N-Terminal β-Lactoglobulin Peptides. Int. J. Mol. Sci. 2024, 25, 4660. [Google Scholar] [CrossRef]
- Liu, J.; Hu, Y.; Wei, H.; Shi, W. Effect of Glycation on Protein Structure, Amino Acid Composition and Digestibility of Silver Carp Mince. Int. J. Food Sci. Technol. 2022, 57, 2487–2497. [Google Scholar] [CrossRef]
- Yu, L.; Li, Q.; Li, Y.; Yang, Y.; Guo, C.; Li, M. Impact of Frozen Storage Duration of Raw Pork on the Formation of Advanced Glycation End-Products in Meatballs. LWT 2021, 146, 111481. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Q.; Hong, H.; Luo, Y. Prevention of Protein Oxidation and Enhancement of Gel Properties of Silver Carp (Hypophthalmichthys molitrix) Surimi by Addition of Protein Hydrolysates Derived from Surimi Processing by-Products. Food Chem. 2020, 316, 126343. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Sun, Q.; Chen, Q.; Kong, B.; Diao, X. Effects of Ultrasound-Assisted Immersion Freezing on the Muscle Quality and Physicochemical Properties of Chicken Breast. Int. J. Refrig. 2020, 117, 247–255. [Google Scholar] [CrossRef]
- Liu, Q.; Lu, Y.; Han, J.; Chen, Q.; Kong, B. Structure-Modification by Moderate Oxidation in Hydroxyl Radical-Generating Systems Promote the Emulsifying Properties of Soy Protein Isolate. Food Struct. 2015, 6, 21–28. [Google Scholar] [CrossRef]
- Simonetti, A.; Gambacorta, E.; Perna, A. Antioxidative and Antihypertensive Activities of Pig Meat before and after Cooking and in Vitro Gastrointestinal Digestion: Comparison between Italian Autochthonous Pig Suino Nero Lucano and a Modern Crossbred Pig. Food Chem. 2016, 212, 590–595. [Google Scholar] [CrossRef]
- Zhu, M.; Zhang, J.; Jiao, L.; Ma, C.; Kang, Z.; Ma, H. Effects of Freezing Methods and Frozen Storage on Physicochemical, Oxidative Properties and Protein Denaturation of Porcine Longissimus Dorsi. LWT 2022, 153, 112529. [Google Scholar] [CrossRef]
- Yan, S.; Wu, K.; Han, C.; Guo, J.; Wang, J.; Yang, X. Aggregation Structure Induced by Heat Treatments Mediated the Gastric Digestion Behavior of Soybean Protein. Food Funct. 2024, 15, 6731–6742. [Google Scholar] [CrossRef]
Temperature (°C) | Time (Month) | Moisture Content | Protein Content |
---|---|---|---|
−18 °C | 0 | 75.61 ± 0.17 Aa | 21.33 ± 0.57 Aa |
1 | 74.72 ± 0.65 Ab | 20.89 ± 0.14 Aab | |
3 | 74.94 ± 0.04 Bab | 20.27 ± 0.20 Abc | |
6 | 74.54 ± 0.14 Bb | 19.87 ± 0.22 Bc | |
9 | 74.14 ± 0.27 Bb | 18.95 ± 0.10 Bd | |
12 | 71.47 ± 0.09 Bc | 17.84 ± 0.12 Be | |
−40 °C | 0 | 75.61 ± 0.17 Aa | 21.33 ± 0.57 Aa |
1 | 75.40 ± 0.02 Aa | 20.94 ± 0.19 Aab | |
3 | 75.22 ± 0.15 Aa | 20.63 ± 0.21 Aab | |
6 | 75.56 ± 0.42 Aa | 20.52 ± 0.10 Ab | |
9 | 75.33 ± 0.21 Aa | 19.41 ± 0.15 Ac | |
12 | 73.65 ± 0.18 Ab | 18.76 ± 0.20 Ac |
Temperature (°C) | Storage Time (Months) | D4,3 (μm) | D3,2 (μm) | ||||
---|---|---|---|---|---|---|---|
Before Digestion | After Gastric Digestion | After Intestinal Digestion | Before Digestion | After Gastric Digestion | After Intestinal Digestion | ||
−18 °C | 0 | 76.98 ± 0.40 Ad | 34.69 ± 1.68 Ad | 25.54 ± 1.18 Ac | 21.67 ± 1.10 Ad | 17.28 ± 1.45 Ad | 14.40 ± 1.90 Ac |
1 | 77.57 ± 0.07 Ad | 38.12 ± 0.30 Ad | 28.92 ± 0.73 Ac | 22.69 ± 0.77 Ad | 20.79 ± 0.34 Ac | 18.73 ± 0.86 Ab | |
3 | 86.41 ± 0.48 Ac | 43.49 ± 1.71 Ac | 34.98 ± 0.14 Ab | 25.08 ± 0.79 Acd | 21.67 ± 0.66 Abc | 20.21 ± 0.47 Aab | |
6 | 89.05 ± 0.23 Ac | 66.43 ± 1.14 Ab | 47.84 ± 1.31 Aa | 26.32 ± 0.46 Ac | 24.19 ± 0.05 Aab | 22.22 ± 0.57 Aab | |
9 | 96.31 ± 2.06 Ab | 72.29 ± 0.91 Aa | 49.31 ± 0.55 Aa | 31.54 ± 1.35 Ab | 25.93 ± 1.00 Aa | 22.77 ± 0.35 Aa | |
12 | 106.9 ± 2.96 Aa | 72.75 ± 0.63 Aa | 51.23 ± 3.44 Aa | 36.74 ± 0.22 Aa | 27.06 ± 0.83 Aa | 23.12 ± 0.12 Aa | |
−40 °C | 0 | 76.98 ± 0.40 Ad | 34.69 ± 1.68 Ae | 25.54 ± 1.18 Ad | 21.67 ± 1.10 Ac | 17.28 ± 1.45 Ad | 14.40 ± 1.90 Ac |
1 | 76.95 ± 1.10 Ad | 35.67 ± 0.57 Be | 28.47 ± 0.74 Acd | 21.57 ± 0.74 Ac | 19.12 ± 0.79 Acd | 17.09 ± 0.59 Abc | |
3 | 80.71 ± 1.08 Bc | 41.94 ± 0.73 Ad | 31.41 ± 0.86 Bc | 22.15 ± 0.15 Bc | 19.86 ± 0.73 Acd | 18.12 ± 0.13 Bab | |
6 | 84.21 ± 0.39 Bb | 48.71 ± 0.54 Bc | 40.69 ± 0.74 Bb | 23.59 ± 0.05 Bbc | 21.88 ± 0.11 Bbc | 19.43 ± 0.21 Bab | |
9 | 87.09 ± 0.38 Bb | 57.52 ± 0.78 Bb | 43.92 ± 1.24 Bab | 25.65 ± 0.76 Bab | 23.93 ± 0.07 Bab | 20.34 ± 0.34 Bab | |
12 | 97.03 ± 0.58 Ba | 68.22 ± 1.04 Ba | 45.69 ± 0.68 Ba | 27.89 ± 0.80 Ba | 25.05 ± 0.15 Ba | 21.20 ± 0.01 Ba |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, X.; Zhang, Q.; Zhang, T.; Yu, Y.; Du, X.; Xia, X. Mechanisms Underlying the Changes in the Digestive Properties of Chicken Breasts Induced by the Changes in Protein Structure During Frozen Storage. Foods 2025, 14, 3519. https://doi.org/10.3390/foods14203519
Bai X, Zhang Q, Zhang T, Yu Y, Du X, Xia X. Mechanisms Underlying the Changes in the Digestive Properties of Chicken Breasts Induced by the Changes in Protein Structure During Frozen Storage. Foods. 2025; 14(20):3519. https://doi.org/10.3390/foods14203519
Chicago/Turabian StyleBai, Xue, Quanyu Zhang, Tingting Zhang, Ying Yu, Xin Du, and Xiufang Xia. 2025. "Mechanisms Underlying the Changes in the Digestive Properties of Chicken Breasts Induced by the Changes in Protein Structure During Frozen Storage" Foods 14, no. 20: 3519. https://doi.org/10.3390/foods14203519
APA StyleBai, X., Zhang, Q., Zhang, T., Yu, Y., Du, X., & Xia, X. (2025). Mechanisms Underlying the Changes in the Digestive Properties of Chicken Breasts Induced by the Changes in Protein Structure During Frozen Storage. Foods, 14(20), 3519. https://doi.org/10.3390/foods14203519