The Effect of Borage Seed Oil (Borago officinalis L.) and Matcha Tea Powder (Camellia sinensis L.) on the Physicochemical Properties, Oxidative Stability, Color, and Tenderness of Vacuum-Packed Lamb Meatloaf During Storage
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Lamb Meatloaf Preparation
2.3. Lamb Meatloaf Preparation for Analysis
2.4. Physicochemical Properties of Vacuum-Packed Lamb Meatloaf
2.5. Oxidative Stability and Hydrolysis of Vacuum-Packed Lamb Meatloaf
2.6. Color Parameters CIE L*a*b* of Vacuum-Packed Lamb Meatloaf
2.7. Tenderness of Vacuum-Packed Lamb Meatloaf
2.8. Statistical Analysis
3. Results
3.1. Physicochemical Properties of Vacuum-Packed Lamb Meatloaf
3.2. Oxidative Stability and Hydrolysis of Vacuum-Packed Lamb Meatloaf
3.3. Color Parameters CIE L*a*b* of Vacuum-Packed Lamb Meatloaf
3.4. Tenderness of Vacuum-Packed Lamb Meatloaf
4. Discussion
4.1. Physicochemical Properties of Vacuum-Packed Lamb Meatloaf
4.2. Oxidative Stability and Hydrolysis of Vacuum-Packed Lamb Meatloaf
4.3. Color Parameters CIE L*a*b* of Vacuum-Packed Lamb Meatloaf
4.4. Tenderness of Vacuum-Packed Lamb Meatloaf
4.5. Statistical Analysis-Principal Component Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BO + MT | lamb meatloaf with 4% borage seed oil and 0.5% matcha tea powder |
BHT | butylated hydroxytoluene |
BO | lamb meatloaf with 4% borage seed oil |
CLA | conjugated linoleic acid |
CON | lamb meatloaf without plant additives |
FFA | free fatty acids |
MT | lamb meatloaf with 0.5% matcha tea powder |
PCA | principal component analysis |
PV | peroxide value |
PUFA | polyunsaturated fatty acids |
TBA | 2-thiobarbituric acid |
TBARS | thiobarbituric acid reactive substances |
TPA | texture profile analysis |
References
- Stewart, S.M.; Polkinghorne, R.; Pethick, D.W.; Pannier, L. Carcass assessment and value in the Australian beef and sheep meat industry. Anim. Front. 2024, 14, 5–14. [Google Scholar] [CrossRef]
- Chikwandha, O.; Vahmani, P.; Muchenje, V.; Dugan, M.; Mapiye, C. Nutritional enhancement of sheep meat fatty acid profile for human health and wellbeing. Food Res. Int. 2017, 104, 25–38. [Google Scholar] [CrossRef] [PubMed]
- Van Le, H.; Nguyen, D.; Nguyen, Q.; Malau-Aduli, B.; Nichols, P.; Malau-Aduli, A. Fatty acid profiles of muscle, liver, heart and kidney of Australian prime lambs fed different polyunsaturated fatty acids enriched pellets in a feedlot system. Sci. Rep. 2019, 9, 1238. [Google Scholar] [CrossRef]
- Fu, Y.; Chen, Y.; Han, X.; Tan, D.; Chen, J.; Lai, C.; Yang, X.; Shan, X.; Silva, L.H.P.; Jiang, H. Effects of muscle fiber composition on meat quality, flavor characteristics, and nutritional traits in lamb. Foods 2025, 14, 2309. [Google Scholar] [CrossRef]
- Latoch, A.; Stasiak, D.M.; Libera, J.; Junkuszew, A. Assessment of suitability and lipid quality indicators of lamb meat of Polish native breeds. Ann. Anim. Sci. 2023, 23, 897–908. [Google Scholar] [CrossRef]
- Selani, M.M.; Herrero, A.M.; Ruiz-Capillas, C. Plant antioxidants in dry fermented meat products with a healthier lipid profile. Foods 2022, 11, 3558. [Google Scholar] [CrossRef]
- Akbar, S. Borago officinalis L. (Boraginaceae). In Handbook of 200 Medicinal Plants: A Comprehensive Review of Their Traditional Medical Uses and Scientific Justifications; Akbar, S., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 445–450. [Google Scholar]
- Abu-Qaoud, H.; Shawarb, N.; Hussen, F.; Jaradat, N.; Shtaya, M. Comparison of qualitative, quantitative analysis and antioxidant potential between wild and cultivated Borago officinalis leaves from Palestine. Pak. J. Pharm. Sci. 2018, 31, 953–959. [Google Scholar]
- Shin, J.A.; Sun, M.; Jeong, J.-M. Borage oil treated with immobilized lipase inhibits melanogenesis. Lipids 2020, 55, 649–659. [Google Scholar] [CrossRef]
- Foster, R.H.; Hardy, G.; Alany, R.G. Borage oil in the treatment of atopic dermatitis. Nutrition 2010, 26, 708–718. [Google Scholar] [CrossRef] [PubMed]
- Bellés, M.; Alonso, V.; Roncalés, P.; Beltrán, J.A. Effect of borage and green tea aqueous extracts on the quality of lamb leg chops displayed under retail conditions. Meat Sci. 2017, 129, 153–160. [Google Scholar] [CrossRef] [PubMed]
- García-Íñiguez de Ciriano, M.; García-Herreros, C.; Larequi, E.; Valencia, I.; Ansorena, D.; Astiasarán, I. Use of natural antioxidants from lyophilized water extracts of Borago officinalis in dry fermented sausages enriched in ω-3 PUFA. Meat Sci. 2009, 83, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Giménez, M.C.; Gómez-Guillén, M.; Pérez-Mateos, P.; Montero, P.; Márquez-Ruiz, G. Evaluation of lipid oxidation in horse mackerel patties covered with borage-containing film during frozen storage. Food Chem. 2011, 124, 1393–1403. [Google Scholar] [CrossRef]
- Hasdemir, Ö.; Kesbiç, O.S.; Cravana, C.; Fazio, F. Antioxidant performance of Borago officinalis leaf essential oil and protective effect on thermal oxidation of fish oil. Sustainability 2023, 15, 10227. [Google Scholar] [CrossRef]
- Martínez, L.; Cilla, I.; Beltrán, J.A.; Roncalés, P. Antioxidant effect of rosemary, borage, green tea, pu-erh tea and ascorbic acid on fresh pork sausages packaged in a modified atmosphere: Influence of the presence of sodium chloride. J. Sci. Food Agric. 2006, 86, 1298–1307. [Google Scholar] [CrossRef]
- Sánchez-Escalante, A.; Djenane, D.; Torrescano, G.; Beltran, J.A.; Roncalés, P. Antioxidant action of borage, rosemary, oregano, and ascorbic acid in beef patties packaged in modified atmosphere. J. Food Sci. 2003, 68, 339–344. [Google Scholar] [CrossRef]
- Jakubczyk, K.; Kochman, J.; Kwiatkowska, A.; Kałduńska, J.; Dec, K.; Kawczuga, D.; Janda, K. Antioxidant Properties and Nutritional Composition of Matcha Green Tea. Foods 2020, 9, 483. [Google Scholar] [CrossRef]
- Sarwa, K.K.; Rudrapal, M.; Debnath, M. Extraction of green tea leaves: The use of different methods, their optimization and comparative evaluation. Biosci. Biotechnol. Res. Asia 2013, 10, 383–386. [Google Scholar] [CrossRef]
- Thi Anh Dao, D.; Van Thanh, H.; Viet Ha, D.; Duc Nguyen, V. Optimization of spray-drying process to manufacture green tea powder and its characteristics. Food Sci. Nutr. 2021, 9, 6566–6574. [Google Scholar] [CrossRef]
- Kochman, J.; Jakubczyk, K.; Antoniewicz, J.; Mruk, H.; Janda, K. Health benefits and chemical composition of Matcha green tea: A review. Molecules 2020, 26, 85. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, Y.; Qu, F.; Wang, P.; Gao, J.; Zhang, X.; Hu, J. Characterization of the key aroma compounds of Shandong Matcha using HS-SPME-GC/MS and SAFE-GC/MS. Foods 2022, 11, 2964. [Google Scholar] [CrossRef] [PubMed]
- Farooq, S.; Sehgal, A. Antioxidant activity of different forms of green tea: Loose leaf, bagged and Matcha. Curr. Res. Nutr. Food Sci. 2018, 6, 1. Available online: http://www.foodandnutritionjournal.org/?p=5061 (accessed on 4 August 2025). [CrossRef]
- Gupta, D.; Bhaskar, D.; Gupta, R.; Karim, B.; Jain, A.; Dalai, D. Green tea: A review on its natural antioxidant therapy and cariostatic benefits. Biol. Sci. Pharm. Res. 2014, 2, 8–12. Available online: https://journalissues.org/wp-content/uploads/sites/6/2014/01/Gupta-et-al.pdf (accessed on 4 August 2025).
- Pérez-Burillo, S.; Navajas-Porras, B.; López-Maldonado, A.; Hinojosa-Nogueira, D.; Pastoriza, S.; Rufián-Henares, J.Á. Green tea and its relation to human gut microbiome. Molecules 2021, 26, 3907. [Google Scholar] [CrossRef]
- Alghamdi, A.I. Antibacterial activity of green tea leaves extracts against specific bacterial strains. J. King Saud Univ. Sci. 2023, 35, 102650. [Google Scholar] [CrossRef]
- European Parliament and Council. Regulation (EU) 2018/848 of 30 May 2018 on organic production and labelling of organic products and repealing Council Regulation (EC) No 834/2007. Off. J. Eur. Union 2018, L150, 1–92. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32018R0848 (accessed on 30 July 2025).
- National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals, 8th ed.; National Academies Press: Washington, DC, USA, 2011. [Google Scholar] [CrossRef]
- European Parliament and Council. Directive 2010/63/EU of 22 September 2010 on the protection of animals used for scientific purposes. Off. J. Eur. Union 2010, L276, 33. Available online: https://eur-lex.europa.eu/eli/dir/2010/63/oj/eng (accessed on 4 August 2025).
- Council of the European Union. Council Directive 98/58/EC of 20 July 1998 concerning the protection of animals kept for farming purposes. Off. J. Eur. Union 1998, L221, 23–27. Available online: https://eur-lex.europa.eu/eli/dir/1998/58/oj/eng (accessed on 17 July 2025).
- ISO 1442; Meat and Meat Products—Determination of moisture content—Reference Method. ISO: Geneva, Switzerland, 2000.
- ISO 2917; Meat and Meat Products—Measurement of pH—Reference Method. ISO: Geneva, Switzerland, 1999.
- Koniecko, E.S. Handbook for Meat Chemists; Avery Publishing Group, Inc.: Wayne, NJ, USA, 1979. [Google Scholar]
- Malik, A.H.; Sharma, B.D. Use of hurdle techniques to maintain the quality of vacuum packed buffalo meat during ambient storage temperatures. Afr. J. Food Sci. 2011, 5, 626–636. Available online: https://scholar.google.pl/scholar?cluster=5472541562775014173&hl=pl&as_sdt=0,5 (accessed on 23 July 2025).
- Wagh, R.V.; Chatli, M.K.; Ruusunen, M.; Puolanne, E.; Ertbjerg, P. Effect of various phyto-extracts on physico-chemical, colour, and oxidative stability of pork frankfurters. Asian Australas. J. Anim. Sci. 2015, 28, 1178–1186. [Google Scholar] [CrossRef] [PubMed]
- Pikul, J.; Leszczyński, D.E.; Kummerow, F.A. Evaluation of three modified TBA methods for measuring lipid oxidation in chicken meat. J. Agric. Food Chem. 1989, 37, 1309–1315. [Google Scholar] [CrossRef]
- Commission Internationale de l’Éclairage (CIE). Supplement No. 2 to CIE Publication No. 15 Colorimetry; Bureau Central de la CIE: Paris, France, 1987. [Google Scholar]
- De Huidobro, F.R.; Miguel, E.; Blázquez, B.; Onega, E. A comparison between two methods (Warner–Bratzler and texture profile analysis) for testing either raw meat or cooked meat. Meat Sci. 2005, 69, 527–536. [Google Scholar] [CrossRef]
- Dominguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A comprehensive review on lipid oxidation in meat and meat products. Antioxidants 2019, 10, 429. [Google Scholar] [CrossRef] [PubMed]
- Kavusan, H.S.; Serdaroglu, M.; Nacak, B.; Ipek, G. An approach to manufacture of fresh chicken sausages incorporated with black cumin and flaxseed oil in water gelled emulsion. Food Sci. Anim. Resour. 2020, 40, 426–443. [Google Scholar] [CrossRef]
- Roldan, M.; Antequera, T.; Hernandez, A.; Ruiz, J. Physicochemical and microbiological changes during the refrigerated storage of lamb sous-vide cooked at different combinations of time and temperature. Food Sci. Technol. Int. 2015, 21, 512–522. [Google Scholar] [CrossRef] [PubMed]
- Moawad, R.K.; Mohamed, O.S.S.; Abdelmaguid, N.M. Shelf-life evaluation of raw chicken sausage incorporated with green tea and clove powder extracts at refrigerated storage. Plant Arch. 2020, 20, 8821–8830. Available online: https://www.plantarchives.org/20-2/8821-8830%20(6621).pdf (accessed on 4 August 2025).
- Aksu, M.I. The effect of α-tocopherol, storage time and storage temperature on peroxide value, free fatty acids and pH of kavurma, a cooked meat product. J. Muscle Foods 2007, 18, 370–379. [Google Scholar] [CrossRef]
- Purnamayanti, L.; Jamhari, J.; Hanim, C.; Irawan, A. Physicochemical properties, oxidative stability and sensory quality of lamb sausage added with green tea leaves (Camellia sinensis) powder. Trop. Anim. Sci. J. 2020, 43, 57–63. [Google Scholar] [CrossRef]
- Viuda-Martos, M.; Ruiz-Navajas, Y.; Fernández-López, J.; Pérez-Álvarez, J.A. Effect of added citrus fibre and spice essential oils on quality characteristics and shelf-life of mortadella. Meat Sci. 2010, 85, 568–576. [Google Scholar] [CrossRef]
- Nath, P.M.; Kumar, V.; Kumar Praveen, P.; Ganguly, S. A comparative study of green tea extract and rosemary extract on quality characteristics of chevon patties. Int. J. Sci. Environ. Technol. 2016, 5, 1680–1688. Available online: https://www.researchgate.net/profile/Subha-Ganguly/publication/303698366_A_COMPARATIVE_STUDY_OF_GREEN_TEA_EXTRACT_AND_ROSEMARY_EXTRACT_ON_QUALITY_CHARACTERISTICS_OF_CHEVON_PATTIES/links/574e558c08ae061b33038cab/A-COMPARATIVE-STUDY-OF-GREEN-TEA-EXTRACT-AND-ROSEMARY-EXTRACT-ON-QUALITY-CHARACTERISTICS-OF-CHEVON-PATTIES.pdf (accessed on 23 July 2025).
- Salejda, A.M.; Krasnowska, G.; Tril, U. Attempt to utilize antioxidant properties of green tea extract in the production of model meat products. Żywność Nauka Technol. Jakość 2011, 78, 107–118. Available online: https://wydawnictwo.pttz.org/wp-content/uploads/2015/02/107_118_Salejda.pdf (accessed on 23 July 2025). (In Polish) [CrossRef]
- Jezek, F.; Kamenik, J.; Macharacova, B.; Bogdanovicova, K.; Bednar, J. Cooking of meat: Effect on texture, cooking loss and microbiological quality—A review. Acta Vet. Brno 2019, 88, 487–496. [Google Scholar] [CrossRef]
- Reitznerova, A.; Sulekova, M.; Nagy, J.; Marcincak, S.; Semojon, B.; Certik, M.; Klempova, T. Lipid peroxidation process in meat and meat products: A comparison study of malondialdehyde determination between modified 2-thiobarbituric acid spectrophotometric method and reverse-phase high-performance liquid chromatography. Molecules 2017, 22, 1988. [Google Scholar] [CrossRef] [PubMed]
- Alheeti, M.Y.Y.; Al-Jugifi, W.I.; Alhadithi, H.J.M. Use of aqueous extract of matcha tea as an antioxidant in poultry meat storage. IOP Conf. Ser. Earth Environ. Sci. 2023, 1252, 012135. [Google Scholar] [CrossRef]
- Mir, S.A.; Masoodi, F.A. Effect of packaging on lipid oxidation, sensory and color attributes of value added mutton meatballs during refrigeration. J. Nutr. Health Food Eng. 2017, 7, 301–309. [Google Scholar] [CrossRef]
- Amaral, A.B.; Silva, M.V.; Silva Lannes, S.C. Lipid oxidation in meat: Mechanisms and protective factors—A review. Food Sci. Technol. 2018, 38, 1–15. [Google Scholar] [CrossRef]
- Milon, M.; Kabir, M.H.; Hossain, M.A.; Rahman, M.; Azad, M.A.K.; Hashem, M.A. Value added beef meatballs using turmeric (Curcuma longa) powder as a source of natural antioxidant. Int. J. Nat. Soc. Sci. 2016, 3, 52–61. Available online: https://www.researchgate.net/profile/Md-Abul-Hashem-2/publication/318892558_Value_added_beef_meatballs_using_turmeric_Curcuma_longa_powder_as_a_source_of_natural_antioxidant_ARTICLE_INFO_ABSTRACT/links/5983c87aaca272a947c72f64/Value-added-beef-meatballs-using-turmeric-Curcuma-longa-powder-as-a-source-of-natural-antioxidant-ARTICLE-INFO-ABSTRACT.pdf (accessed on 23 July 2025).
- Wettasinghe, M.; Shahidi, F. Evening primrose meal: A source of natural antioxidants and scavenger of hydrogen peroxide and oxygen-derived free radicals. J. Agric. Food Chem. 1999, 47, 1801–1812. [Google Scholar] [CrossRef]
- Horie, H.; Ema, K.; Sumikawa, O. Chemical components of Matcha and powdered green tea. J. Cook. Sci. Jpn. 2017, 50, 182–188. Available online: https://www.jstage.jst.go.jp/article/cookeryscience/50/5/50_182/_pdf/-char/ja?trk=public_post_comment-text (accessed on 23 July 2025).
- Alnori, H.M.; Saeed, O.A.; Alnoori, M.A.; Leo, T.K.; Sani, U.M. Green tea extract improved minced mutton quality during chilled storage. Food Res. 2022, 6, 200–205. [Google Scholar] [CrossRef]
- Sabaghi, M.; Maghsoudlou, Y.; Khomeiri, M.; Ziaiifar, A.M. Active edible coating from chitosan incorporating green tea extract as an antioxidant and antifungal on fresh walnut kernel. Postharvest Biol. Technol. 2015, 110, 224–228. [Google Scholar] [CrossRef]
- Şen, D.B.; Kılıç, B. Effects of edible coatings containing acai powder and matcha extracts on shelf life and quality parameters of cooked meatballs. Meat Sci. 2021, 179, 108547. [Google Scholar] [CrossRef]
- Nain, C.W.; Berdal, G.; Thao, P.T.P.; Mignolet, E.; Buchet, M.; Page, M.; Larondelle, Y. Green tea extract enhances the oxidative stability of DHA-rich oil. Antioxidants 2021, 10, 982. [Google Scholar] [CrossRef]
- Wereńska-Sudnik, M.; Chełmecka, I.; Wołoszyn, J.; Okruszek, A.; Haraf, G.; Orkusz, A. Effect of green tea powder added on quality of offal products stored under refrigeration. Żywność Nauka Technol. Jakość 2016, 108, 60–71. (In Polish) [Google Scholar] [CrossRef]
- Klinhom, P.; Klinhom, J.; Methawiwat, S. Effect of different cooking method on cooking loss and lipid oxidation in buffalo meat. Appl. Mech. Mater. 2016, 885, 70–74. [Google Scholar] [CrossRef]
- Moawad, R.K.; Abozeid, W.M.; Nadir, A.S. Effect of nitrite level and tea catechins on residual nitrite and quality indices of raw-cured sausage. J. Appl. Sci. Res. 2012, 8, 815–822. [Google Scholar]
- Uzlasir, T.; Aktas, N.; Gercekaslan, K.E. Pumpkin seed oil as a partial animal fat replacer in Bologna-type sausages. Food Sci. Anim. Resour. 2020, 40, 551–562. [Google Scholar] [CrossRef] [PubMed]
- Gok, V.; Uzun, T.; Tomar, O.; Caglar, M.Y.; Caglar, A. The effect of cooking methods on some quality characteristics of gluteus medius. Food Sci. Technol. 2019, 39, 999–1004. [Google Scholar] [CrossRef]
- Devatkal, S.K.; Narsaiah, K.; Borah, A. The effect of salt, extract of kinnow and pomegranate fruit by-products on colour and oxidative stability of raw chicken patties during refrigerated storage. J. Food Sci. Technol. 2011, 48, 472–477. [Google Scholar] [CrossRef]
- Kang, Z.L.; Zhu, D.; Li, B.; Ma, H.J.; Song, Z.J. Effect of pre-emulsified sesame oil on physico-chemical and rheological properties of pork batters. Food Sci. Technol. 2019, 37, 620–626. [Google Scholar] [CrossRef]
- Jamróz, E.; Kulawik, P.; Krzysciak, P.; Talaga-Cwiertnia, K.; Juszczak, L. Intelligent and active furcellaran-gelatin films containing green or pu-erh tea extracts: Characterization, antioxidant and antimicrobial potential. Int. J. Biol. Macromol. 2019, 122, 745–757. [Google Scholar] [CrossRef]
- Ambrosiadis, J.; Vareltzis, K.P.; Georgakis, S.A. Physical, chemical and sensory characteristics of cooked meat emulsion style products containing vegetable oils. Int. J. Food Sci. Technol. 1996, 31, 189–194. [Google Scholar] [CrossRef]
- Youssef, M.K.; Barbut, S. Effects of protein level and fat/oil on emulsion stability, texture, microstructure and color of meat batters. Meat Sci. 2009, 82, 228–233. [Google Scholar] [CrossRef]
- Aktas, N.; Gercekaslan, K.E.; Uzlasir, T. The effect of some pre-roasting treatments on quality characteristics of pumpkin seed oil. OCL 2018, 25, A202. [Google Scholar] [CrossRef]
- Akcan, T.; Estevez, M.; Serdaroglu, M. Antioxidant protection of cooked meatballs during frozen storage by whey protein edible films with phytochemicals from Laurus nobilis L. and Salvia officinalis L. LWT-Food Sci. Technol. 2017, 77, 323–331. [Google Scholar] [CrossRef]
- Novaković, S.; Tomasević, I. A comparison between Warner–Bratzler shear force measurement and texture profile analysis of meat and meat products: A review. IOP Conf. Ser. Earth Environ. Sci. 2017, 85, 012063. [Google Scholar] [CrossRef]
- Bhat, Z.F.; Morton, J.D.; Mason, S.L.; Bekhit, A.E.A. Applied and emerging methods for meat tenderization: A comparative perspective. Compr. Rev. Food Sci. Food Saf. 2018, 17, 841–859. [Google Scholar] [CrossRef]
- Bai, Y.; Ren, C.; Wu, S.; Hou, C.; Li, X.; Zhang, D. Co-regulation of very fast chilling treatment and the follow-up storage temperature on meat tenderness through glycolysis. Foods 2025, 14, 2932. [Google Scholar] [CrossRef]
- Wyrwisz, J.; Półtorak, A.; Poławska, E.; Pierzchała, M.; Jóźwik, A.; Zalewska, M.; Zaremba, R.; Wierzbicka, A. The impact of heat treatment methods on the physical properties and cooking yield of selected muscles from Limousine breed cattle. Anim. Sci. Pap. Rep. 2012, 30, 339–351. Available online: https://www.researchgate.net/profile/Mariusz-Pierzchala/publication/259219549_The_impact_of_heat_treatment_methods_on_the_physical_properties_and_cooking_yield_of_selected_muscles_from_Limousine_breed_cattle/links/56fe417308aee995dde72877/The-impact-of-heat-treatment-methods-on-the-physical-properties-and-cooking-yield-of-selected-muscles-from-Limousine-breed-cattle.pdf (accessed on 24 July 2025).
- Alirezalu, K.; Hesari, J.; Nemati, Z.; Munekata, P.E.S.; Barba, F.J.; Lorenzo, J.M. Combined effect of natural antioxidants and antimicrobial compounds during refrigerated storage of nitrite-free frankfurter-type sausage. Food Res. Int. 2019, 120, 839–850. [Google Scholar] [CrossRef]
- Cheng, Q.; Sun, D.W. Factors affecting the water holding capacity of red meat products: A review of recent research advances. Crit. Rev. Food Sci. Nutr. 2008, 48, 137–159. [Google Scholar] [CrossRef]
- Cegiełka, A. Applying plant oils and fibre preparations to produce chicken meat burgers. Żywność Nauka Technol. Jakość 2012, 82, 88–100. Available online: https://wydawnictwo.pttz.org/wp-content/uploads/2015/02/08_Cegielka.pdf (accessed on 20 July 2025). (In Polish) [CrossRef]
- Serdaroglu, M.; Kavusan, S.; Ipek, G.; Ozturk, B. Evaluation of the quality of beef patties formulated with dried pumpkin pulp and seed. Korean J. Food Sci. Anim. Resour. 2018, 38, 1–13. [Google Scholar] [CrossRef] [PubMed]
Samples | Lamb Meat [%] | Salt [%] | Water [%] | Borage Seed Oil [%] | Matcha Tea Powder [%] |
---|---|---|---|---|---|
BO + MT | 100 | 2 | 10 | 4 | 0.5 |
BO | 100 | 2 | 10 | 4 | - |
MT | 100 | 2 | 10 | - | 0.5 |
CON | 100 | 2 | 10 | - | - |
Storage Time [Days] | Cooking Yield [%] | Moisture [%] | Fat Content [%] | pH [- ] | |
---|---|---|---|---|---|
BO + MT | 1 | 65.63 ± 1.32 a | 53.95 ± 1.48 a | 15.54 ± 0.85 b | 5.92 ± 0.07 a |
7 | 5.95 ± 0.05 a | ||||
14 | 5.97 ± 0.05 a | ||||
BO | 1 | 65.04 ± 3.09 a | 55.34 ± 2.29 a | 15.44 ± 0.72 b | 5.92 ± 0.06 a |
7 | 5.95 ± 0.07 a | ||||
14 | 5.96 ± 0.06 a | ||||
MT | 1 | 67.20 ± 2.87 a | 53.45 ± 2.17 a | 11.63 ± 0.23 a | 5.93 ± 0.06 a |
7 | 5.98 ± 0.04 a | ||||
14 | 5.98 ± 0.04 a | ||||
CON | 1 | 67.54 ± 2.76 a | 56.80 ± 2.41 a | 11.42 ± 0.11 a | 5.93 ± 0.06 a |
7 | 5.98 ± 0.01 a | ||||
14 | 5.98 ± 0.02 a |
Storage Time [Days ] | FFA [% Oleic Acid] | PV [meqO2/kg] | TBARS [MDA/kg] | |
---|---|---|---|---|
BO + MT | 1 | 1.96 ± 0.13 f | 6.86 ± 0.19 c | 0.64 ± 0.06 e |
7 | 2.45 ± 0.12 cd | 6.44 ± 0.17 e | 0.74 ± 0.13 e | |
14 | 2.61 ± 0.19 bc | 8.26 ± 0.23 a | 0.69 ± 0.16 e | |
BO | 1 | 1.88 ± 0.15 f | 6.99 ± 0.19 cd | 1.12 ± 0.11 d |
7 | 2.31 ± 0.18 de | 6.19 ± 0.14 f | 1.36 ± 0.13 c | |
14 | 2.43 ± 0.17 cd | 8.30 ± 0.22 a | 1.80 ± 0.08 b | |
MT | 1 | 1.46 ± 0.07 f | 6.77 ± 0.17 ad | 0.47 ± 0.03 f |
7 | 2.06 ± 0.16 e | 6.56 ± 0.11 e | 0.54 ± 0.14 ef | |
14 | 2.76 ± 0.20 ab | 8.04 ± 0.18 a | 0.48 ± 0.06 f | |
CON | 1 | 1.81 ± 0.11 f | 7.14 ± 0.16 bc | 1.66 ± 0.15 c |
7 | 2.18 ± 0.16 e | 7.32 ± 0.18 b | 1.80 ± 0.12 b | |
14 | 2.84 ± 0.14 a | 7.34 ± 0.15 b | 2.27 ± 0.18 a |
Storage Time [Days] | L* [-] | a* [-] | b* [-] | ΔE* | |
---|---|---|---|---|---|
BO + MT | 1 | 54.38 ± 2.21 a | 1.97 ± 0.22 d | 12.18 ± 0.80 a | 3.11 |
7 | 53.74 ± 2.15 a | 2.03 ± 0.15 d | 12.58 ± 0.53 a | 2.67 | |
14 | 55.55 ± 1.55 a | 1.91 ± 0.24 d | 12.13 ± 0.42 a | 3.33 | |
BO | 1 | 56.92 ± 1.39 a | 4.39 ± 0.25 ab | 11.76 ± 0.77 a | 1.11 |
7 | 54.73 ± 1.65 a | 3.98 ± 0.32 b | 12.06 ± 0.69 a | 0.58 | |
14 | 57.75 ± 1.63 a | 3.16 ± 0.13 c | 11.76 ± 0.57 a | 1.35 | |
MT | 1 | 54.18 ± 2.07 a | 1.87 ± 0.23 de | 11.66 ± 0.48 a | 1.35 |
7 | 52.60 ± 1.84 a | 1.85 ± 0.18 de | 12.02 ± 0.60 a | 3.22 | |
14 | 55.07 ± 1.50 a | 1.69 ± 0.25 e | 10.97 ± 0.34 b | 3.96 | |
CON | 1 | 55.87 ± 1.87 a | 4.61 ± 0.26 a | 11.49 ± 0.47 ab | |
7 | 54.62 ± 1.46 a | 4.38 ± 0.44 ab | 11.66 ± 0.48 ab | ||
14 | 57.67 ± 1.91 a | 4.11 ± 0.18 b | 10.80 ± 0.52 b |
Storage Time [Days] | Maximum Shear Force [N] | Work of Shear [N·mm] | |
---|---|---|---|
BO + MT | 1 | 4.70 ± 0.45 e | 57.16 ± 8.78 c |
7 | 6.11 ± 0.60 bd | 71.35 ± 7.46 b | |
14 | 5.36 ± 0.80 d | 63.53 ± 5.78 bc | |
BO | 1 | 5.09 ± 0.24 e | 53.32 ± 7.48 c |
7 | 5.42 ± 0.47 de | 66.10 ± 5.93 b | |
14 | 4.91 ± 0.33 e | 63.81 ± 6.90 bc | |
MT | 1 | 6.51 ± 0.74 abc | 76.44 ± 6.05 b |
7 | 6.22 ± 0.50 bc | 71.62 ± 7.14 b | |
14 | 6.19 ± 0.43 c | 71.21 ± 6.96 b | |
CON | 1 | 7.19 ± 0.52 ab | 100.28 ± 11.90 a |
7 | 7.22 ± 0.04 a | 113.80 ± 13.23 a | |
14 | 5.70 ± 0.53 d | 68.89 ± 6.60 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Latoch, A.; Libera, J.; Öncül, N.; Metli, M. The Effect of Borage Seed Oil (Borago officinalis L.) and Matcha Tea Powder (Camellia sinensis L.) on the Physicochemical Properties, Oxidative Stability, Color, and Tenderness of Vacuum-Packed Lamb Meatloaf During Storage. Foods 2025, 14, 3500. https://doi.org/10.3390/foods14203500
Latoch A, Libera J, Öncül N, Metli M. The Effect of Borage Seed Oil (Borago officinalis L.) and Matcha Tea Powder (Camellia sinensis L.) on the Physicochemical Properties, Oxidative Stability, Color, and Tenderness of Vacuum-Packed Lamb Meatloaf During Storage. Foods. 2025; 14(20):3500. https://doi.org/10.3390/foods14203500
Chicago/Turabian StyleLatoch, Agnieszka, Justyna Libera, Nilgün Öncül, and Murat Metli. 2025. "The Effect of Borage Seed Oil (Borago officinalis L.) and Matcha Tea Powder (Camellia sinensis L.) on the Physicochemical Properties, Oxidative Stability, Color, and Tenderness of Vacuum-Packed Lamb Meatloaf During Storage" Foods 14, no. 20: 3500. https://doi.org/10.3390/foods14203500
APA StyleLatoch, A., Libera, J., Öncül, N., & Metli, M. (2025). The Effect of Borage Seed Oil (Borago officinalis L.) and Matcha Tea Powder (Camellia sinensis L.) on the Physicochemical Properties, Oxidative Stability, Color, and Tenderness of Vacuum-Packed Lamb Meatloaf During Storage. Foods, 14(20), 3500. https://doi.org/10.3390/foods14203500