Antihyperlipidemic Effect of Flavonoids and Saponins from Pyracantha fortuneana Fruits on L02 Cells and Caenorhabditis elegans
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Extraction and Isolation of the Extracts from P. fortuneana Fruits
2.3. Determination of Flavonoid and Saponin Contents
2.4. LC-MS/MS Analysis
2.5. Protective Effects of PFF and PFS on High-Fat L02 Cells
2.5.1. Cell Culture
2.5.2. Screening of Safe Concentration of PFF and PFS
2.5.3. Preparation and Establishment of Safe Concentrations of FFA
2.5.4. Oil Red O Staining
2.5.5. Determination of TCHO, TG, LDL, MDA, SOD and GSH Levels
2.5.6. Determination of Mitochondrial Membrane Potential
2.5.7. qRT-PCR Analysis
2.6. Effects of PFF and PFS on Lipid Deposition in C. elegans
2.6.1. Cultivation of C. elegans
2.6.2. The Toxicity of PFF and PFS to C. elegans
2.6.3. Establishment of Fat Accumulation Model
2.6.4. Effects of PFF and PFS on Lipid Accumulation in C. elegans
2.6.5. Determination of TCHO, TG, LDL, MDA, CAT and ROS Levels
2.7. Statistical Analysis
3. Results and Discussion
3.1. Main Components of PFF and PFS
3.2. PFF and PFS Reduced Lipid Accumulation in High-Fat L02 Cells
3.3. Effects of PFF and PFS on TG, TCHO, and LDL in High-Fat L02 Cells
3.4. PFF and PFS Ameliorated Mitochondrial Membrane Potential Decrease in High-Fat L02 Cells
3.5. Effects of PFF and PFS on the Expression of Nrf2/ARE Pathway-Related Genes
3.6. PFF and PFS Reduced Lipid Accumulation in C. elegans
3.7. Effects of PFF and PFS on TG, TCHO, LDL, CAT and MDA in C. elegans
3.8. Effects of PFF and PFS on ROS in C. elegans
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gomez-Delgado, F.; Katsiki, N.; Lopez-Miranda, J.; Perez-Martinez, P. Dietary habits, lipoprotein metabolism and cardiovascular disease: From individual foods to dietary patterns. Crit. Rev. Food Sci. Nutr. 2020, 61, 1651–1669. [Google Scholar] [CrossRef] [PubMed]
- Plutzky, J. Emerging concepts In metabolic abnormalities associated with coronary artery disease. Curr. Opin. Cardiol. 2000, 15, 416–421. [Google Scholar] [CrossRef]
- Rashid, S.; Genest, J. Effect of obesity on high-density lipoprotein metabolism. Obesity 2007, 15, 2875–2888. [Google Scholar] [CrossRef]
- Deng, X.J.; Hou, Y.; Zhou, H.J.; Li, Y.L.; Xue, Z.Q.; Xue, X.T.; Huang, G.H.; Huang, K.L.; He, X.Y.; Xu, W.T. Hypolipidemic, anti-inflammatory, and anti-atherosclerotic effects of tea before and after microbial fermentation. Food Sci. Nutr. 2021, 9, 1160–1170. [Google Scholar] [CrossRef]
- Mazza, A.; Nicoletti, M.; Lenti, S.; Torin, G.; Rigatelli, G.; Pellizzato, M.; Fratter, A. Effectiveness and Safety of Novel Nutraceutical Formulation Added to Ezetimibe in Statin-Intolerant Hypercholesterolemic Subjects with Moderate-to-High Cardiovascular Risk. J. Med. Food 2021, 24, 59–66. [Google Scholar] [CrossRef]
- Guo, W.L.; Pan, Y.Y.; Li, L.; Li, T.T.; Liu, B.; Lv, X.C. Ethanol extract of Ganoderma lucidum ameliorates lipid metabolic disorders and modulates the gut microbiota composition in high-fat diet fed rats. Food Funct. 2018, 9, 3419–3431. [Google Scholar] [CrossRef]
- Singh, S.P.; Sashidhara, K.V. Lipid lowering agents of natural origin: An account of some promising chemotypes. Eur. J. Med. Chem. 2017, 140, 331–348. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, R.; Zhang, Q.; Liu, J.; Tao, T.; Zhang, T.; Wu, C.; Ren, Q.; Pu, X.; Peng, W. Pyracantha fortuneana (Maxim.) Li: A comprehensive review of its phytochemistry, pharmacological properties, and product development. Front. Sustain. Food Syst. 2022, 6, 940900. [Google Scholar] [CrossRef]
- Li, H.; Fang, W.; Wang, Z.; Chen, Y. Physicochemical, biological properties, and flavour profile of Rosa roxburghii Tratt, Pyracantha fortuneana, and Rosa laevigata Michx fruits: A comprehensive review. Food Chem. 2022, 366, 130509. [Google Scholar] [CrossRef]
- Yuan, C.F.; Wang, C.D.; Bu, Y.Q.; Xiang, T.X.; Huang, X.N.; Wang, Z.W.; Yi, F.P.; Ren, G.S.; Liu, G.L.; Song, F.Z. Antioxidative and immunoprotective effects of Pyracantha fortuneana (Maxim.) Li polysaccharides in mice. Immunol. Lett. 2010, 133, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.F.; Li, Z.H.; Yi, M.H.; Wang, X.X.; Peng, F.; Xiao, F.X.; Chen, T.; Wang, C.D.; Mushtaq, G.; Kamal, M.A. Effects of Polysaccharides from Selenium-enriched Pyracantha fortuneana on Mice Liver Injury. Med. Chem. 2015, 11, 780–788. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Ye, Y.H.; Wang, H.H.; Liu, J.; Liu, Y.J.; Jiang, B.W. HPLC-QTOF-MS/MS profiling, antioxidant, and α-glucosidase inhibitory activities of Pyracantha fortuneana fruit extracts. J. Food Biochem. 2019, 43, e12821. [Google Scholar] [CrossRef]
- Rubin, J.K.; Hinrichs-Krapels, S.; Hesketh, R.; Martin, A.; Herman, W.H.; Rubino, F. Identifying Barriers to Appropriate Use of Metabolic/Bariatric Surgery for Type 2 Diabetes Treatment: Policy Lab Results. Diabetes Care 2016, 39, 954–963. [Google Scholar] [CrossRef]
- Li, Y.; Mei, M.; Wang, Q.; Gen, L.; Hao, K.; Zhong, R.; Mo, T.; Jiang, J.; Zhu, W. Structural characteristics and anti-photoaging effect of Pyracantha fortuneana fruit polysaccharides in vitro and in vivo. Int. J. Biol. Macromol. 2024, 278, 134123. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Shao, Q.; Yang, X.; Su, K.; Li, Z.; Yang, Y.; Yuan, X.; Chen, R. Diversity in Pyracantha fortuneana fruits maturity stages enables discrepancy in the phenolic compounds, antioxidant activity, and tyrosinase inhibitory activity. J. Food Sci. 2024, 89, 3469–3483. [Google Scholar] [CrossRef]
- Yin, Y.; Huang, Y.; Yang, W.; Yuan, J.; Xie, M.; Miao, Y.; Yu, J.; Wang, J.; Zhang, X.; Wang, B. A novel flavonoid and other constituents from Rubus rosifolius S.Vidal (Rosaceae). Nat. Prod. Res. 2023, 38, 2320–2328. [Google Scholar] [CrossRef]
- Li, G.; Yu, S.; Zhou, Y.H.; Chen, Q.F. Spectrophotometric Determination of Flavonoids Content in Leaves of Fagopyrum cymosum Complex. Asian J. Chem. 2013, 25, 7575–7578. [Google Scholar] [CrossRef]
- Hu, T.; Guo, Y.Y.; Zhou, Q.F.; Zhong, X.K.; Zhu, L.; Piao, J.H.; Chen, J.; Jiang, J.G. Optimization of Ultrasonic-Assisted Extraction of Total Saponins from Eclipta prostrasta L. Using Response Surface Methodology. J. Food Sci. 2012, 77, C975–C982. [Google Scholar] [CrossRef]
- Xu, X.Y.; Hu, J.P.; Wu, M.M.; Wang, L.S.; Fang, N.Y. CCAAT/enhancer-binding protein CEBP-2 controls fat consumption and fatty acid desaturation in Caenorhabditis elegans. Biochem. Biophys. Res. Commun. 2015, 468, 312–318. [Google Scholar] [CrossRef]
- Xu, Y.; Ke, H.H.; Li, Y.T.; Xie, L.H.; Su, H.M.; Xie, J.H.; Mo, J.L.; Chen, W. Malvidin-3-O-Glucoside from Blueberry Ameliorates Nonalcoholic Fatty Liver Disease by Regulating Transcription Factor EB-Mediated Lysosomal Function and Activating the Nrf2/ARE Signaling Pathway. J. Agric. Food Chem. 2021, 69, 4663–4673. [Google Scholar] [CrossRef]
- Abdulkhaleq, L.A.; Assi, M.A.; Noor, M.H.M.; Abdullah, R.; Saad, M.Z.; Taufiq-Yap, Y.H. Therapeutic uses of epicatechin in diabetes and cancer. Vet. World 2017, 10, 869–872. [Google Scholar] [CrossRef]
- Zhang, C.; Shi, Z.; Lei, H.; Wu, F.; Chen, C.; Cao, Z.; Song, Y.; Zhang, C.; Zhou, J.; Lu, Y.; et al. Dietary Isoquercetin Reduces Hepatic Cholesterol and Triglyceride in NAFLD Mice by Modulating Bile Acid Metabolism via Intestinal FXR-FGF15 Signaling. J. Agric. Food Chem. 2023, 71, 7723–7733. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, Z.; Dong, R.; Liu, P.; Zhang, X.; Li, Y.; Lai, X.; Cheong, H.-F.; Wu, Y.; Wang, Y.; et al. Rutin ameliorated lipid metabolism dysfunction of diabetic NAFLD via AMPK/SREBP1 pathway. Phytomedicine 2024, 126, 155437. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Zhang, L.; Zhang, X.; Fang, Q.; Xu, Y.; Wang, H. Rutin alleviates Pb-induced oxidative stress, inflammation and cell death via activating Nrf2/ARE system in SH-SY5Y cells. NeuroToxicology 2024, 104, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Du, M.; Li, S.; Zhang, Y.; Ding, J.; Wang, J.; Wang, Y.; Liu, P. Hydroxysafflor yellow A regulates lymphangiogenesis and inflammation via the inhibition of PI3K on regulating AKT/mTOR and NF-κB pathway in macrophages to reduce atherosclerosis in ApoE-/- mice. Phytomedicine 2023, 112, 154684. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Liu, M.; Fu, X.; Qi, M.; Zhu, F.; Fan, F.; Wang, Y.; Zhang, K.; Chu, S. Hydroxysafflor yellow A ameliorates alcohol-induced liver injury through PI3K/Akt and STAT3/NF-κB signaling pathways. Phytomedicine 2024, 132, 155814. [Google Scholar] [CrossRef]
- Zhu, X.; Ding, G.; Ren, S.; Xi, J.; Liu, K. The bioavailability, absorption, metabolism, and regulation of glucolipid metabolism disorders by quercetin and its important glycosides: A review. Food Chem. 2024, 458, 140262. [Google Scholar] [CrossRef]
- Liu, N.; Cui, X.; Guo, T.; Wei, X.; Sun, Y.; Liu, J.; Zhang, Y.; Ma, W.; Yan, W.; Chen, L. Baicalein Ameliorates Insulin Resistance of HFD/STZ Mice Through Activating PI3K/AKT Signal Pathway of Liver and Skeletal Muscle in a GLP-1R-Dependent Manner. Antioxidants 2024, 13, 1246. [Google Scholar] [CrossRef]
- Gurumayum, S.; Basumatary, D.; Sarma, P.; Saikia, K.; Swargiary, D.; Akhtar, S.A.; Saikia, A.; Borah, J.C. Dietary vegetable Sarcochlamys pulcherrima Gaud. And its bioactive compound myricitrin promotes white adipose browning in obese models via AMPK/SIRT1/UCP1 upregulation. Food Biosci. 2024, 62, 105292. [Google Scholar] [CrossRef]
- Takahashi, H.; Morimoto, H.; Tanaka, M.; Inoue, H.; Goto, T.; Kawada, T.; Uehara, M.; Takahashi, N. Myricetin and myricitrin indirectly and directly increases uncoupling protein-1 mRNA expression in C3H10T1/2 beige adipocytes. Biochem. Biophys. Res. Commun. 2024, 734, 150771. [Google Scholar] [CrossRef]
- Jaiswal, V.; Lee, H.-J. Pharmacological Properties of Shionone: Potential Anti-Inflammatory Phytochemical against Different Diseases. Molecules 2023, 29, 189. [Google Scholar] [CrossRef]
- Li, T.; Wang, H.; Dong, S.; Liang, M.; Ma, J.; Jiang, X.; Yu, W. Protective effects of maslinic acid on high fat diet-induced liver injury in mice. Life Sci. 2022, 301, 120634. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhao, L.; Xiong, Z.; Huang, C.; Yong, Q.; Fang, D.; Fu, Y.; Gu, S.; Chen, C.; Li, J.; et al. Ursolic acid targets secreted phosphoprotein 1 to regulate Th17 cells against metabolic dysfunction-associated steatotic liver disease. Clin. Mol. Hepatol. 2024, 30, 449–467. [Google Scholar] [CrossRef]
- Qin, W.; Ding, Y.; Zhang, W.; Sun, L.; Weng, J.; Zheng, X.; Luo, S. Small molecule-driven LKB1 deacetylation is responsible for the inhibition of hepatic lipid response in NAFLD. J. Lipid Res. 2025, 66, 100740. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, H.; Ai, C.; Lu, R.; Chen, L.; Xiao, J.; Teng, H. Food matrix-flavonoid interactions and their effect on bioavailability. Crit. Rev. Food Sci. Nutr. 2023, 64, 11124–11145. [Google Scholar] [CrossRef]
- LeFort, K.R.; Rungratanawanich, W.; Song, B.-J. Contributing roles of mitochondrial dysfunction and hepatocyte apoptosis in liver diseases through oxidative stress, post-translational modifications, inflammation, and intestinal barrier dysfunction. Cell. Mol. Life Sci. 2024, 81, 34. [Google Scholar] [CrossRef]
- Popgeorgiev, N.; Gil, C.; Berthenet, K.; Bertolin, G.; Ichim, G. Shedding light on mitochondrial outer-membrane permeabilization and membrane potential: State of the art methods and biosensors. Semin. Cell Dev. Biol. 2024, 156, 58–65. [Google Scholar] [CrossRef]
- Annie-Mathew, A.S.; Prem-Santhosh, S.; Jayasuriya, R.; Ganesh, G.; Ramkumar, K.M.; Sarada, D.V.L. The pivotal role of Nrf2 activators in adipocyte biology. Pharmacol. Res. 2021, 173, 105853. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Dasuri, K.; Fernandez-Kim, S.O.; Bruce-Keller, A.J.; Keller, J.N. Adipose-specific ablation of Nrf2 transiently delayed high-fat diet-induced obesity by altering glucose, lipid and energy metabolism of male mice. Am. J. Transl. Res. 2016, 8, 5309–5319. [Google Scholar] [PubMed]
- Cao, L.F.; Li, L.S.; Spruell, C.; Xiao, L.; Chakrabarti, G.; Bey, E.A.; Reinicke, K.E.; Srougi, M.C.; Moore, Z.; Dong, Y.; et al. Tumor-Selective, Futile Redox Cycle-Induced Bystander Effects Elicited by NQO1 Bioactivatable Radiosensitizing Drugs in Triple-Negative Breast Cancers. Antioxid. Redox Signal. 2014, 21, 237–250. [Google Scholar] [CrossRef] [PubMed]
- Asayama, K.; Nakane, T.; Dobashi, K.; Kodera, K.; Hayashibe, H.; Uchida, N.; Nakazawa, S. Effect of obesity and troglitazone on expression of two glutathione peroxidases: Cellular and extracellular types in serum, kidney and adipose tissue. Free. Radic. Res. 2001, 34, 337–347. [Google Scholar] [CrossRef]
- He, F.; Ru, X.; Wen, T. NRF2, a Transcription Factor for Stress Response and Beyond. Int. J. Mol. Sci. 2020, 21, 4777. [Google Scholar] [CrossRef]
- Morgenstern, C.; Lastres-Becker, I.; Demirdöğen, B.C.; Costa, V.M.; Daiber, A.; Foresti, R.; Motterlini, R.; Kalyoncu, S.; Arioz, B.I.; Genc, S.; et al. Biomarkers of NRF2 signalling: Current status and future challenges. Redox Biol. 2024, 72, 103134. [Google Scholar] [CrossRef]
- Mohseni, R.; Sadeghabadi, Z.A.; Goodarzi, M.T.; Teimouri, M.; Nourbakhsh, M.; Azar, M.R. Evaluation of Mn-superoxide dismutase and catalase gene expression in childhood obesity: Its association with insulin resistance. J. Pediatr. Endocrinol. Metab. 2018, 31, 727–732. [Google Scholar] [CrossRef] [PubMed]
- Clark, S.J.; Falchi, M.; Olsson, B.; Jacobson, P.; Cauchi, S.; Balkau, B.; Marre, M.; Lantieri, O.; Andersson, J.C.; Jernås, M.; et al. Association of Sirtuin 1 (SIRT1) Gene SNPs and Transcript Expression Levels with Severe Obesity. Obesity 2012, 20, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Picard, F.; Kurtev, M.; Chung, N.J.; Topark-Ngarm, A.; Senawong, T.; de Oliveira, R.M.; Leid, M.; McBurney, M.W.; Guarente, L. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γ. Nature 2004, 429, 771–776. [Google Scholar] [CrossRef]
- Zhuang, K.; Jiang, X.; Liu, R.; Ye, C.; Wang, Y.; Wang, Y.; Quan, S.; Huang, H. Formononetin Activates the Nrf2/ARE Signaling Pathway Via Sirt1 to Improve Diabetic Renal Fibrosis. Front. Pharmacol. 2021, 11, 616378. [Google Scholar] [CrossRef]
- Lin, C.X.; Lin, Y.Z.; Chen, Y.; Xu, J.N.; Li, J.; Cao, Y.; Su, Z.X.; Chen, Y.J. Effects of Momordica saponin extract on alleviating fat accumulation in Caenorhabditis elegans. Food Funct. 2019, 10, 3237–3251. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Qiu, J.; Zhang, Z.; Cui, X.D.; Guo, W.X.; Sheng, M.Z.; Gao, M.Y.; Wang, D.M.; Xu, L.Y.; Ma, X.R. Redox Biology in Adipose Tissue Physiology and Obesity. Adv. Biol. 2023, 7, 2200234. [Google Scholar] [CrossRef]
Genes | Primer Sequences |
---|---|
Nrf2 | Forward: CGGTATGCAACAGGACATTG |
Reverse: ACTGGTTGGGGTCTTCTGTG | |
HO-1 | Forward: CCAGGCAGAGAATGCTGAGT |
Reverse: GTAGACAGGGGCGAAGACTG | |
NQO1 | Forward: CTGATCGTACTGGCTCACTC |
Reverse: GAACAGACTCGGCAGATAC | |
SOD | Forward: GAAGGTGTGGGGAAGCATTA |
Reverse: ACCACAAGCCAAACGACTTC | |
CPT-1 | Forward: CCTCCGTAGCTGACTCGGTA |
Reverse: GGAGTGACCGTGAACTGAAAG | |
SIRT1 | Forward: GCCTCATCTGCATTTTGATG |
Reverse: TCTGGCATGTCCCACTATCA | |
GPx | Forward: GTCAATGTTGCATCACAATGTGG |
Reverse: CAGCTTCTTCACGTCCTTCTCAAT | |
β-actin | Forward: CTTAGTTGCGTTACACCCTTTC |
Reverse: ACCTTCACCGTTCCAGTTTT |
Nr | RT/min | Molecule Formula | Molecular Weight | Fragment Ions | Ionization Mode | Compound |
---|---|---|---|---|---|---|
PFF | ||||||
1 | 8.16 | C15H14O6 | 290.0793 | 291.0865 | [M+H]+ | Epicatechin |
2 | 11.9 | C21H20O12 | 464.376 | 464.1000 | [M+H]+ | Isoquercetin |
3 | 12.43 | C15H10O6 | 287.0538 | 286.0471 | [M+H]+ | Rutin |
4 | 12.91 | C27H32O16 | 612.1690 | 613.2 | [M+H]+ | Hydroxysafflor yellow A |
5 | 13.11 | C20H18O5 | 338.1154 | 339.1 | [M+H]+ | 5,7,4′Trihydroxy-6-iso Pentenyl isoflavone |
6 | 8.16 | C15H10O7 | 302.0427 | 300.9 | [M-H]− | Quercetin |
7 | 9.35 | C15H10O5 | 270.0528 | 269 | [M-H]− | Baicalein |
8 | 11.9 | C21H20O12 | 464.09627 | 463.0889 | [M-H]− | Myricitrin |
PFS | ||||||
1 | 11.9 | C30H50O | 426.386165 | 427.4 | [M+H]+ | Shionone |
2 | 12.48 | C30H48O4 | 472.35526 | 473.4 | [M+H]+ | Crategolic acid |
3 | 12.93 | C30H48O3 | 456.360345 | 455.3532 | [M+H]+ | Ursolic Acid |
4 | 16.47 | C18H32O5 | 328.22536 | 327.2180 | [M-H]− | Cocoa butter acid F |
5 | 17.26 | C18H34O5 | 330.2411 | 329.2338 | [M-H]− | (15z)-9,12, 13-Trihydroxy-15-octadecenoic acid |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, Y.; Wang, Y.; Hao, K.; Li, Y.; Geng, L.; Zhu, L.; Jiang, J. Antihyperlipidemic Effect of Flavonoids and Saponins from Pyracantha fortuneana Fruits on L02 Cells and Caenorhabditis elegans. Foods 2025, 14, 3499. https://doi.org/10.3390/foods14203499
Hao Y, Wang Y, Hao K, Li Y, Geng L, Zhu L, Jiang J. Antihyperlipidemic Effect of Flavonoids and Saponins from Pyracantha fortuneana Fruits on L02 Cells and Caenorhabditis elegans. Foods. 2025; 14(20):3499. https://doi.org/10.3390/foods14203499
Chicago/Turabian StyleHao, Yunfang, Yinhong Wang, Kexin Hao, Yimeng Li, Longmei Geng, Liang Zhu, and Jianguo Jiang. 2025. "Antihyperlipidemic Effect of Flavonoids and Saponins from Pyracantha fortuneana Fruits on L02 Cells and Caenorhabditis elegans" Foods 14, no. 20: 3499. https://doi.org/10.3390/foods14203499
APA StyleHao, Y., Wang, Y., Hao, K., Li, Y., Geng, L., Zhu, L., & Jiang, J. (2025). Antihyperlipidemic Effect of Flavonoids and Saponins from Pyracantha fortuneana Fruits on L02 Cells and Caenorhabditis elegans. Foods, 14(20), 3499. https://doi.org/10.3390/foods14203499