The Physicochemical, Sensory, and Functional Properties of Yogurt Containing Millet and Milk
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Millet Liquid
2.3. Yogurt Production
2.4. Physicochemical Determinations
2.4.1. Basic Composition
2.4.2. pH and Titratable Acidity (TA)
2.4.3. Determination of Syneresis
2.4.4. Textural Analysis
2.4.5. Determination of Viscosity
2.5. Enumeration of the Starter Cultures
2.6. Free Phenolic Content (FPC) and Antioxidant Properties
2.6.1. Preparation of the Yogurt Extracts
2.6.2. Determination of the FPC
2.6.3. DPPH Radical Scavenging Ability
2.6.4. ABTS Radical Scavenging Ability
2.7. Anti-Inflammatory Activity
2.7.1. Preparation of the Yogurt Supernatants
2.7.2. Cell Culture
2.7.3. Real-Time RT-PCR
2.8. Sensory Evaluation
2.9. Statistical Analysis
3. Results and Discussion
3.1. Characteristics of the Millet Liquid
3.2. Fermentation Characteristics of the Yogurt
3.3. Textural Properties
3.4. Sensory Analysis
3.5. The FPC and Antioxidant Activity in the Yogurt
3.6. Anti-Inflammatory Activity of the Millet Yogurt
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tami, S.H.; Aly, E.; Darwish, A.A.; Mohamed, E.S. Buffalo stirred yoghurt fortified with grape seed extract: New insights into its functional properties. Food Biosci. 2022, 47, 101752. [Google Scholar] [CrossRef]
- Ban, Q.F.; Sun, X.M.; Jiang, Y.Q.; Cheng, J.J.; Guo, M.R. Effect of synbiotic yogurt fortified with monk fruit extract on hepatic lipid biomarkers and metabolism in rats with type 2 diabetes. J. Dairy Sci. 2022, 105, 3758–3769. [Google Scholar] [CrossRef]
- Seregelj, V.; Pezo, L.; Sovljanski, O.; Levic, S.; Nedovic, V.; Markov, S.; Tomic, A.; Canadanovic-Brunet, J.; Vulic, J.; Saponjac, V.T.; et al. New concept of fortified yogurt formulation with encapsulated carrot waste extract. LWT—Food Sci. Technol. 2021, 138, 110732. [Google Scholar] [CrossRef]
- Feinisa Khairani, A.; Islami, U.; Rizky Anggun Syamsunarno, M.; Ary Lantika, U. Synbiotic Purple Sweet Potato Yogurt Ameliorate Lipid Metabolism in High Fat Diet Mice Model. Biomed. Pharmacol. J. 2020, 13, 175–184. [Google Scholar] [CrossRef]
- Liqing, Q.; Min, Z.; Arun, S.M.; Lu, C. Effect of edible rose (Rosa rugosa cv. Plena) flower extract addition on the physicochemical, rheological, functional and sensory properties of set-type yogurt. Food Biosci. 2021, 43, 101249. [Google Scholar] [CrossRef]
- Saber, H.; Ali Sari, A.; Ali, H.; Mostafa, K. Physicochemical and sensory attributes assessment of functional low-fat yogurt produced by incorporation of barley bran and Lactobacillus acidophilus. Food Sci. Nutr. 2017, 5, 875–880. [Google Scholar] [CrossRef]
- Gunenc, A.; Alswiti, C.; Hosseinian, F. Wheat Bran Dietary Fiber: Promising Source of Prebiotics with Antioxidant Potential. J. Food Res. 2017, 6. [Google Scholar] [CrossRef]
- Hasani, S.; Khodadadi, I.; Heshmati, A. Viability of Lactobacillus acidophilus in rice bran-enriched stirred yoghurt and the physicochemical and sensory characteristics of product during refrigerated storage. Int. J. Food Sci. Technol. 2016, 51, 2485–2492. [Google Scholar] [CrossRef]
- Ramandeep, K.; Charanjit, S.R. Sensory, rheological and chemical characteristics during storage of set type full fat yoghurt fortified with barley beta-glucan. J. Food Sci. Technol. 2020, 57, 41–51. [Google Scholar] [CrossRef]
- Qu, X.Q.; Nazarenko, Y.; Yang, W.; Nie, Y.Y.; Zhang, Y.S.; Li, B. Effect of Oat β-Glucan on the Rheological Characteristics and Microstructure of Set-Type Yogurt. Molecules 2021, 26, 4752. [Google Scholar] [CrossRef]
- Ye, Y.; Li, P.; Zhou, J.; He, J.; Cai, J. The Improvement of Sensory and Bioactive Properties of Yogurt with the Introduction of Tartary Buckwheat. Foods 2022, 11, 1774. [Google Scholar] [CrossRef] [PubMed]
- Anuyahong, T.; Chusak, C.; Adisakwattana, S. Incorporation of anthocyanin-rich riceberry rice in yogurts: Effect on physicochemical properties, antioxidant activity and in vitro gastrointestinal digestion. LWT 2020, 129, 109571. [Google Scholar] [CrossRef]
- Bhat, S.; Nandini, C.; Srinathareddy, S.; Jayarame, G.; K, P. Proso millet (Panicum miliaceum L.)-a climate resilient crop for food and nutritional security: A Review. Environ. Conserv. J. 2019, 20, 113–124. [Google Scholar] [CrossRef]
- Yu, Z.; Jiaxi, C.; Zhaoxin, L.; Fengxia, L.; Xiaomei, B.; Chong, Z.; Haizhen, Z. Physicochemical and functional properties of dietary fiber from foxtail millet (Setaria italic) bran. J. Cereal Sci. 2018, 79, 456–461. [Google Scholar] [CrossRef]
- Jinle, X.; Meng, Z.; Apea-Bah, F.B.; Beta, T. Hydroxycinnamic acid amide (HCAA) derivatives, flavonoid C-glycosides, phenolic acids and antioxidant properties of foxtail millet. Food Chem. 2019, 295, 214–223. [Google Scholar] [CrossRef]
- Hou, D.Z.; Chen, J.; Ren, X.; Wang, C.; Diao, X.M.; Hu, X.S.; Zhang, Y.M.; Shen, Q. A whole foxtail millet diet reduces blood pressure in subjects with mild hypertension. J. Cereal Sci. 2018, 84, 13–19. [Google Scholar] [CrossRef]
- Shahidi, F.; Chandrasekara, A. Millet grain phenolics and their role in disease risk reduction and health promotion: A review. J. Funct. Foods 2013, 5, 570–581. [Google Scholar] [CrossRef]
- Elavarasan, K.; Malini, M.; Ninan, G.; Ravishankar, C.N.; Dayakar, B.R. Millet flour as a potential ingredient in fish sausage for health and sustainability. Sustain. Food Technol. 2024, 2, 1088–1100. [Google Scholar] [CrossRef]
- Naveena, B.M.; Muthukumar, M.; Sen, A.R.; Babji, Y.; Murthy, T.R.K. Quality characteristics and storage stability of chicken patties formulated with finger millet flour (Eleusine coracana). J. Muscle Foods 2006, 17, 92–104. [Google Scholar] [CrossRef]
- Rai, S.; Kaur, A.; Singh, B. Quality characteristics of gluten free cookies prepared from different flour combinations. J. Food Sci. Technol. 2014, 51, 785–789. [Google Scholar] [CrossRef]
- Santhi, D.; Kalaikannan, A.; Natarajan, A. Characteristics and composition of emulsion-based functional low-fat chicken meat balls fortified with dietary fiber sources. J. Food Process Eng. 2020, 43, e13333. [Google Scholar] [CrossRef]
- Moeini, A.; Shafafi Zenoozian, M.; Karajhiyan, H.; Elhami Rad, A.H.; Pedram Nia, A. Wheat flour substitution in production of reduced gluten pound cake using millets. Iran. J. Food Sci. Technol. 2022, 18, 133–151. [Google Scholar] [CrossRef]
- Feldsine, P.; Abeyta, C.; Andrews, W.H. AOAC International methods committee guidelines for validation of qualitative and quantitative food microbiological official methods of analysis. J. AOAC Int. 2002, 85, 1187–1200. [Google Scholar] [CrossRef]
- Official Methods of Analysis of AOAC International, 4th revision, 16th ed.; AOAC International: Rockville, MD, USA, 1998; Volume I and II.
- Du, H.; Yang, H.; Wang, X.; Zhu, F.; Tang, D.; Cheng, J.; Liu, X. Effects of mulberry pomace on physicochemical and textural properties of stirred-type flavored yogurt. J. Dairy Sci. 2021, 104, 12403–12414. [Google Scholar] [CrossRef]
- Aleman, R.S.; Cedillos, R.; Page, R.; Olson, D.; Aryana, K. Physico-chemical, microbiological, and sensory characteristics of yogurt as affected by various ingredients. J. Dairy Sci. 2023, 106, 3868–3883. [Google Scholar] [CrossRef]
- Guan, C.; Chen, X.; Zhao, R.; Yuan, Y.; Huang, X.; Su, J.; Ding, X.; Chen, X.; Huang, Y.; Gu, R. A weak post-acidification Lactobacillus helveticus UV mutant with improved textural properties. Food Sci. Nutr. 2021, 9, 469–479. [Google Scholar] [CrossRef] [PubMed]
- Kaur Sidhu, M.; Lyu, F.; Sharkie, T.P.; Ajlouni, S.; Ranadheera, C.S. Probiotic Yogurt Fortified with Chickpea Flour: Physico-Chemical Properties and Probiotic Survival during Storage and Simulated Gastrointestinal Transit. Foods 2020, 9, 1144. [Google Scholar] [CrossRef]
- Abdeldaiem, A.M.; Ali, A.H.; Shah, N.; Ayyash, M.; Mousa, A.H. Physicochemical analysis, rheological properties, and sensory evaluation of yogurt drink supplemented with roasted barley powder. LWT 2023, 173, 114319. [Google Scholar] [CrossRef]
- Sabeena Farvin, K.H.; Baron, C.P.; Nielsen, N.S.; Jacobsen, C. Antioxidant activity of yoghurt peptides: Part 1-in vitro assays and evaluation in ω-3 enriched milk. Food Chem. 2010, 123, 1081–1089. [Google Scholar] [CrossRef]
- Zhongxiang, F.; Yuhuan, Z.; Yuan, L.; Guangpeng, M.; Jianchu, C.; Donghong, L.; Xingqian, Y. Phenolic compounds and antioxidant capacities of bayberry juices. Food Chem. 2009, 113, 884–888. [Google Scholar] [CrossRef]
- Ting, Z.; Chang Hee, J.; Wei Nee, C.; Hyojin, B.; Han Geuk, S.; Petriello, M.C.; Sung Gu, H. Moringa extract enhances the fermentative, textural, and bioactive properties of yogurt. LWT—Food Sci. Technol. 2019, 101, 276–284. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Li, H.; Zhang, L.; Jia, Y.; Yuan, Y.; Li, H.; Cui, W.; Yu, J. Application of whey protein emulsion gel microparticles as fat replacers in low-fat yogurt: Applicability of vegetable oil as the oil phase. J. Dairy Sci. 2022, 105, 9404–9416. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhang, R.; Deng, Y.; Zhang, Y.; Xiao, J.; Huang, F.; Wen, W.; Zhang, M. Fermentation and complex enzyme hydrolysis enhance total phenolics and antioxidant activity of aqueous solution from rice bran pretreated by steaming with alpha-amylase. Food Chem. 2017, 221, 636–643. [Google Scholar] [CrossRef]
- Shafiee, G.; Mortazavian, A.M.; Mohammadifar, M.A.; Koushki, M.R.; Mohammadi, A.; Mohammadi, R. Combined effects of dry matter content, incubation temperature and final pH of fermentation on biochemical and microbiological characteristics of probiotic fermented milk. Afr. J. Microbiol. Res. 2010, 4, 1265–1274. [Google Scholar]
- Tewari, H.K.; Sethi, R.P.; Sood, A.; Singh, L. Lactic acid production from paneer whey by Lactobacillus bulgaricus. J. Res. Punjab Agric. Univ. 1985, 22, 89–98. [Google Scholar]
- Kwon, H.C.; Bae, H.; Seo, H.G.; Han, S.G. Short communication: Chia seed extract enhances physiochemical and antioxidant properties of yogurt. J. Dairy Sci. 2019, 102, 4870–4876. [Google Scholar] [CrossRef]
- Jeong, C.H.; Ryu, H.; Zhang, T.; Lee, C.H.; Seo, H.G.; Han, S.G. Green tea powder supplementation enhances fermentation and antioxidant activity of set-type yogurt. Food Sci. Biotechnol. 2018, 27, 1419–1427. [Google Scholar] [CrossRef]
- Mohamed Ahmed, I.A.; Alqah, H.A.S.; Saleh, A.; Al-Juhaimi, F.Y.; Babiker, E.E.; Ghafoor, K.; Hassan, A.B.; Osman, M.A.; Fickak, A. Physicochemical quality attributes and antioxidant properties of set-type yogurt fortified with argel (Solenostemma argel Hayne) leaf extract. LWT 2021, 137, 110389. [Google Scholar] [CrossRef]
- Jaster, H.; Arend, G.D.; Rezzadori, K.; Chaves, V.C.; Reginatto, F.H.; Petrus, J.C.C. Enhancement of antioxidant activity and physicochemical properties of yogurt enriched with concentrated strawberry pulp obtained by block freeze concentration. Food Res. Int. 2018, 104, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Marchiani, R.; Bertolino, M.; Belviso, S.; Giordano, M.; Ghirardello, D.; Torri, L.; Piochi, M.; Zeppa, G. Yogurt Enrichment with Grape Pomace: Effect of Grape Cultivar on Physicochemical, Microbiological and Sensory Properties. J. Food Qual. 2016, 39, 77–89. [Google Scholar] [CrossRef]
- Rose Mary, P.; Sarma, M.; Mukesh, K. Non-enzymatically hydrolyzed guar gum and orange peel fibre together stabilize the low-fat, set-type yogurt: A techno-functional study. Food Hydrocoll. 2022, 122, 107100. [Google Scholar] [CrossRef]
- Sun, X.H.; Sarteshnizi, R.A.; Udenigwe, C.C. Recent advances in protein-polyphenol interactions focusing on structural properties related to antioxidant activities. Curr. Opin. Food Sci. 2022, 45, 100840. [Google Scholar] [CrossRef]
- Mousavi, M.; Heshmati, A.; Garmakhany, A.D.; Vahidinia, A.; Taheri, M. Optimization of the viability of Lactobacillus acidophilus and physico-chemical, textural and sensorial characteristics of flaxseed-enriched stirred probiotic yogurt by using response surface methodology. LWT 2019, 102, 80–88. [Google Scholar] [CrossRef]
- Fernandez-Garcia, E.; McGregor, J.U.; Traylor, S. The addition of oat fiber and natural alternative sweeteners in the manufacture of plain yogurt. J. Dairy Sci. 1998, 81, 655–663. [Google Scholar] [CrossRef]
- Sheela, P.; UmaMaheswari, T.; Kanchana, S.; Hemalatha, G.; Vellaikumar, S. Identification of Volatile Compounds in Fermented Millet Based Beverages by Gas Chromatography-Mass Spectroscopy. Appl. Biol. Res. 2021, 23, 245–255. [Google Scholar] [CrossRef]
- Rodríguez, H.; Curiel, J.A.; Landete, J.M.; de las Rivas, B.; de Felipe, F.L.; Gómez-Cordovés, C.; Mancheño, J.M.; Muñoz, R. Food phenolics and lactic acid bacteria. Int. J. Food Microbiol. 2009, 132, 79–90. [Google Scholar] [CrossRef] [PubMed]
- Demirci, T.; Sert, D.; Aktaş, K.; Atik, D.S.; Öztürk Negiş, H.İ.; Akın, N. Influence of hot and cold break tomato powders on survival of probiotic L. paracasei subsp. paracasei F19, texture profile and antioxidative activity in set-type yoghurts. LWT 2020, 118, 108855. [Google Scholar] [CrossRef]
- Li Zhen, Z.; Rui Hai, L. Phenolic and carotenoid profiles and antiproliferative activity of foxtail millet. Food Chem. 2015, 174, 495–501. [Google Scholar]
- Hannah, C.; Josiemer, M.; Simone, P.; John, S.; Martha, T. The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Front. Nutr. 2018, 5, 87. [Google Scholar] [CrossRef]
- Zhao, H.Y.; Yan, R.; Zhou, X.G.; Ji, F.; Zhang, B. Hydrogen sulfide improves colonic barrier integrity in DSS-induced inflammation in Caco-2 cells and mice. Int. Immunopharmacol. 2016, 39, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.P.; Shan, S.H.; An, N.; Liu, F.M.; Cui, K.L.; Shi, J.Y.; Li, H.Q.; Li, Z.Y. Polyphenols from foxtail millet bran ameliorate DSS-induced colitis by remodeling gut microbiome. Front. Nutr. 2022, 9, 1030744. [Google Scholar] [CrossRef]
Group | Item | Distilled Water (g) | Millet Liquid (g) | Whole Milk Powder (g) | Maltodextrin (g) | Glucoamylase (μL) | Starter Culture (g) |
---|---|---|---|---|---|---|---|
Control groups (CLY) | Control yogurt (CY) | 500 | - | 62 | - | - | 0.05 |
Maltodextrin control yogurt (MCY) | 440 | - | 62 | 60 | 48 | 0.05 | |
Sample groups (SLY) | 40% Millet flour liquid yogurt (MFY40) | 300 | 200 | 62 | - | 32 | 0.05 |
60% Millet flour liquid yogurt (MFY60) | 200 | 300 | 62 | - | 48 | 0.05 | |
40% Millet paste liquid yogurt (MPY40) | 300 | 200 | 62 | - | 32 | 0.05 | |
60% Millet paste liquid yogurt (MPY60) | 200 | 300 | 62 | - | 48 | 0.05 |
Sensory Property | Definition of Evaluation Terms and Scoring Criteria | |||
---|---|---|---|---|
0–2 | 3–6 | 7–10 | ||
Appearance | Color | Uneven color, dull color | Uneven color, overall pale yellow or creamy white | Uniform and consistent color, overall creamy white or creamy yellow |
Smoothness | The surface is not smooth | The surface is generally smooth | Smooth surface | |
Whey separation | Massive whey separation | Small amount of whey separation | No whey separation | |
Stickiness | Fragile structure, high fluidity | Not loosely structure, general fluidity | Tight structure, low fluidity | |
Fineness | Rough structure | Fine structure | Fine and uniform structure | |
Taste | Lubrication | Clearly grainy | Slightly grainy, not lubricated | No grainy feeling, lubricated |
Thickness | Very thin | General | Mellow | |
Sweet and sour | Too sweet or too sour | Moderately sweet and sour, slightly astringent | Suitable sour and sweet taste | |
Flavor | Milk flavor | Light yogurt flavor | Moderate yogurt flavor | Typical yogurt flavor |
Millet aroma | Poor characteristic flavor of added millet | Insufficient characteristic flavor of added millet | Strong characteristic flavor of added millet |
Parameters | Total Solids (g/100 g) | Protein (g/100 g) | Soluble Solids (g/100 g) | Free Phenol (mg GAE/100 g) |
---|---|---|---|---|
MFL | 21.11 ± 0.12 | 0.15 ± 0.00 | 20.2 ± 0.22 | 44.64 ± 2.58 |
MPL | 19.19 ± 0.12 | 0.14 ± 0.01 | 18.23 ± 0.20 | 40.70 ± 1.32 |
Group | Sample | pH | Tf (h) | Titratable Acidity (%) | S. thermophilus (Log CFU/g) | L. bulgaricus (Log CFU/g) |
---|---|---|---|---|---|---|
CLY | CY | 4.54 ± 0.01 a | 4.07 ± 0.13 d | 0.72 ± 0.01 a | 8.33 ± 0.02 a | 8.26 ± 0.02 a |
MCY | 4.53 ± 0.01 a | 3.60 ± 0.11 c | 0.88 ± 0.01 b | 8.34 ± 0.03 a | 8.24 ± 0.05 a | |
SLY | MFY40 | 4.52 ± 0.01 a | 3.18 ± 0.11 a | 0.91 ± 0.01 c | 8.34 ± 0.02 a | 8.58 ± 0.03 b |
MFY60 | 4.53 ± 0.01 a | 3.35 ± 0.06 ab | 0.96 ± 0.01 d | 8.35 ± 0.02 a | 8.58 ± 0.01 b | |
MPY40 | 4.54 ± 0.02 a | 3.22 ± 0.11 a | 0.91 ± 0.01 c | 8.34 ± 0.01 a | 8.55 ± 0.06 b | |
MPY60 | 4.54 ± 0.02 a | 3.46 ± 0.13 bc | 0.97 ± 0.02 d | 8.33 ± 0.04 a | 8.57 ± 0.05 b |
Group | Sample | Hardness (N) | Cohesiveness (Ratio) | Springiness (mm) | Gumminess (N) | Chewiness (mj) |
---|---|---|---|---|---|---|
CLY | CY | 0.60 ± 0.03 a | 0.82 ± 0.03 a | 0.15 ± 0.02 a | 0.45 ± 0.00 a | 0.81 ± 0.02 a |
MCY | 0.61 ± 0.00 a | 0.88 ± 0.04 a | 0.54 ± 0.17 a | 0.52 ± 0.01 bc | 0.30 ± 0.07 a | |
SLY | MFY40 | 0.57 ± 0.03 a | 0.89 ± 0.02 a | 9.85 ± 0.06 b | 0.51 ± 0.01 b | 4.32 ± 0.31 b |
MFY60 | 0.63 ± 0.28 a | 0.89 ± 0.02 a | 7.83 ± 0.28 c | 0.53 ± 0.01 cd | 4.40 ± 0.14 b | |
MPY40 | 0.61 ± 0.01 a | 0.83 ± 0.04 a | 9.68 ± 0.39 b | 0.51 ± 0.01 bc | 4.52 ± 0.11 b | |
MPY60 | 0.65 ± 0.02 a | 0.82 ± 0.04 a | 8.38 ± 0.87 c | 0.54 ± 0.01 d | 4.52 ± 0.43 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Zhang, Y.; Han, Y.; Hou, J.; Zuo, Y.; Li, Y.; Wu, H. The Physicochemical, Sensory, and Functional Properties of Yogurt Containing Millet and Milk. Foods 2025, 14, 3491. https://doi.org/10.3390/foods14203491
Wang H, Zhang Y, Han Y, Hou J, Zuo Y, Li Y, Wu H. The Physicochemical, Sensory, and Functional Properties of Yogurt Containing Millet and Milk. Foods. 2025; 14(20):3491. https://doi.org/10.3390/foods14203491
Chicago/Turabian StyleWang, Hui, Yingyu Zhang, Yuxuan Han, Jiaxin Hou, Yingjun Zuo, Yan Li, and Hua Wu. 2025. "The Physicochemical, Sensory, and Functional Properties of Yogurt Containing Millet and Milk" Foods 14, no. 20: 3491. https://doi.org/10.3390/foods14203491
APA StyleWang, H., Zhang, Y., Han, Y., Hou, J., Zuo, Y., Li, Y., & Wu, H. (2025). The Physicochemical, Sensory, and Functional Properties of Yogurt Containing Millet and Milk. Foods, 14(20), 3491. https://doi.org/10.3390/foods14203491