Occurrence and Health Risk Assessment of Per- and Polyfluoroalkyl Substances in Yogurt Across Lebanese Governorates
Abstract
1. Introduction
- Quantify the concentrations of key PFAS compounds, including PFHpA, PFOA, PFNA, PFDA, PFHxS, PFOS, PFHxA, PFBA, PFBS and PFPeA, in yogurt products sourced from diverse regions;
- Assess the spatial variation of PFAS contamination to identify potential environmental hotspots that may be contributing to regional differences in exposure;
- Evaluate health risks associated with PFAS ingestion through yogurt consumption by calculating the estimated daily intake (EDI), risk quotients (RQ), and cumulative hazard indices (HI);
- Inform public health and environmental management by generating region-specific scientific evidence to support the development of national monitoring frameworks and guide future policy interventions on PFAS in Lebanon.
2. Materials and Methods
2.1. Sampling
2.1.1. Sample Collection and Regional Context
2.1.2. Environmental and Socioeconomic Overview of Each Sampled Region Regarding PFAS
2.2. Extraction and Instrumental Analysis of PFAS in Yogurt Samples
2.2.1. Reagents and Materials
2.2.2. Sample Extraction and Cleanup
2.2.3. Instrumental Analysis
2.3. Quality Control and Assurance
2.4. Data Analysis
2.5. Methodology: Risk Assessment
3. Results
3.1. PFA Concentrations Across the Lebanese Governorates
3.2. Comparison Between Lebanese Governorates
3.3. Health Related Risk Assessment
3.3.1. Calculation of Estimated Daily Intake and Risk Quotient
3.3.2. Calculation of the Hazard Index (HI)
4. Discussion
4.1. Geographical Variability and Potential Sources of PFAS Contamination
4.2. Comparison with Human Biomonitoring in Lebanon
4.3. Health Risk Assessment
4.4. Context of PFAS in Food in Lebanon
4.5. Regional Comparisons Regarding PFAS
4.6. Implications and Recommendations
4.7. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- EFSA Panel on Contaminants in the Food Chain (CONTAM); Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; del Mazo, J.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L.; Leblanc, J.C.; et al. Risk to human health related to the presence of perfluoroalkyl substances in food. EFSA J. 2020, 18, e06223. [Google Scholar] [CrossRef] [PubMed]
- U.S. Environmental Protection Agency (EPA). PFAS Strategic Roadmap: EPA’s Commitments to Action 2021–2024. U.S. Environmental Protection Agency. 2021. Available online: https://www.epa.gov/system/files/documents/2021-10/pfas-roadmap_final-508.pdf (accessed on 14 July 2025).
- Agency for Toxic Substances and Disease Registry (ATSDR). 2021 May. Toxicological Profile for Perfluoroalkyls. U.S. Department of Health and Human Services. Available online: https://www.atsdr.cdc.gov/ToxProfiles/tp200.pdf (accessed on 14 July 2025).
- FAO. Country Programming Framework for Lebanon 2012–2015. Food and Agriculture Organization of the United Nations (FAO), Beirut. 2012. Available online: https://www.fao.org/3/ap676e/ap676e.pdf (accessed on 16 July 2025).
- Statista. Yogurt—Lebanon. 2025. Available online: https://www.statista.com/outlook/cmo/food/dairy-products-eggs/yogurt/lebanon (accessed on 18 July 2025).
- Borjac, J.; El Joumaa, M.; Youssef, L.; Kawach, R.; Blake, D.A. Quantitative Analysis of Heavy Metals and Organic Compounds in Soil from Deir Kanoun Ras El Ain Dump, Lebanon. Sci. World J. 2020, 2020, 8151676. [Google Scholar] [CrossRef] [PubMed]
- Ecodit, National Action Plan for the Reduction of Pollution into the Mediterranean Sea from Land Based Sources, Republic of Lebanon Ministry of Environment UNEP-MAP. 2005. Available online: http://www.studies.gov.lb/getattachment/Sectors/Environment/2005/ENV-05-1/ENV-05-1.pdf (accessed on 25 September 2025).
- El-Osmani, R.; Net, S.; Dumoulin, D.; Baroudi, M.; Bakkour, H.; Ouddane, B. Solid phase extraction of organochlorine pesticides residues in groundwater (akkar plain, north Lebanon). Int. J. Environ. Res. 2014, 8, 903–912. [Google Scholar] [CrossRef]
- Nehmeh, B.; Haydous, F.; Ali, H.; Hdaifi, A.; Abdlwahab, B.; Orm, M.B.; Abrahamian, Z.; Akoury, E. Emerging contaminants in the Mediterranean Sea endangering Lebanon’s Palm Islands Natural Reserve. RSC Adv. 2025, 15, 2034–2044. [Google Scholar] [CrossRef]
- Darwish, T.; Atallah, T.; El Moujabber, M.; Khatib, N. Salinity evolution and crop response to secondary soil salinity in two agro-climatic zones in Lebanon. Agric. Water Manag. 2005, 78, 152–164. [Google Scholar] [CrossRef]
- Nsouli, B.; Darwish, T.; Thomas, J.-P.; Zahraman, K.; Roumié, M. Ni, Cu, Zn and Pb background values determination in representative Lebanese soil using the thick target PIXE technique. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2004, 219–220, 181–186. [Google Scholar] [CrossRef]
- Fanack Water. Water Quality in Lebanon. July 2022. Available online: https://water.fanack.com/lebanon/water-quality-in-lebanon/ (accessed on 25 September 2025).
- Codex Alimentarius Commission. General Guidelines on Sampling (CXG 50-2004); Food and Agriculture Organization of the United Nations/World Health Organization: Rome, Italy, 2004; Available online: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXG%2B50-2004%252FCXG_050e.pdf (accessed on 22 September 2025).
- Innovation Development Association. Lebanon PFAS Situation Report 2019. Available online: https://ipen.org/sites/default/files/documents/lebanon_pfas_country_situation_report_apr_2019.pdf (accessed on 23 September 2025).
- Mahfouz, M.; Harmouche-Karaki, M.; Matta, J.; Mahfouz, Y.; Salameh, P.; Younes, H.; Helou, K.; Finan, R.; Abi-Tayeh, G.; Meslimani, M.; et al. Maternal Serum, Cord and Human Milk Levels of Per- and Polyfluoroalkyl Substances (PFAS), Association with Predictors and Effect on Newborn Anthropometry. Toxics 2023, 11, 455. [Google Scholar] [CrossRef] [PubMed]
- Hassan, H.F.; Bou Ghanem, H.; Abi Kharma, J.; Abiad, M.G.; Elaridi, J.; Bassil, M. Perfluorooctanoic Acid and Perfluorooctane Sulfonate in Human Milk: First Survey from Lebanon. Int. J. Environ. Res. Public Health 2023, 20, 821. [Google Scholar] [CrossRef]
- El Chamieh, C.; El Haddad, C.; El Khatib, K.; Jalkh, E.; Al Karaki, V.; Zeineddine, J.; Assaf, A.; Harb, T.; Bou Sanayeh, E. River water pollution in Lebanon: The country’s most underestimated public health challenge. East. Mediterr. Health J. 2024, 30, 136–144. [Google Scholar] [CrossRef]
- Sznajder-Katarzyńska, K.; Surma, M.; Wiczkowski, W.; Cieślik, E. The perfluoroalkyl substance (PFAS) contamination level in milk and milk products in Poland. Int. Dairy J. 2019, 96, 73–74. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Mixture of Four Per- and Polyfluoroalkyl Substances (PFAS): HFPO-DA (GenX Chemicals), PFBS, PFNA, and PFHxS—Public Review Draft (EPA Document No. EPA-822-P-23-004). Office of Water, Office of Science and Technology, Health and Ecological Criteria Division. March 2023. Available online: https://www.epa.gov/system/files/documents/2023-03/PFAS%20HI%20MCLG%20Public%20Review%20Draft%2009%20March%202023.pdf (accessed on 5 August 2025).
- Yu, C.H.; Patel, B.; Palencia, M.; Fan, Z.T. A sensitive and accurate method for the determination of per- and polyfluoroalkyl substances in human serum using high performance liquid chromatography–online solid phase extraction–tandem mass spectrometry. J. Chromatogr. A 2017, 1480, 1–10. [Google Scholar] [CrossRef]
- Hoteit, M.; Khattar, M.; Malli, D.; Antar, E.; Al Hassani, Z.; Abdallah, M.; Hachem, D.; Al Manasfi, E.; Chahine, A.; Tzenios, N. The Adults-Lebanon-Fcs Group. Dietary Intake among Lebanese Adults: Findings from the Updated LEBANese natiONal Food Consumption Survey (LEBANON-FCS). Nutrients 2024, 16, 1784. [Google Scholar] [CrossRef]
- USEPA (U.S. Environmental Protection Agency). Human Health Toxicity Values for PFOA. 2021. Available online: https://www.epa.gov/pfas (accessed on 5 August 2025).
- USEPA (U.S. Environmental Protection Agency). Final Toxicity Assessment for PFOS. 2022. Available online: https://www.epa.gov/pfas (accessed on 5 August 2025).
- Bil, W.; Zeilmaker, M.; Fragki, S.; Lijzen, J.; Verbruggen, E.; Bokkers, B. Risk Assessment of Per- and Polyfluoroalkyl Substance Mixtures: A Relative Potency Factor Approach. Environ. Toxicol. Chem. 2021, 40, 859–870. [Google Scholar] [CrossRef] [PubMed]
- U.S. Environmental Protection Agency. Provisional Peer-Reviewed Toxicity Values for Perfluorobutane Sulfonic acid (PFBS) and Related Compound Potassium Perfluorobutane Sulfonate (EPA/690/R-21/001F); Office of Research and Development: Washington, DC, USA, 2021. [Google Scholar]
- U.S. Environmental Protection Agency. Drinking Water Health Advisories for GenX Chemicals and PFBS. Office of Water. June 2022. Available online: https://www.epa.gov/sdwa/drinking-water-health-advisories-genx-chemicals-and-pfbs (accessed on 5 August 2025).
- U.S. Environmental Protection Agency. IRIS Toxicological Review of Perfluorohexanoic Acid (PFHxA); Integrated Risk Information System (IRIS): Washington, DC, USA, 2023. [Google Scholar]
- Ghisi, R.; Vamerali, T.; Manzetti, S. Accumulation of PFAS in agricultural plants: A review. Environ. Res. 2019, 169, 326–341. [Google Scholar] [CrossRef]
- Sunderland, E.M.; Hu, X.C.; Dassuncao, C.; Tokranov, A.K.; Wagner, C.C.; Allen, J.G. Pathways of human exposure to PFAS and health effects. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 131–147. [Google Scholar] [CrossRef]
- MoE/UNDP/ECODIT State and Trends of the Lebanese Environment, 3rd Ed. Lebanon. 2011. Available online: https://www.undp.org/arab-states/publications/state-trends-lebanese-environment (accessed on 23 September 2025).
- Hamid, H.; Li, L.Y.; Grace, J.R. Review of the Fate and Transformation of Per- and Polyfluoroalkyl Substances (PFASs) in Landfills. Environ. Pollut. 2018, 235, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Stoiber, T.; Evans, S.; Temkin, A.M.; Andrews, D.Q.; Naidenko, O.V. PFAS in drinking water: An emergent water quality threat. Water Solut. 2020, 1, e49. Available online: https://www.ewg.org/sites/default/files/u352/Stoiber_Evans_WaterSolutions_2020.pdf (accessed on 23 September 2025).
- Barisci, S.; Suri, R. Occurrence and Removal of Poly/Perfluoroalkyl Substances (PFAS) in Municipal and Industrial Wastewater Treatment Plants. Water Sci. Technol. 2021, 84, 3442–3468. [Google Scholar] [CrossRef]
- Jha, G.; Kankarla, V.; McLennon, E.; Pal, S.; Sihi, D.; Dari, B.; Diaz, D.; Nocco, M. Per- and Polyfluoroalkyl Substances (PFAS) in Integrated Crop–Livestock Systems: Environmental Exposure and Human Health Risks. Int. J. Environ. Res. Public Health 2021, 18, 12550. [Google Scholar] [CrossRef] [PubMed]
- DeWitt, J.C. (Ed.) Toxicological effects of per- and polyfluoroalkyl substances. Environ. Res. 2015, 194, 110690. [Google Scholar] [CrossRef]
- Grandjean, P.; Budtz-Jørgensen, E. Immunotoxicity of perfluorinated alkylates: Calculation of benchmark doses based on serum concentrations in children. Environ. Health 2013, 12, 35. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Esquivel, A.; Trujillo-Silva, D.J.; Cilia-López, V.G. Impact of environmental pollution on the obesogenic environment. Nutr. Rev. 2022, 80, 1787–1799. [Google Scholar] [CrossRef]
- Hassoun, A.; Farhat, A.; Harmouche-Karaki, M.; El-Fadel, M. Occurrence of emerging contaminants in Lebanese surface waters: A focus on PFAS, pharmaceuticals, and personal care products. Sci. Total Environ. 2021, 776, 145960. [Google Scholar]
- United Nations Environment Programme (UNEP); Global Environment Facility (GEF). National Implementation Plan for the Stockholm Convention on Persistent Organic Pollutants: Lebanon Updates. 2019–2022. Available online: https://www.unep.org/resources/publication/national-implementation-plan-stockholm-convention-persistent-organic (accessed on 11 August 2025).
- Mroueh, U.; Hamadeh, S.; Abou-Foul, M. Assessment of Persistent Organic Pollutants in the Lebanese Environment and Food Chain; Unpublished or institutionally published report 7; National Council for Scientific Research (CNRS-L): Beirut, Lebanon, 2022. [Google Scholar]
- Kassinos, D.; Vasquez, M.I.; Schneider, M.; Lambropoulou, D. EMERGE—Emerging Contaminants in the Mediterranean Sea: A Multidisciplinary Approach. Horizon 2020 Project Report. 2020. Available online: https://cordis.europa.eu/project/id/823717 (accessed on 13 August 2025).
- Draghi, S.; Pavlovic, R.; Pellegrini, A.; Fidani, M.; Riva, F.; Brecchia, G.; Agradi, S.; Arioli, F.; Vigo, D.; Di Cesare, F.; et al. First Investigation of the Physiological Distribution of Legacy and Emerging Perfluoroalkyl Substances in Raw Bovine Milk According to the Component Fraction. Foods 2023, 12, 2449. [Google Scholar] [CrossRef]
- Barbarossa, A.; Gazzotti, T.; Zironi, E.; Serraino, A.; Pagliuca, G. Short communication: Monitoring the presence of perfluoroalkyl substances in Italian cow milk. J. Dairy Sci. 2014, 97, 3339–3343. [Google Scholar] [CrossRef]
- Still, M.; Schlummer, M.; Gruber, L.; Fiedler, D.; Wolz, G. Impact of Industrial Production and Packaging Processes on the Concentration of Per- and Polyfluorinated Compounds in Milk and Dairy Products. J. Agric. Food Chem. 2013, 61, 9052–9062. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Q.; Li, Y.; Hao, Y.; Li, J.; Zhang, L.; Wang, P.; Yin, Y.; Zhang, S.; Li, T.; et al. Occurrence of per- and polyfluoroalkyl substances (PFASs) in raw milk and feed from nine Chinese provinces and human exposure risk assessment. Chemosphere 2022, 300, 134521. [Google Scholar] [CrossRef]
- Sznajder-Katarzyńska, K.; Surma, M.; Cieślik, I. A Review of Perfluoroalkyl Acids (PFAAs) in terms of Sources, Applications, Human Exposure, Dietary Intake, Toxicity, Legal Regulation, and Methods of Determination. J. Chem. 2019, 2019, 2717528. [Google Scholar] [CrossRef]
- United Nations Environment Programme. Report of the Fourth Meeting of the Conference of the Parties of the Stockholm Convention on Persistent Organic Pollutants (UNEP/POPS/COP.4/38); United Nations: Geneva, Switzerland, 2009; Available online: https://chm.pops.int/portals/0/repository/cop4/unep-pops-cop.4-38.english.pdf (accessed on 25 September 2025).
- Stockholm Convention. Guidance on Alternatives to Perfluorooctane Sulfonic Acid (PFOS), Its Salts and Perfluorooctane Sulfonyl Fluoride (PFOSF). 8 November 2011. Available online: http://chm.pops.int/Portals/0/download.aspx?d=UNEP-POPS-POPRC.6-13-Add.3-Rev.1.English.pdf (accessed on 25 September 2025).
- Wang, T.; Vestergren, R.; Herzke, D.; Yu, J.; Cousins, I.T. Levels, Isomer Profiles, and Estimated Riverine Mass Discharges of Perfluoroalkyl Acids and Fluorinated Alternatives at the Mouths of Chinese Rivers. Environ. Sci. Technol. 2016, 50, 11584–11592. [Google Scholar] [CrossRef] [PubMed]
- Folorunsho, O.; Kizhakkethil, J.P.; Bogush, A.; Kourtchev, I. Effect of short-term sample storage and preparatory conditions on losses of 18 per-and polyfluoroalkyl substances (PFAS) to container materials. Chemosphere 2024, 363, 142814. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. EPA Releases Data on Leaching of PFAS in Fluorinated Packaging; U.S. EPA. 8 September 2022. Available online: https://www.epa.gov/pesticides/epa-releases-data-leaching-pfas-fluorinated-packaging (accessed on 25 September 2025).
- Mikkonen, A.T.; Martin, J.; Upton, R.N.; Barker, A.O.; Brumley, C.M.; Taylor, M.P.; Mackenzie, L.; Roberts, M.S. Spatio-temporal trends in livestock exposure to per- and polyfluoroalkyl substances (PFAS) inform risk assessment and management measures. Environ. Res. 2023, 225, 115518. [Google Scholar] [CrossRef]
- Shurson, G.C. The Alarming Effects of Per-and Polyfluoroalkyl Substances (PFAS) on One Health and Interconnections with Food-Producing Animals in Circular and Sustainable Agri-Food Systems. Sustainability 2025, 17, 6957. [Google Scholar] [CrossRef]
- Zacometti, C.; Tata, A.; Massaro, A.; Riuzzi, G.; Bragolusi, M.; Cozzi, G.; Piro, R.; Khazzar, S.; Gerardi, G.; Gottardo, F.; et al. Seasonal Variation in Raw Milk VOC Profile within Intensive Feeding Systems. Foods 2023, 12, 1871. [Google Scholar] [CrossRef] [PubMed]
PFAS Compound | RfD/TDI Value (ng/kg bw/day) | Source/Reference | Notes/Comments |
---|---|---|---|
PFOS | 0.63 | EFSA (2020)—Group TWI [1] | EFSA TWI of 4.4 ng/kg bw/week for sum of PFOS, PFOA, PFNA, PFHxS; divided equally = 0.63 ng/kg bw/day per compound |
PFOA | 0.63 | EFSA (2020)—Group TWI [1] | Same group TWI as PFOS |
PFNA | 0.63 | EFSA (2020)—Group TWI [1] | Part of group TWI |
PFHxS | 0.63 | EFSA (2020)—Group TWI [1] | Included in EFSA group TWI |
PFHpA | 0.63 (surrogate) | US EPA and EFSA surrogate approach [25] | No specific RfD; surrogate uses PFOA’s value |
PFBA | 10,000 | US EPA (2022) PPRTV [26] | US EPA Provisional Peer-Reviewed Toxicity Value |
PFBS | 3000 | US EPA (2022) Health Advisory [3] | Based on EPA Health Advisory |
PFPeA | 0.63 (surrogate) | US EPA/EFSA surrogate approach [25] | No official RfD; surrogate with PFOA RfD |
PFDA | 0.3 | ATSDR (2021) MRL [27] | Minimal Risk Level for chronic oral exposure |
PFUnDA | 0.3 | ATSDR (2021) MRL [27] | Surrogate based on PFDA |
PFDoDA | 0.3 (surrogate) | EFSA/ATSDR surrogate approach [27] | No official RfD; considered similar to PFUnDA |
GenX (HFPO-DA) | 3 | US EPA (2022) Health Advisory [3] | EPA final health advisory value |
ADONA | No established RfD | Limited data, under review [27] | Data insufficient for quantitative RfD |
Akkar | Baalbeck-Hermel | Batroun | Bekaa | Chouf | Jbeil | Kesserwan | Metn | Nabatiyeh | North Area | South Lebanon | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PFHpA | p value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Mean | 29.69 | 30.00 | 27.51 | 32.77 | 26.51 | 24.40 | 26.35 | 26.64 | 28.32 | 31.69 | 28.55 | |
95% CI | 25.11–34.27 | 25.36–34.65 | 21.31–33.70 | 27.67–37.86 | 20.51–32.51 | 17.42–31.38 | 20.42–32.28 | 20.60–32.68 | 21.88–34.75 | 26.65–36.72 | 22.01–35.09 | |
PFOA | p value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Mean | 146.65 | 150.40 | 129.55 | 153.60 | 126.72 | 107.64 | 120.50 | 113.18 | 127.98 | 135.30 | 136.10 | |
95% CI | 141.6–151.7 | 145.4–155.4 | 99.80–159.3 | 147.8–159.4 | 97.84–155.6 | 76.68–138.6 | 92.90–148.1 | 80.55–145.8 | 98.65–157.3 | 113.7–156.9 | 114.4–157.8 | |
PFNA | p value | 0.021 | 0.003 | 0.02142 | 0.886 | 0.016 | <0.001 | 0.001 | 0.003 | 0.219 | 0.677 | 0.043 |
Mean | 4.21 | 4.83 | 3.76 | 4.35 | 3.23 | 2.43 | 3.72 | 3.18 | 3.87 | 4.31 | 3.54 | |
95% CI | 3.891–4.522 | 4.576–5.091 | 3.148–4.372 | 3.666–5.041 | 2.318–4.149 | 1.679–3.188 | 3.355–4.085 | 2.449–3.911 | 2.996–4.751 | 3.876–4.751 | 2.713–4.367 | |
PFHxS | p value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Mean | 75.87 | 77.20 | 70.42 | 79.40 | 71.95 | 55.86 | 61.04 | 62.57 | 66.91 | 67.98 | 68.58 | |
95% CI | 72.69–79.05 | 74.05–80.35 | 59.03–81.81 | 76.67–82.13 | 60.52–83.38 | 39.62–72.10 | 43.91–78.17 | 48.07–77.07 | 51.76–82.05 | 52.41–83.54 | 52.77–84.38 | |
PFOS | p value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Mean | 151.35 | 162.60 | 150.05 | 153.65 | 149.60 | 153.95 | 147.85 | 156.95 | 160.95 | 174.30 | 159.90 | |
95% CI | 117.2–185.5 | 137.3–187.9 | 116.1–184.0 | 119.0–188.3 | 115.8–183.4 | 129.8–178.1 | 114.3–181.4 | 132.3–181.6 | 135.6–186.3 | 169.6–179.0 | 134.8–185.0 | |
PFHxA | p value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Mean | 31.68 | 37.33 | 31.75 | 38.94 | 25.80 | 28.11 | 29.03 | 26.74 | 30.55 | 33.26 | 30.90 | |
95% CI | 30.89–32.47 | 36.00–38.65 | 30.87–32.63 | 37.23–40.64 | 18.29–33.30 | 23.74–32.48 | 24.44–33.61 | 20.63–32.85 | 25.44–35.65 | 25.70–40.82 | 23.64–38.15 | |
PFBA | p value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Mean | 137.95 | 157.65 | 128.49 | 156.60 | 140.60 | 126.66 | 137.05 | 126.36 | 130.85 | 153.95 | 141.40 | |
95% CI | 116.0–159.9 | 152.2–163.1 | 99.07–157.9 | 148.6–164.6 | 117.9–163.3 | 96.51–156.8 | 115.5–158.6 | 97.11–155.6 | 100.8–160.9 | 145.4–162.5 | 118.9–163.9 | |
PFPeA | p value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Mean | 68.96 | 78.47 | 59.00 | 77.14 | 66.58 | 62.71 | 72.80 | 57.60 | 78.13 | 66.58 | 67.64 | |
95% CI | 57.94–79.97 | 75.14–81.79 | 41.87–76.12 | 73.36–80.91 | 51.08–82.07 | 48.08–77.33 | 69.32–76.28 | 40.85–74.34 | 74.33–81.93 | 51.10–82.05 | 51.96–83.32 |
F | p Value | |
---|---|---|
PFHpA | 0.840 | 0.591 |
PFOA | 1.722 | 0.080 |
PFNA | 4.754 | <0.001 |
PFHxS | 1.470 | 0.156 |
PFOS | 0.335 | 0.970 |
PFHxA | 3.047 | 0.001 |
PFBA | 1.229 | 0.277 |
PFPeA | 1.609 | 0.109 |
Nabatieh | South | Chouf | Metn | Keserwan | Jbeil | Batroun | North Lebanon | Akkar | Bekaa | BH | Average | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
PFHpA | ||||||||||||
Concentration | 32.62 | 32.89 | 30.54 | 30.69 | 30.35 | 30.42 | 31.69 | 33.93 | 31.78 | 35.08 | 32.13 | 32.01 |
EDI | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 |
RQ | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
PFOA | ||||||||||||
Concentration | 147.61 | 145.78 | 146.15 | 141.42 | 139 | 134.50 | 149.46 | 144.93 | 146.67 | 153.60 | 150.40 | 145.42 |
EDI | 0.14 | 0.14 | 0.143 | 0.14 | 0.14 | 0.13 | 0.15 | 0.14 | 0.14 | 0.15 | 0.15 | 0.14 |
RQ | 0.23 | 0.23 | 0.23 | 0.22 | 0.22 | 0.21 | 0.23 | 0.22 | 0.23 | 0.24 | 0.23 | 0.22 |
PFNA | ||||||||||||
Concentration | 4.42 | 4.04 | 3.97 | 3.62 | 3.72 | 3.21 | 4.01 | 4.31 | 4.21 | 4.64 | 4.83 | |
EDI | 0.004 | 0.004 | 0.004 | 0.003 | 0.004 | 0.003 | 0.004 | 0.004 | 0.004 | 0.004 | 0.005 | 0.004 |
RQ | 0.007 | 0.006 | 0.006 | 0.006 | 0.0067 | 0.005 | 0.006 | 0.007 | 0.006 | 0.007 | 0.007 | 0.006 |
PFDA | ||||||||||||
Concentration | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | |
EDI | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
RQ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
PFHxS | ||||||||||||
Concentration | 77.15 | 79.08 | 77.07 | 72.15 | 70.38 | 69.75 | 75.43 | 78.38 | 75.87 | 79.40 | 77.20 | |
EDI | 0.07 | 0.08 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.08 | 0.07 | 0.08 | 0.07 | 0.07 |
RQ | 0.12 | 0.12 | 0.12 | 0.11 | 0.11 | 0.11 | 0.12 | 0.12 | 0.12 | 0.12 | 0.12 | 0.12 |
PFOS | ||||||||||||
Concentration | 172.43 | 171.28 | 172.54 | 168.14 | 170.54 | 164.93 | 173.08 | 174.23 | 174.61 | 177.23 | 174.21 | |
EDI | 0.17 | 0.168 | 0.17 | 0.16 | 0.17 | 0.16 | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 |
RQ | 0.27 | 0.27 | 0.27 | 0.26 | 0.26 | 0.26 | 0.27 | 0.27 | 0.275 | 0.27 | 0.27 | 0.27 |
PFHxA | ||||||||||||
Concentration | 32.714 | 35.60 | 32.17 | 30.81 | 31.08 | 30.09 | 31.75 | 38.33 | 31.68 | 38.93 | 37.33 | |
EDI | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.04 | 0.03 | 0.04 | 0.04 | 0.03 |
RQ | 6.40 × 10−5 | 6.97× 10−5 | 6.30 × 10−5 | 6.03 × 10−5 | 6.08 × 10−5 | 5.89 × 10−5 | 6.22 × 10−5 | 7.50 × 10−5 | 6.20 × 10−5 | 7.62 × 10−5 | 7.31 × 10−5 | 11. 66 × 10−5 |
PFBA | ||||||||||||
Concentration | 150.92 | 151.50 | 150.64 | 145.77 | 146.86 | 146.08 | 148.23 | 153.93 | 147.78 | 156.60 | 157.676 | |
EDI | 0.15 | 0.15 | 0.15 | 0.141 | 0.14 | 0.14 | 0.14 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 |
RQ | 1.48 × 10−5 | 1.48 × 10−5 | 1.47 × 10−5 | 1.43 × 10−5 | 1.44 × 10−5 | 1.43 × 10−5 | 1.45 × 10−5 | 1.51 × 10−5 | 1.45 × 10−5 | 1.53 × 10−5 | 1.54× 10−5 | 1.47 × 10−5 |
PFBS | ||||||||||||
Concentration | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | |
EDI | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
RQ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
PFPeA | ||||||||||||
Concentration | 78.13 | 78 | 76.77 | 71.92 | 72.80 | 72.31 | 73.67 | 76.77 | 73.86 | 77.13 | 78.47 | |
EDI | 0.08 | 0.076 | 0.075 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.08 | 0.07 |
RQ | 0.12 | 0.12 | 0.12 | 0.11 | 0.11 | 0.11 | 0.11 | 0.12 | 0.11 | 0.12 | 0.12 | |
Hazard Index | 0.68 | 0.68 | 0.67 | 0.65 | 0.65 | 0.64 | 0.67 | 0.69 | 0.67 | 0.71 | 0.70 | 0.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarkis, S.; Hoteit, M.; Tzenios, N.; Tannous, T.; Harmouche-Karaki, M.; Helou, K.; Matta, J. Occurrence and Health Risk Assessment of Per- and Polyfluoroalkyl Substances in Yogurt Across Lebanese Governorates. Foods 2025, 14, 3472. https://doi.org/10.3390/foods14203472
Sarkis S, Hoteit M, Tzenios N, Tannous T, Harmouche-Karaki M, Helou K, Matta J. Occurrence and Health Risk Assessment of Per- and Polyfluoroalkyl Substances in Yogurt Across Lebanese Governorates. Foods. 2025; 14(20):3472. https://doi.org/10.3390/foods14203472
Chicago/Turabian StyleSarkis, Sandra, Maha Hoteit, Nikolaos Tzenios, Tony Tannous, Mireille Harmouche-Karaki, Khalil Helou, and Joseph Matta. 2025. "Occurrence and Health Risk Assessment of Per- and Polyfluoroalkyl Substances in Yogurt Across Lebanese Governorates" Foods 14, no. 20: 3472. https://doi.org/10.3390/foods14203472
APA StyleSarkis, S., Hoteit, M., Tzenios, N., Tannous, T., Harmouche-Karaki, M., Helou, K., & Matta, J. (2025). Occurrence and Health Risk Assessment of Per- and Polyfluoroalkyl Substances in Yogurt Across Lebanese Governorates. Foods, 14(20), 3472. https://doi.org/10.3390/foods14203472