The Potential of Fermentation-Based Processing on Protein Modification: A Review
Abstract
1. Introduction
2. Fermentation Processes and Products
3. Types of Fermentation
4. Fermentation Effects in the Food Industry
5. Proteins
6. Effect of Fermentation on Protein Composition
7. Effect of Fermentation on Nutritional Properties of Proteins
7.1. Digestibility
7.2. Allergenicity
7.3. Antioxidant Activity
7.4. Antinutritional Compounds
8. Effects of Fermentation on Physicochemical and Techno-Functional Properties of Proteins
8.1. Protein Solubility
8.2. Emulsifying Properties
8.3. Foaming Properties
8.4. Water Holding Capacity and Oil Binding Capacity
8.5. Gelling Properties
9. Effect of Fermentation on the Sensory Attributes of Proteins
10. Conclusions and Future Trends
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Terefe, Z.K.; Omwamba, M.N.; Nduko, J.M. Effect of solid state fermentation on proximate composition, antinu-tritional factors and in vitro protein digestibility of maize flour. Food Sci. Nutr. 2021, 9, 6343–6352. [Google Scholar] [CrossRef]
- Alrosan, M.; Al-Massad, M.; Obeidat, H.J.; Maghaydah, S.; Alu’datt, M.H.; Tan, T.C.; Liao, Z.; Alboqai, O.; Ebqa’ai, M.; Dheyab, M.A.; et al. Fermentation-induced modifications to the structural, surface, and functional properties of quinoa proteins. Food Sci. Biotechnol. 2025, 34, 3317–3329. [Google Scholar] [CrossRef]
- Chisti, Y. Fermentation technology. In Industrial Biotechnology: Sustainable Growth and Economic Success; Wiley-VCH: Weinheim, Germany, 2010; pp. 149–171. [Google Scholar] [CrossRef]
- Fleming, H.P.; McFeeters, R.F.; Thompson, R.L.; Sanders, D.C. Storage stability of vegetables fermented with pH control. J. Food Sci. 1983, 48, 975–981. [Google Scholar] [CrossRef]
- Nout, M.R. Food fermentation: An introduction. In Food Fermentation; Wageningen Academic Publishers: Wa-geningen, The Netherlands, 2005; pp. 13–18. [Google Scholar]
- Emkani, M.; Oliete, B.; Saurel, R. Effect of lactic acid fermentation on legume protein properties, a review. Fermentation 2022, 8, 244. [Google Scholar] [CrossRef]
- Klubskifte, D.; Juodeikiene, G.; Zadeike, D.; Bartkiene, E.; Maknickiene, Z.; Liutkute, G. The influence of lactic acid fermen-tation on functional properties of narrow-leaved lupine protein as functional additive for higher value wheat bread. LWT 2017, 75, 180–186. [Google Scholar]
- Chisti, Y. Solid substrate fermentations, enzyme production, food enrichment. Encycl. Ind. Biotechnol. Bioprocess Biosep. Cell Technol. 2009, 1, 1–18. [Google Scholar] [CrossRef]
- Subramaniyam, R.; Vimala, R. Solid state and submerged fermentation for the production of bioactive substances: A comparative study. Int. J. Nat. Soc. Sci. 2012, 3, 480–486. [Google Scholar]
- Behera, S.S.; Ray, R.C.; Das, U.; Panda, S.K.; Saranraj, P. Microorganisms in fermentation. In Essentials in Fer-mentation Technology; Springer: Cham, Switzerland, 2019; pp. 1–39. [Google Scholar]
- Mehta, B.M.; Kamal-Eldin, A.; Iwanski, R.Z. (Eds.) Fermentation: Effects on Food Properties; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Yousefi, N.; Abbasi, S. Food proteins: Solubility & thermal stability improvement techniques. Food Chem. Adv. 2022, 1, 100090. [Google Scholar] [CrossRef]
- Damodaran, S. Food Proteins and Their Applications; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Darmon, N.; Briend, A.; Drewnowski, A. Energy-Dense Diets Are Associated with Lower Diet Costs: A Community Study of French Adults. Public Health Nutr. 2004, 7, 21–27. [Google Scholar] [CrossRef]
- Boyce, J.A.; Assa’ad, A.; Burks, A.W.; Jones, S.M.; Sampson, H.A.; Wood, R.A.; Plaut, M.; Cooper, S.F.; Fenton, M.J.; Arshad, S.H.; et al. Guidelines for the Diagnosis and Management of Food Allergy in the United States: Sum-mary of the NIAID-Sponsored Expert Panel Report. J. Allergy Clin. Immunol. 2010, 126, 1105–1118. [Google Scholar] [CrossRef] [PubMed]
- Norton, J.E.; Norton, I.T. Designer colloids—Towards healthy everyday foods? Soft Matter 2010, 6, 3735–3742. [Google Scholar] [CrossRef]
- Sapone, A.; Bai, J.C.; Ciacci, C.; Dolinsek, J.; Green, P.H.; Hadjivassiliou, M.; Kaukinen, K.; Rostami, K.; Sanders, D.S.; Schumann, M.; et al. Spectrum of Gluten-Related Disorders: Consensus on New Nomenclature and Classifica-tion. BMC Med. 2012, 10, 13. [Google Scholar] [CrossRef]
- Alrosan, M.; Tan, T.C.; Easa, A.M.; Alu’datt, M.H.; Tranchant, C.C.; Almajwal, A.M.; Gammoh, S.; Maghaydah, S.; Dheyab, M.A.; Jameel, M.S.; et al. Improving the Functionality of Lentil–Casein Protein Complexes through Structural Interactions and Water Kefir-Assisted Fermentation. Fermentation 2023, 9, 194. [Google Scholar] [CrossRef]
- Dai, C.; Yan, P.; Xu, X.; Huang, L.; Dabbour, M.; Benjamin, K.M.; He, R.; Ma, H. Effect of single and two-stage fermentation on the antioxidative activity of soybean meal, and the structural and interfacial characteristics of its protein. LWT 2023, 183, 114938. [Google Scholar] [CrossRef]
- Iqbal, S.; Tirpanalan-Staben, Ö.; Franke, K. Effect of solid-state fermentation with Pleurotus ostreatus on the protein content and other nutritional components of de-seeded carob fruits. Sustain. Food Technol. 2024, 2, 1537–1544. [Google Scholar] [CrossRef]
- Dev, R.; Bhatt, S.; Gupta, M. Effect of lactic acid fermentation on the physico-chemical, functional, and antioxi-dant properties, and in vitro protein digestibility of malted ragi (Eleusine coracana L.). Sustain. Food Technol. 2024, 2, 1128–1138. [Google Scholar]
- Kasprowicz-Potocka, M.; Borowczyk, P.; Zaworska, A.; Nowak, W.; Frankiewicz, A.; Gulewicz, P. The effect of dry yeast fermentation on chemical composition and protein characteristics of blue lupin seeds. Food Technol. Bio-technol. 2016, 54, 360–366. [Google Scholar]
- Obadina, A.O.; Akinola, O.J.; Shittu, T.A.; Bakare, H.A. Effect of natural fermentation on the chemical and nu-tritional composition of fermented soymilk nono. Niger. Food J. 2013, 31, 91–97. [Google Scholar] [CrossRef]
- Omojasola, P.F. Studies on two fermented product of soymilk: Soy-wara and soy nono. Afr. J. Sci. Technol. 2000, 2, 102–106. [Google Scholar]
- Ibrahim, S.S.; Habiba, R.A.; Shatta, A.A.; Embaby, H.E. Effect of soaking, germination, cooking and fermentation on antinutritional factors in cowpeas. Nahrung 2002, 46, 92–95. [Google Scholar] [CrossRef]
- Dai, C.; Hou, Y.; Xu, H.; Huang, L.; Dabbour, M.; Mintah, B.K.; He, R.; Ma, H. Effect of solid-state fermentation by three different Bacillus species on composition and protein structure of soybean meal. J. Sci. Food Agric. 2022, 102, 557–566. [Google Scholar] [CrossRef]
- Cabuk, B.; Nosworthy, M.G.; Stone, A.K.; Korber, D.R.; Tanaka, T.; House, J.D.; Nickerson, M.T. Effect of fer-mentation on the protein digestibility and levels of non-nutritive compounds of pea protein concentrate. Food Technol. Biotechnol. 2018, 56, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Gantumur, M.A.; Sukhbaatar, N.; Shi, R.; Hu, J.; Bilawal, A.; Qayum, A.; Tian, B.; Jiang, Z.; Hou, J. Structural, functional, and physicochemical characterization of fermented whey protein concentrates recovered from various fermented-distilled whey. Food Hydrocoll. 2023, 135, 108130. [Google Scholar] [CrossRef]
- Arise, A.K.; Aliyu, B.N.; Ajidagba, S.D. Effect of thermal processing and fermentation on the chemical composi-tion, protein digestibility and functional properties of bambara protein isolate. Carpathian J. Food Sci. Technol. 2020, 12, 148–156. [Google Scholar]
- Onyango, C.A.; Ochanda, S.O.; Mwasaru, M.A.; Ochieng, J.K.; Mathooko, F.M.; Kinyuru, J.N. Effects of malting and fermentation on anti-nutrient reduction and protein digestibility of red sorghum, white Sorghum and pearl millet. J. Food Res. 2013, 2, 41–49. [Google Scholar] [CrossRef]
- Nasseri, A.T.; Rasoul-Amini, S.; Morowvat, M.H.; Ghasemi, Y. Single cell protein: Production and process. Am. J. Food Technol. 2011, 6, 103–116. [Google Scholar] [CrossRef]
- Fasasi, O.S.; Adeyemi, I.A.; Fagbenro, O.A. Functional and pasting characteristics of fermented maize and nile Tilapia (Oreochromis niloticus) flour diet. Pak. J. Nutr. 2007, 6, 304–309. [Google Scholar] [CrossRef]
- Fawale, O.S.; Gbadamosi, S.O.; Ige, M.M.; Kadiri, O. Effects of cooking and fermentation on the chemical com-position, functional, and antinutritional properties of kariya (Hildergardia barteri) seeds. Food Sci. Nutr. 2017, 5, 1106–1115. [Google Scholar] [CrossRef]
- Elkhier, M.K.S.; Abd-ALRaheem, A.A. Effect of fermentation period on the chemical composition, in-vitro protein digesti-bility and tannin content in two sorghum cultivars (Dabar and Tabat) in Sudan. J. Appl. Biosci. 2011, 39, 2602–2606. [Google Scholar]
- Osungbade, O.R.; Gbadamosi, O.S.; Adiamo, O.Q. Effects of cooking and fermentation on the chemical compo-sition, functional properties and protein digestibility of sandbox (Hura crepitans) seeds. J. Food Biochem. 2016, 40, 754–765. [Google Scholar] [CrossRef]
- Chinma, C.E.; Ezeocha, V.C.; Adedeji, O.E.; Jolayemi, O.S.; Onwuka, Q.I.; Ilowefah, M.A.; Adebo, J.A.; Rosell, C.M.; Bamidele, O.P.; Adebo, O.A. Germinated/fermented legume flours as functional ingredients in wheat-based bread: A review. J. Food Sci. 2025, 90, e70022. [Google Scholar] [CrossRef]
- Uwaegbute, A.C.; Iroegbu, C.U.; Eke, O. Chemical and sensory evaluation of germinated cowpeas (Vigna unguiculata) and their products. Food Chem. 2000, 68, 141–147. [Google Scholar] [CrossRef]
- Afoakwa, E.O.; Quao, J.; Takrama, J.; Budu, A.S.; Saalia, F.K. Chemical composition and physical quality charac-teristics of Ghanaian cocoa beans as affected by pulp pre-conditioning and fermentation. J. Food Sci. Technol. 2013, 50, 1097–1105. [Google Scholar] [CrossRef] [PubMed]
- Santos-Hernández, M.; Alfieri, F.; Gallo, V.; Miralles, B.; Masi, P.; Romano, A.; Ferranti, P.; Recio, I. Compared digestibility of plant protein isolates by using the INFOGEST digestion protocol. Food Res. Int. 2020, 137, 109708. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, S.; Li, Y.; Sun, F.; Huang, D.; Chen, X. Alternations in the multilevel structures of chickpea protein during fermentation and their relationship with digestibility. Food Res. Int. 2023, 165, 112453. [Google Scholar] [CrossRef]
- Alrosan, M.; Tan, T.C.; Easa, A.M.; Gammoh, S.; Alu’datt, M.H.; Aleid, G.M.; Alhamad, M.N.; Maghaydah, S. Evaluation of quality and protein structure of natural water kefir-fermented quinoa protein concentrates. Food Chem. 2023, 404, 134614. [Google Scholar] [CrossRef] [PubMed]
- Alrosan, M.; Tan, T.C.; Easa, A.M.; Gammoh, S.; Alu’datt, M.H.; Kubow, S.; Almajwal, A.M.; Al-Qaisi, A. Enhanced func-tionality of fermented whey protein using water kefir. Int. J. Food Prop. 2023, 26, 1663–1677. [Google Scholar] [CrossRef]
- Helal, A.; Pierri, S.; Tagliazucchi, D.; Solieri, L. Effect of fermentation with Streptococcus thermophilus strains on in vitro gastro-intestinal digestion of whey protein concentrates. Microorganisms 2023, 11, 1742. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, F.S.; Babiker, E.E.; Yousif, N.E.; El Tinay, A.H. Effect of fermentation on biochemical and sensory char-acteristics of sorghum flour supplemented with whey protein. Food Chem. 2005, 92, 285–292. [Google Scholar] [CrossRef]
- Pranoto, Y.; Anggrahini, S.; Efendi, Z. Effect of natural and Lactobacillus plantarum fermentation on in-vitro protein and starch digestibilities of sorghum flour. Food Biosci. 2013, 2, 46–52. [Google Scholar] [CrossRef]
- Day, C.N.; Morawicki, R.O. Effects of fermentation by yeast and amylolytic lactic acid bacteria on grain sorghum protein content and digestibility. J. Food Qual. 2018, 2018, 3964392. [Google Scholar] [CrossRef]
- Hu, L.; Li, Y.; Huang, X.; Du, C.; Huang, D.; Tao, X. The Effect of Co-Fermentation with Lactobacillus plantarum HLJ29L2 and Yeast on Wheat Protein Characteristics in Sourdough and Crackers. Foods 2023, 12, 555. [Google Scholar] [CrossRef]
- Fu, W.; Chen, C.; Liu, C.; Tao, S.; Xue, W. Changes in wheat protein digestibility and allergenicity: Role of Pedi-ococcus acidilactici XZ31 and yeast during dough fermentation. Food Sci. Hum. Wellness 2023, 12, 2381–2389. [Google Scholar] [CrossRef]
- Shekib, L.A. Nutritional improvement of lentils, chickpea, rice and wheat by natural fermentation. Plant Foods Hum. Nutr. 1994, 46, 201–205. [Google Scholar] [CrossRef] [PubMed]
- Granito, M.; Frias, J.; Doblado, R.; Guerra, M.; Champ, M.; Vidal-Valverde, C. Nutritional improvement of beans (Phaseolus vulgaris) by natural fermentation. Eur. Food Res. Technol. 2002, 214, 226–231. [Google Scholar] [CrossRef]
- Stodolak, B.; Starzyńska-Janiszewska, A. The influence of tempeh fermentation and conventional cooking on anti-nutrient level and protein bioavailability (in vitro test) of grass-pea seeds. J. Sci. Food Agric. 2008, 88, 2265–2271. [Google Scholar] [CrossRef]
- Alrosan, M.; Tan, T.C.; Easa, A.M.; Gammoh, S.; Alu’datt, M.H. Effects of fermentation on the quality, structure, and nonnutritive contents of lentil (Lens culinaris) proteins. J. Food Qual. 2021, 2021, 5556450. [Google Scholar] [CrossRef]
- Drabo, M.S.; Savadogo, A.; Raes, K. Effects of tempeh fermentation using Rhizopus oryzae on the nutritional and flour technological properties of Zamnè (Senegalia macrostachya seeds): Exploration of processing alternatives for a hard-to-cook but promising wild legume. Food Biosci. 2023, 54, 102823. [Google Scholar] [CrossRef]
- Sun, W.; He, J.; Wang, H.; Zhang, Q.; Li, W.; Rui, X. Solid-state fermentation alters the fate of red kidney bean protein during buccal and gastrointestinal digestion: Relationship with cotyledon cell wall integrity. Food Chem. 2023, 410, 135370. [Google Scholar] [CrossRef]
- Czech, A.; Wlazło, Ł.; Łukaszewicz, M.; Florek, M.; Nowakowicz-Dębek, B. Fermented rapeseed meal enhances the digestibility of protein and macro-and microminerals and improves the performance of weaner pigs. Anim. Feed Sci. Technol. 2023, 300, 115656. [Google Scholar] [CrossRef]
- Licandro, H.; Ho, P.H.; Nguyen, T.K.C.; Petchkongkaew, A.; Van Nguyen, H.; Chu-Ky, S.; Nguyen, T.V.A.; Lorn, D.; Waché, Y. How fermentation by lactic acid bacteria can address safety issues in legumes food products? Food Control 2020, 110, 106957. [Google Scholar] [CrossRef]
- Li, S.; Offengenden, M.; Fentabil, M.; Gänzle, M.G.; Wu, J. Effect of egg white fermentation with lactobacilli on IgE binding ability of egg white proteins. Food Res. Int. 2013, 52, 359–366. [Google Scholar] [CrossRef]
- Leszczynska, L.; Diowksz, A.; Lacka, A.; Bryszewska, M.; Wolska, K.; Ambroziak, W. Decrease of wheat flour allergenicity via lactic acid fermentation. Food Agric. Immunol. 2009, 20, 139–145. [Google Scholar] [CrossRef]
- Frias, J.; Soo Song, Y.; Martinez-Villaluenga, C.; Gonzalez De Mejia, E.; Vidal-Valverde, C. Immunoreactivity and amino acid content of fermented soybean products. J. Agric. Food Chem. 2008, 56, 99–105. [Google Scholar] [CrossRef]
- Kleber, N.; Weyrich, U.; Hinrichs, J. Screening for lactic acid bacteria with potential to reduce antigenic re-sponse of beta-lactoglobulin in bovine skim milk and sweet whey. Innov. Food Sci. Emerg. Technol. 2006, 7, 233–238. [Google Scholar] [CrossRef]
- Tahmasian, A.; Drew, R.; Broadbent, J.A.; Juhász, A.; Nye-Wood, M.; Colgrave, M.L. Conventional solid-state fermentation effects the white lupin proteome reducing the abundance of allergenic peptides. Food Chem. 2023, 426, 136622. [Google Scholar] [CrossRef]
- Zhou, Y.; Jin, W.; Duan, M.; She, X.; Zhu, S.; Zhou, X.; Song, J.; Zhu, D. Effects of exogenous strain fermentation on protein structure and allergenicity of Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn.). Food Biosci. 2023, 53, 102541. [Google Scholar] [CrossRef]
- Pi, X.; Fu, G.; Dong, B.; Yang, Y.; Wan, Y.; Xie, M. Effects of fermentation with Bacillus natto on the allergenicity of peanut. LWT 2021, 141, 110862. [Google Scholar] [CrossRef]
- Rao, H.; Li, X.; Xue, W. Effect of thermal processing and fermentation with Chinese traditional starters on char-acteristics and allergenicity of wheat matrix. Food Sci. Hum. Wellness 2023, 12, 789–794. [Google Scholar] [CrossRef]
- Schlegel, K.; Lidzba, N.; Ueberham, E.; Eisner, P.; Schweiggert-Weisz, U. Fermentation of Lupin Protein Hy-drolysates—Effects on Their Functional Properties, Sensory Profile and the Allergenic Potential of the Major Lupin Allergen Lup an 1. Foods 2021, 10, 281. [Google Scholar] [CrossRef] [PubMed]
- Schlegel, K.; Leidigkeit, A.; Eisner, P.; Schweiggert-Weisz, U. Technofunctional and sensory properties of fer-mented lupin protein isolates. Foods 2019, 8, 678. [Google Scholar] [CrossRef]
- Bu, G.; Luo, Y.; Zhang, Y.; Chen, F. Effects of fermentation by lactic acid bacteria on the antigenicity of bovine whey proteins. J. Sci. Food Agric. 2010, 90, 2015–2020. [Google Scholar] [CrossRef]
- Yao, M.; Luo, Y.; Shi, J.; Zhou, Y.; Xu, Q.; Li, Z. Effects of fermentation by Lactobacillus rhamnosus GG on the antigenicity and allergenicity of four cows’ milk proteins. Food Agric. Immunol. 2014, 25, 545–555. [Google Scholar] [CrossRef]
- Chu, S.-C.; Chen, C. Effects of origins and fermentation time on the antioxidant activities of kombucha. Food Chem. 2006, 98, 502–507. [Google Scholar] [CrossRef]
- Ng, C.-C.; Wang, C.-Y.; Wang, Y.-P.; Tzeng, W.-S.; Shyu, Y.-T. Lactic acid bacterial fermentation on the produc-tion of functional antioxidant herbal Anoectochilus formosanus Hayata. J. Biosci. Bioeng. 2011, 111, 289–293. [Google Scholar] [CrossRef]
- Stanisavljević, N.; Vukotić, G.; Pastor, F.T.; Suznjević, D.; Jovanović, Ž.; Strahinić, I.; Fira, Đ.; Radović, S.S. Antioxidant activity of pea protein hydrolysates produced by batch fermentation with lactic acid bacteria. Arch. Biol. Sci. 2015, 67, 1033–1042. [Google Scholar] [CrossRef]
- Hur, S.J.; Lee, S.Y.; Kim, Y.C.; Choi, I.; Kim, G.B. Effect of fermentation on the antioxidant activity in plant-based foods. Food Chem. 2014, 160, 346–356. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.H.; Hou, Y.C.; Wang, Z.; Liao, A.M.; Pan, L.; Zhang, J.; Dong, Y.Q.; Hu, Z.Y.; Huang, J.H.; Ou, X.Q. Effect of fermentation on structural properties and antioxidant activity of wheat gluten by Bacillus subtilis. Front. Nutr. 2023, 10, 1116982. [Google Scholar] [CrossRef] [PubMed]
- Gum, S.I.; Nguyen, P.A.; Lee, J.R.; Han, Y.H.; Cho, M.K. The physico-chemical alteration of lovastatin and en-hanced antioxidant effect of Bacillus subtilis fermented-red yeast rice product. Food Chem. 2017, 232, 203–209. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.; Lu, X.; Zhang, H.; Wang, L.; Guo, X.; Qi, X.; Qian, H. Isolation and identification of an antioxi-dant peptide prepared from fermented peanut meal using Bacillus subtilis fermentation. Int. J. Food Prop. 2014, 17, 1237–1253. [Google Scholar] [CrossRef]
- Wang, C.F.; Huang, C.R.; Lu, Y.C. Changes in Bio-Functional Compounds, ACE Inhibition, and Antioxidant Ca-pacity after Mixed Fermentation of Eight Whole Grains. Fermentation 2023, 9, 209. [Google Scholar] [CrossRef]
- Tlais, A.Z.A.; Trossolo, E.; Tonini, S.; Filannino, P.; Gobbetti, M.; Di Cagno, R. Fermented whey ewe’s milk-based fruit smoothies: Bio-recycling and enrichment of phenolic compounds and improvement of protein di-gestibility and antioxidant activity. Antioxidants 2023, 12, 1091. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Huang, Y.; Ma, R.; Tang, Y.; Li, Y.; Zhang, S. Structural properties and antioxidant activities of soy-bean protein hydrolysates produced by Lactobacillus delbrueckii subsp. bulgaricus cell envelope proteinase. Food Chem. 2023, 410, 135392. [Google Scholar] [CrossRef]
- Dinkçi, N.; Akdeniz, V.; Akalın, A.S. Probiotic Whey-Based Beverages from Cow, Sheep and Goat Milk: Antiox-idant Activity, Culture Viability, Amino Acid Contents. Foods 2023, 12, 610. [Google Scholar] [CrossRef]
- Oladeji, B.S.; Akanbi, C.T.; Gbadamosi, S.O. Effects of fermentation on antioxidant properties of flours of a normal endosperm and quality protein maize varrieties. J. Food Meas. Charact. 2017, 11, 1148–1158. [Google Scholar] [CrossRef]
- Adebo, O.A.; Gabriela Medina-Meza, I. Impact of fermentation on the phenolic compounds and antioxidant activity of whole cereal grains: A mini review. Molecules 2020, 25, 927. [Google Scholar] [CrossRef]
- Zhao, Y.S.; Eweys, A.S.; Zhang, J.Y.; Zhu, Y.; Bai, J.; Darwesh, O.M.; Zhang, H.B.; Xiao, X. Fermentation affects the antioxidant activity of plant-based food material through the release and production of bioactive components. Antioxidants 2021, 10, 2004. [Google Scholar] [CrossRef]
- Acosta-Estrada, B.A.; Gutiérrez-Uribe, J.A.; Serna-Saldívar, S.O. Bound phenolics in foods, a review. Food Chem. 2014, 152, 46–55. [Google Scholar] [CrossRef]
- Liang, Z.; Huang, Y.; Zhang, P.; Fang, Z. Impact of fermentation on the structure and antioxidant activity of selective phenolic compounds. Food Biosci. 2023, 56, 103147. [Google Scholar] [CrossRef]
- Erskine, E.; Ozkan, G.; Lu, B.; Capanoglu, E. Effects of fermentation process on the antioxidant capacity of fruit byproducts. ACS Omega 2023, 8, 4543–4553. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.K.; Kumar, S.; Panwar, J.D. Antinutritional factors and their detoxification in pulses—A review. Agric. Rev. 2009, 30, 64–70. [Google Scholar]
- Abeshu, Y.; Kefale, B. Effect of some traditional processing methods on nutritional composition and alkaloid content of lupin bean. Int. J. Bioorg. Chem. 2017, 2, 174–179. [Google Scholar]
- Soetan, K.O.; Oyewole, O.E. The need for adequate processing to reduce the anti-nutritional factors in plants used as human foods and animal feeds: A review. Afr. J. Food Sci. 2009, 3, 223–232. [Google Scholar]
- Xing, Q.; Dekker, S.; Kyriakopoulou, K.; Boom, R.M.; Smid, E.J.; Schutyser, M.A. Enhanced nutritional value of chickpea protein concentrate by dry separation and solid state fermentation. Innov. Food Sci. Emerg. Technol. 2020, 59, 102269. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Y.H.; Chi, Z.P.; Huang, R.; Huang, H.; Liu, G.; Zhang, Y.; Yang, H.; Lin, J.; Yang, T.; et al. The handling of oxalate in the body and the origin of oxalate in calcium oxalate stones. Urol. Int. 2020, 104, 167–176. [Google Scholar] [CrossRef]
- Jaffe, W.G. Hemagglutinins (Lectins). In Toxic Constituents of Plant Foodstuffs; Liener, I.E., Ed.; Academic Press: New York, NY, USA, 1980; pp. 73–102. [Google Scholar]
- Robinson, G.H.J.; Balk, J.; Domoney, C. Improving pulse crops as a source of protein, starch and micronutrients. Nutr. Bull. 2019, 44, 202–215. [Google Scholar] [CrossRef]
- Reddy, N.R.; Pierson, M.D. Reduction in antinutritional and toxic components in plant foods by fermentation. Food Res. Int. 1994, 27, 281–290. [Google Scholar]
- Rai, A.K.; Ka, A.A. (Eds.) Bioactive Compounds in Fermented Foods: Health Aspects; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Coda, R.; Melama, L.; Rizzello, C.G.; Curiel, J.A.; Sibakov, J.; Holopainen, U.; Pulkkinen, M.; Sozer, N. Effect of air classification and fermentation by Lactobacillus plantarum VTT E-133328 on faba bean (Vicia faba L.) flour nutritional properties. Int. J. Food Microbiol. 2015, 193, 34–42. [Google Scholar] [CrossRef]
- Rizzello, C.G.; Losito, I.; Facchini, L.; Katina, K.; Palmisano, F.; Gobbetti, M.; Coda, R. Degradation of vicine, convicine and their aglycones during fermentation of faba bean flour. Sci. Rep. 2016, 6, 32452. [Google Scholar] [CrossRef]
- Khokhar, S.; Richard, K.; Apenten, O. Antinutritional factors in food legumes and effects of processing. The Role of Food, Agriculture. For. Fish. Hum. Nutr. 2009, 4, 1–10. [Google Scholar]
- Omizu, Y.; Tsukaoto, C.; Chettri, R.; Tamang, J.P. Determination of saponin contents in raw soybean and fer-mented soybean foods of India. J. Sci. Ind. Res. 2011, 70, 533–538. [Google Scholar]
- Bolívar-Monsalve, J.; Ceballos-González, C.; Ramírez-Toro, C.; Bolívar, G.A. Reduction in saponin content and production of gluten-free cream soup base using quinoa fermented with Lactobacillus plantarum. J. Food Process. Preserv. 2018, 42, e13495. [Google Scholar] [CrossRef]
- Olanipekun, B.F.; Otunola, E.T.; Oyelade, O.J. Effect of fermentation on antinutritional factors and in vitro protein digestibility of Bambara nut (Vandita subterranean L.). Food Sci. Qual. Manag. 2015, 39, 98–111. [Google Scholar]
- Shimelis, E.A.; Rakshit, S.K. Influence of natural and controlled fermentations on α-galactosides, antinutrients and protein digestibility of beans (Phaseolus vulgaris L.). Int. J. Food Sci. Technol. 2008, 43, 658–665. [Google Scholar] [CrossRef]
- Difo, V.H.; Onyike, E.; Ameh, D.A.; Njoku, G.C.; Ndidi, U.S. Changes in nutrient and antinutrient composition of Vigna racemosa flour in open and controlled fermentation. J. Food Sci. Technol. 2015, 52, 6043–6048. [Google Scholar] [CrossRef]
- Seo, S.H.; Cho, S.J. Changes in allergenic and antinutritional protein profiles of soybean meal during sol-id-state fermentation with Bacillus subtilis. LWT 2016, 70, 208–212. [Google Scholar] [CrossRef]
- Singh, T.P.; Siddiqi, R.A.; Sogi, D.S. Enzymatic modifcation of rice bran protein: Impact on structural, antioxi-dant and functional properties. LWT-Food Sci. Technol. 2021, 138, 110648. [Google Scholar] [CrossRef]
- Olatunde, O.O.; Owolabi, I.O.; Fadairo, O.S.; Ghosal, A.; Coker, O.J.; Soladoye, O.P.; Aluko, R.E.; Bandara, N. Enzymatic modification of plant proteins for improved functional and bioactive properties. Food Bioprocess Technol. 2023, 16, 1216–1234. [Google Scholar] [CrossRef]
- Fekete, M.; Lehoczki, A.; Kryczyk-Poprawa, A.; Zábó, V.; Varga, J.T.; Bálint, M.; Fazekas-Pongor, V.; Csípő, T.; Rząsa-Duran, E.; Varga, P. Functional Foods in Modern Nutrition Science: Mechanisms, Evidence, and Public Health Implications. Nutrients 2025, 17, 2153. [Google Scholar] [CrossRef]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef]
- Zayas, J.F. Functionality of Proteins in Food; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Jain, S.; Anal, A.K. Production and characterization of functional properties of protein hydrolysates from egg shell membranes by lactic acid bacteria fermentation. J. Food Sci. Technol. 2017, 54, 1062–1072. [Google Scholar] [CrossRef]
- Zinina, O.; Merenkova, S.; Rebezov, M.; Galimov, D.; Khayrullin, M.; Burkov, P. Physicochemical, functional, and technological properties of protein hydrolysates obtained by microbial fermentation of broiler chicken gizzards. Fermentation 2022, 8, 317. [Google Scholar] [CrossRef]
- Aro, N.; Ercili-Cura, D.; Andberg, M.; Silventoinen, P.; Lille, M.; Hosia, W.; Nordlund, E.; Landowski, C.P. Production of bovine beta-lactoglobulin and hen egg ovalbumin by Trichoderma reesei using precision fermentation technology and testing of their techno-functional properties. Food Res. Int. 2023, 163, 112131. [Google Scholar] [CrossRef] [PubMed]
- Prinyawiwatkul, W.; Beuchat, L.R.; McWatters, K.H.; Phillips, R.D. Functional properties of cowpea (Vigna unguiculata) flour as affected by soaking, boiling, and fungal fermentation. J. Agric. Food Chem. 1997, 45, 480–486. [Google Scholar] [CrossRef]
- Abd Elmoneim, O.E.; Schiffler, B.; Bernhardt, R. Effect of fermentation on the functional properties of sorghum flour. Food Chem. 2005, 92, 1–5. [Google Scholar] [CrossRef]
- Lampart-Szczapa, E.; Konieczny, P.; Nogala-Kałucka, M.; Walczak, S.; Kossowska, I.; Malinowska, M. Some functional properties of lupin proteins modified by lactic fermentation and extrusion. Food Chem. 2006, 96, 290–296. [Google Scholar] [CrossRef]
- Udensi, E.A. Effects of fermentation and germination on the physicochemical properties of Mucuna cochinchinensis protein isolate. Afr. J. Biotechnol. 2006, 5, 896. [Google Scholar]
- Yu, J.; Ahmedna, M.; Goktepe, I. Peanut protein concentrate: Production and functional properties as affected by processing. Food Chem. 2007, 103, 121–129. [Google Scholar] [CrossRef]
- Arteaga, V.G.; Leffler, S.; Muranyi, I.; Eisner, P.; Schweiggert-Weisz, U. Sensory profile, functional properties and molecular weight distribution of fermented pea protein isolate. Curr. Res. Food Sci. 2021, 4, 1–10. [Google Scholar] [CrossRef]
- Batbayar, B.; Kryachko, Y.; Nickerson, M.T.; Korber, D.R.; Tanaka, T. Solid-state and submerged fermentation effects on functional properties of pea protein-enriched flour. Cereal Chem. 2023, 100, 1092–1105. [Google Scholar] [CrossRef]
- Bekiroglu, H.; Karimidastjerd, A.; Ozmen, D.; Toker, O.S.; Inan, M.; Sagdic, O.; Dertli, E. Improvement of some techno-functional properties of aquafaba by pre-fermentation with Lactobacillus plantarum MA2. Food Biosci. 2023, 54, 102807. [Google Scholar] [CrossRef]
- Kramer, R.M.; Shende, V.R.; Motl, N.; Pace, C.N.; Scholtz, J.M. Toward a molecular understanding of protein solubility: Increased negative surface charge correlates with increased solubility. Biophys. J. 2012, 102, 1907–1915. [Google Scholar] [CrossRef]
- Meinlschmidt, P.; Ueberham, E.; Lehmann, J.; Schweiggert-Weisz, U.; Eisner, P. Immunoreactivity, sensory and physicochemical properties of fermented soy protein isolate. Food Chem. 2016, 205, 229–238. [Google Scholar] [CrossRef]
- Ma, W.; Xie, F.; Zhang, S.; Wang, H.; Hu, M.; Sun, Y.; Zhong, M.; Zhu, J.; Qi, B.; Li, Y. Characterizing the struc-tural and functional properties of soybean protein extracted from full-fat soybean flakes after low-temperature dry extrusion. Molecules 2018, 23, 3265. [Google Scholar] [CrossRef]
- Tatar, F.; Tunç, M.T.; Kahyaoglu, T. Turkish Tombul hazelnut (Corylus avellana L.) protein concentrates: Functional and rheological properties. J. Food Sci. Technol. 2015, 52, 1024–1031. [Google Scholar] [CrossRef]
- Rout, S.; Dash, P.; Panda, P.K.; Yang, P.C.; Srivastav, P.P. Interaction of dairy and plant proteins for improving the emulsifying and gelation properties in food matrices: A review. Food Sci. Biotechnol. 2024, 33, 3199–3212. [Google Scholar] [CrossRef]
- Zayas, J.F.; Zayas, J.F. Oil and fat binding properties of proteins. In Functionality of Proteins in Food; Springer: Berlin/Heidelberg, Germany, 1997; pp. 228–259. [Google Scholar]
- Kinsella, J.E.; Melachouris, N. Functional properties of proteins in foods: A survey. Crit. Rev. Food Sci. Nutr. 1976, 7, 219–280. [Google Scholar] [CrossRef]
- Abdelhedi, O.; Mora, L.; Jemil, I.; Jridi, M.; Toldrá, F.; Nasri, M.; Nasri, R. Effect of ultrasound pretreatment and Maillard reaction on structure and antioxidant properties of ultrafiltrated smooth-hound viscera proteins-sucrose conjugates. Food Chem. 2017, 230, 507–515. [Google Scholar] [CrossRef] [PubMed]
- Yi, C.; Li, Y.; Zhu, H.; Liu, Y.; Quan, K. Effect of Lactobacillus plantarum fermentation on the volatile flavors of mung beans. LWT—Food Sci. Technol. 2021, 146, 111434. [Google Scholar] [CrossRef]
- Cao, C.; Sun, H.; Song, X.; Zhao, M.; Lin, W.; Sun, W.; Lin, L.; Li, W.; Su, G. Effect of fermentation with Tetra-genococcus halophilus and Zygosaccharomyces rouxii on selected non-volatile taste compounds in soybean protein hydrolysates. LWT 2023, 184, 115053. [Google Scholar] [CrossRef]
- Shi, Y.; Singh, A.; Kitts, D.D.; Pratap-Singh, A. Lactic acid fermentation: A novel approach to eliminate un-pleasant aroma in pea protein isolates. LWT 2021, 150, 111927. [Google Scholar] [CrossRef]
- García Arteaga, V.; Demand, V.; Kern, K.; Strube, A.; Szardenings, M.; Muranyi, I.; Eisner, P.; Schweiggert-Weisz, U. Enzymatic hydrolysis and fermentation of pea protein isolate and its effects on antigenic proteins, functional properties, and sensory profile. Foods 2022, 11, 118. [Google Scholar] [CrossRef] [PubMed]
- Blagden, T.D.; Gilliland, S.E. Reduction of levels of volatile components associated with the “beany” flavor in soymilk by lactobacilli and streptococci. J. Food Sci. 2005, 70, M186–M189. [Google Scholar] [CrossRef]
Protein Source | Fermentation Organism | Digestibility | Ref. |
---|---|---|---|
Milk proteins | |||
Whey protein | Water kefir (including lactic and acetic acid bacteria and yeast) | It could enhance the protein digestibility of fermented whey proteins from 88.48 ± 0.94 (unfermented) to 94.33 ± 2.05% on Day 5 | [42] |
Whey protein concentrates | Streptococcus thermophilus RBC6, RBC20, and RBN16 | Fermentation enhanced the hydrolysis of WPC proteins that had a positive impact on gastro-intestinal digestion | [43] |
Cereal proteins | |||
Sorghum flour supplemented with whey protein | Natural fermentation | The in vitro protein digestibility was significantly improved during fermentation and even after supplementation | [44] |
Sorghum protein | Natural and Lactobacillus plantarum fermentation | Fermentation leads to increase in vitro protein digestibility (IVPD) by 46.89% and 92.08%, for natural and L. Plantarum, respectively. This is associated with hydrolysis of protein and tannin in sorghum | [45] |
Sorghum protein | Yeast (Saccharomyces cerevisiae) and, Lipomyces kononenkoae | Increased in pepsin digestibility of sorghum protein compared to thermally processed control samples | [46] |
Wheat Protein in Sourdough and Crackers | Lactobacillus plantarum HLJ29L2 and Yeast | There was a strong increase in protein digestibility after fermentation | [47] |
Wheat protein | Pediococcus acidilactici XZ31 and yeast | Co-culture fermentation with Pediococcus acidilactici XZ31 and yeast led to improvement in digestibility of wheat protein compared to single strain fermentation | [48] |
Legume Proteins | |||
Lentils, chickpea, rice and wheat | Natural fermentation | Digestibility was 45.30%, 58.76%, 80.3% and 82.6% for raw lentils, chickpea, rice and wheat and became 84.18%, 85.07%, 88.27%, 87.12%, respectively, at the end of the fermentation period | [49] |
Flour and whole bean seeds (Phaseolus vulgaris) | Natural fermentation | Desirable increase in digestibility because of fermentation | [50] |
Grass-pea seeds | R. oligosporus DSMZ 1964 | Considerable increase in protein bioavailability of grass-pea seeds (higher in the case of cooked ones) which could be due to both thermal denaturation and elimination of anti-nutrients | [51] |
Pea protein concentrate | Lactobacillus plantarum | Protein digestibility reached a maximum (87.4%) after 5 h of fermentation; however, the alteration of sulfur amino acid content resulted in an overall reduction in protein quality | [27] |
Lentil (Lens culinaris) proteins | Using water kefir seed | Protein digestibility increased from 76.4 to 84.1% over the 5 days of fermentation. | [52] |
Zamne (Senegalia macrostachya seeds) | Rhizopus oryzae | Improving the protein hydrolysis degree which led to increase in digestibility | [53] |
Chickpea protein | Lactobacillus Plantarum HLJ29L | Improving the hydrolysis of protein during gastric and intestinal digestion by altering the multilevel structures of chickpea protein | [40] |
Red kidney bean protein | Rhizopus oligosporus RT-3 | Solid-state fermentation facilitated the structural breakdown of cotyledon cell walls, thereby further improving protein digestibility | [54] |
Other Plant proteins | |||
Sandbox (Hura crepitans seeds) | Natural fermentation | Fermentation and cooking of H. crepitans seeds improved their protein contents and in vitro digestibility | [35] |
Rapeseed protein | Bacillus subtilis strain 87Y | Improving the ileal digestibility of protein, crude fat and crude fiber (by about 4%, 6% and 14%, respectively) and significantly improved the digestibility of micro- and macro-elements | [55] |
Protein Source | Fermentation Organism | Functional Properties | ||||
---|---|---|---|---|---|---|
Protein Solubility | Emulsifying Properties | Foaming Properties | Surface and Bulk Properties | Ref | ||
Animal and Milk proteins | ||||||
Protein hydrolysates from eggshell membranes | Lactobacillus plantarum | Improvement of solubility | Increase in emulsifying activity | Increase in foaming capacity | - | [109] |
Protein hydrolysates from broiler chicken gizzards | Bifidobacterium longum B379M and Propionibacterium freudenreichii | Improvement of solubility | Increase in emulsion capacity | Increase in foaming capacity | Increase in WBC Increase in OBC | [110] |
Bovine beta-lactoglobulin and hen egg ovalbumin | Trichoderma reesei | - | Improvement in emulsion stability and emulsifying capacity | Increase in foaming capacity | Improvement in heat- gelation | [111] |
Whey protein | Kefir | Improvement of solubility | - | - | Decrease in surface hydrophobicity | [42] |
Whey protein concentrates | Yeast (Saccharomyces cerevisiae) | Improvement in solubility | Enhancement in the emulsifying activity and stability | - | increase in surface hydrophobicity | [28] |
Plant proteins | ||||||
Cowpea (Vigna unguiculata) protein | Rhizopus microsporus subsp. oligosporus | Increase in solubility | Higher emulsion capacity | - | - | [112] |
Sorghum flour protein | Traditional Sudanese method | Shifting in the solubility of sorghum proteins by 2 pH units and more soluble protein at pH isoelectric | Increase in emulsifying/capacity (EC) and emulsifying stability (ES) | - | Increase in OBC Decrease in gelation concentration Decrease in WBC | [113] |
Lupin seeds protein | Leuconostoc mesenteroides, Lactobacillus plantarum and Lactobacillus brevis | Increase in soluble protein content | Decrease in emulsifying activity | - | Increase in WAC and WHC | [114] |
Mucuna cochinchinensis protein isolate | Natural fermentation | - | Increase in emulsifying capacity | Increase in foam capacity and foam stability | Decrease in OBC Decrease in WBC Increase in gelation capacity | [115] |
Peanut protein concentrate | Rhizopus oligsporus | Increase in solubility of defatted roasted peanut flour across the pH range tested (pH 3.0–10.0) | Increase in emulsifying capacity | Increase in foam capacity | - | [116] |
Sandbox (Hura crepitans) seeds protein | Natural fermentation | Improvement of protein in alkaline pHs | Decrease in emulsifying properties | Decrease in foaming capacity | Decrease in OBC Decrease in WBC Increase in least gel concentration | [35] |
Lupin protein isolate | 8 different lactobacillus strains | Decrease in solubility at pH = 7 | Decrease in emulsifying capacity | Increase in foam activity | - | [66] |
Bambara protein isolate | - | Improvement in solubility and protein yield | Increase in emulsion stability and capacity | Decrease in foam stability | Decrease in WBC Increase in OBC Increase least gelation concentration | [29] |
Pea protein isolate | L. plantarum, L. fermentum, L. perolens, L. casei, Lc. Cremoris, P. pentosaceus | Improvement in protein solubility at pH 5.0 but a significant decrease at pH 3.0 | Decrease in emulsifying capacity | No change | - | [117] |
Lupin Protein Hydrolysates | Lactobacillus sakei ssp. carnosus, Lactobacillus amylolyticus and Lactobacillus helveticus | Improvement of solubility | Decrease in emulsion capacity and activity | Increase in foaming capacity and stability | - | [65] |
Lentil–Casein Protein Complexes | Kefir-Assisted Fermentation | Improvement of solubility | - | - | - | [18] |
Pea protein-enriched flour | (Aspergillus oryzae NRRL 5590, Rhizopus oryzae NRRL 395, Rhizopus oligosporus NRRL 2710, Lactobacillus plantarum NRRL B4496, and Bacillus subtilis ATCC 6051) | Decrease in solubility | Increase in emulsion stability | Decrease in foam capacity (FC) and foam stability (FS) | Increase in WBC Increase in OBC | [118] |
Chickpea aquafaba protein | Lactobacillus plantarum MA2 | Improvement in solubility | Increase in emulsifying capacity | Improvement in foaming expansion and stability | Increase in OBC | [119] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yousefi, N.; Shokrollahi Yancheshmeh, B.; Gernaey, K.V. The Potential of Fermentation-Based Processing on Protein Modification: A Review. Foods 2025, 14, 3461. https://doi.org/10.3390/foods14203461
Yousefi N, Shokrollahi Yancheshmeh B, Gernaey KV. The Potential of Fermentation-Based Processing on Protein Modification: A Review. Foods. 2025; 14(20):3461. https://doi.org/10.3390/foods14203461
Chicago/Turabian StyleYousefi, Negin, Behdad Shokrollahi Yancheshmeh, and Krist V. Gernaey. 2025. "The Potential of Fermentation-Based Processing on Protein Modification: A Review" Foods 14, no. 20: 3461. https://doi.org/10.3390/foods14203461
APA StyleYousefi, N., Shokrollahi Yancheshmeh, B., & Gernaey, K. V. (2025). The Potential of Fermentation-Based Processing on Protein Modification: A Review. Foods, 14(20), 3461. https://doi.org/10.3390/foods14203461