Novel Development and Sensory Evaluation of Extruded Snacks from Unripe Banana (Musa ABB cv. Kluai ‘Namwa’) and Rice Flour Enriched with Antioxidant-Rich Curcuma longa Microcapsules
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Standardized Extract of Curcuma longa and Chemicals
2.2. Encapsulation of the Standardized Extract of Curcuma longa
2.3. Estimation of Total Phenolic and Total Flavonoid Contents of CMs
2.4. Determination of Antioxidant Capacities of CMs
2.5. Preparation of Extruded Snack
2.6. Analysis of Nutritional Facts
2.7. Sensory Evaluation
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chung, H.K.; Kim, J.H.; Choi, A.; Ahn, C.W.; Kim, Y.S.; Nam, J.S. Antioxidant-rich dietary intervention improves cardiometabolic profiles and arterial stiffness in elderly Koreans with metabolic syndrome. Yonsei Med. J. 2022, 63, 26–33. [Google Scholar] [CrossRef]
- Chan, S.W.; Tomlinson, B. Effects of bilberry supplementation on metabolic and cardiovascular disease risk. Molecules 2020, 25, 1653. [Google Scholar] [CrossRef] [PubMed]
- Szulc, A.; Wiśniewska, K.; Żabińska, M.; Gaffke, L.; Szota, M.; Olendzka, Z.; Węgrzyn, G.; Pierzynowska, K. Effectiveness of flavonoid-rich diet in alleviating symptoms of neurodegenerative diseases. Foods 2024, 13, 1931. [Google Scholar] [CrossRef] [PubMed]
- Al-Hindi, R.R.; Abd El Ghani, S. Production of functional fermented milk beverages supplemented with pomegranate peel extract and probiotic lactic acid bacteria. J. Food Qual. 2020, 2020, 4710273. [Google Scholar] [CrossRef]
- Georgakouli, K.; Mpesios, A.; Kouretas, D.; Petrotos, K.; Mitsagga, C.; Giavasis, I.; Jamurtas, A.Z. The Effects of an olive fruit polyphenol-enriched yogurt on body composition, blood redox status, physiological and metabolic parameters and yogurt microflora. Nutrients 2016, 8, 344. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, J.J.A.; Wolska, A.; Remaley, A.T.; Stojanovski, E.; MacDonald-Wicks, L.; Garg, M.L. Bread enriched with phytosterols with or without curcumin modulates lipoprotein profiles in hypercholesterolaemic individuals. A randomised controlled trial. Food Funct. 2019, 10, 2515–2527. [Google Scholar] [CrossRef]
- Hutachok, N.; Koonyosying, P.; Paradee, N.; Samakradhamrongthai, R.S.; Utama-Ang, N.; Srichairatanakool, S. Testing the feasibility and dietary impact of macaroni fortified with green tea and turmeric curcumin extract in diabetic rats. Foods 2023, 12, 534. [Google Scholar] [CrossRef] [PubMed]
- Kunnumakkara, A.B.; Hegde, M.; Parama, D.; Girisa, S.; Kumar, A.; Daimary, U.D.; Garodia, P.; Yenisetti, S.C.; Oommen, O.V.; Aggarwal, B.B. Role of Turmeric and Curcumin in Prevention and Treatment of Chronic Diseases: Lessons Learned from Clinical Trials. ACS Pharmacol. Transl. Sci. 2023, 6, 447–518. [Google Scholar] [CrossRef]
- Rolfe, V.; Mackonochie, M.; Mills, S.; MacLennan, E. Turmeric/curcumin and health outcomes: A meta-review of systematic reviews. Eur. J. Integr. Med. 2020, 40, 101252. [Google Scholar] [CrossRef]
- Dei Cas, M.; Ghidoni, R. Dietary curcumin: Correlation between bioavailability and health potential. Nutrients 2019, 11, 2147. [Google Scholar] [CrossRef] [PubMed]
- Tabanelli, R.; Brogi, S.; Calderone, V. Improving curcumin bioavailability: Current strategies and future perspectives. Pharmaceutics 2021, 13, 1715. [Google Scholar] [CrossRef]
- Buniowska-Olejnik, M.; Urbański, J.; Mykhalevych, A.; Bieganowski, P.; Znamirowska-Piotrowska, A.; Kačániová, M.; Banach, M. The influence of curcumin additives on the viability of probiotic bacteria, antibacterial activity against pathogenic microorganisms, and quality indicators of low-fat yogurt. Front. Nutr. 2023, 10, 1118752. [Google Scholar] [CrossRef]
- Heidari, H.; Bagherniya, M.; Majeed, M.; Sathyapalan, T.; Jamialahmadi, T.; Sahebkar, A. Curcumin-piperine co-supplementation and human health: A comprehensive review of preclinical and clinical studies. Phytother. Res. 2023, 37, 1462–1487. [Google Scholar] [CrossRef]
- Zou, P.-R.; Hu, F.; Zhang, F.; Thakur, K.; Khan, M.R.; Busquets, R.; Zhang, J.-G.; Wei, Z.-J. Hydrophilic co-assembly of wheat gluten proteins and wheat bran cellulose improving the bioavailability of curcumin. Food Chem. 2022, 397, 133807. [Google Scholar] [CrossRef]
- Vitaglione, P.; Barone Lumaga, R.; Ferracane, R.; Radetsky, I.; Mennella, I.; Schettino, R.; Koder, S.; Shimoni, E.; Fogliano, V. Curcumin bioavailability from enriched bread: The effect of microencapsulated ingredients. J. Agric. Food Chem. 2012, 60, 3357–3366. [Google Scholar] [CrossRef]
- Ashraf, H.; Butt, M.S.; Iahtisham-Ul-Haq; Nadeem, M.; Aadil, R.M.; Rusu, A.V.; Trif, M. Microencapsulated curcumin from Curcuma longa modulates diet-induced hypercholesterolemia in Sprague Dawley rats. Front. Nutr. 2022, 9, 1026890. [Google Scholar] [CrossRef]
- Laokuldilok, N.; Thakeow, P.; Kopermsub, P.; Utama-ang, N. Optimisation of microencapsulation of turmeric extract for masking flavour. Food Chem. 2016, 194, 695–704. [Google Scholar] [CrossRef] [PubMed]
- Korkerd, S.; Wanlapa, S.; Puttanlek, C.; Uttapap, D.; Rungsardthong, V. Expansion and functional properties of extruded snacks enriched with nutrition sources from food processing by-products. J. Food Sci. Technol. 2016, 53, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Gamlath, S.; Wakeling, L. Nutritional aspects of food extrusion: A review. Int. J. Food Sci. Technol. 2007, 42, 916–929. [Google Scholar] [CrossRef]
- Huang, X.; Liu, H.; Ma, Y.; Mai, S.; Li, C. Effects of extrusion on starch molecular degradation, order-disorder structural transition and digestibility—A review. Foods 2022, 22, 2538. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Li, W.; Zhang, T.; Li, H.; Zang, M.; Liu, X. Effect of extrusion on the protein structure and digestibility of extruded soybean protein. J. Sci. Food Agric. 2024, 104, 2225–2232. [Google Scholar] [CrossRef]
- Falcomer, A.L.; Riquette, R.F.R.; de Lima, B.R.; Ginani, V.C.; Zandonadi, R.P. Health benefits of green banana consumption: A systematic review. Nutrients 2019, 11, 1222. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Kim, H.S. Rice-based gluten-free foods and technologies: A review. Foods 2023, 12, 4110. [Google Scholar] [CrossRef]
- Vonghirundecha, P.; Chusri, S.; Meunprasertdee, P.; Kaewmanee, T. Microencapsulated functional ingredients from a Moringa oleifera leaf polyphenol-rich extract: Characterization, antioxidant properties, in vitro simulated digestion, and storage stability. LWT-Food Sci. Technol. 2022, 154, 112820. [Google Scholar] [CrossRef]
- Chanthasri, W.; Puangkeaw, N.; Kunworarath, N.; Jaisamut, P.; Limsuwan, S.; Maneenoon, K.; Choochana, P.; Chusri, S. Antioxidant capacities and total phenolic contents of 20 polyherbal remedies used as tonics by folk healers in Phatthalung and Songkhla provinces, Thailand. BMC Complement. Altern. Med. 2018, 18, 73. [Google Scholar] [CrossRef] [PubMed]
- Chanthasri, W.; Aan, G.J.; Singkonpong, N.; Sudkhaw, T.; Maneenoon, K.; Limsuwan, S.; Sanpinit, S.; Wetchakul, P.; Chusri, S. Antioxidant and lifespan-extending effects of a rejuvenating Thai traditional polyherbal remedy (Phy-Blica-O) in Caenorhabditis elegans. Trop. J. Nat. Prod. Res. 2021, 5, 1554–1568. [Google Scholar]
- Wetchakul, P.; Goon, J.A.; Adekoya, A.E.; Olatunji, O.J.; Ruangchuay, S.; Jaisamut, P.; Issuriya, A.; Kunworarath, N.; Limsuwan, S.; Chusri, S. Traditional tonifying polyherbal infusion, Jatu-Phala-Tiga, exerts antioxidant activities and extends lifespan of Caenorhabditis elegans. BMC Complement. Altern. Med. 2019, 19, 209. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Gao, J. The Chinese total diet study in 1990. Part II. Nutrients. J. AOAC Int. 1993, 76, 1206–1213. [Google Scholar] [CrossRef] [PubMed]
- Lerttrakarnnon, P.; Kusirisin, W.; Koonyosying, P.; Flemming, B.; Utama-Ang, N.; Fucharoen, S.; Srichairatanakool, S. Consumption of sinlek rice drink improved red cell indices in anemic elderly subjects. Molecules 2021, 26, 6285. [Google Scholar] [CrossRef] [PubMed]
- Mongeau, R.; Brassard, R. Enzymatic-gravimetric determination in foods of dietary fiber as sum of insoluble and soluble fiber fractions: Summary of collaborative study. J. AOAC Int. 2020, 76, 923–925. [Google Scholar] [CrossRef]
- Munzuroglu, O.; Karatas, F.; Geckil, H. The vitamin and selenium contents of apricot fruit of different varieties cultivated in different geographical regions. Food Chem. 2003, 83, 205–212. [Google Scholar] [CrossRef]
- Ashtari, S.; Pourhoseingholi, M.A.; Rostami, K.; Aghdaei, H.A.; Rostami-Nejad, M.; Busani, L.; Tavirani, M.R.; Zali, M.R. Prevalence of gluten-related disorders in Asia-Pacific region: A systematic review. J. Gastrointestin. Liver Dis. 2019, 28, 95–105. [Google Scholar] [CrossRef]
- Jan, N.; Naik, H.R.; Gani, G.; Bashir, O.; Hussain, S.Z.; Rather, A.H.; Zargar, I.A.; Wani, S.M.; Amin, T. Optimization of process for the development of rice flour incorporated low-gluten wheat based pretzels: Evaluation of its physicochemical, thermal and textural characteristics. J. Saudi Soc. Agric. Sci. 2021, 20, 116–127. [Google Scholar] [CrossRef]
- Kunyanee, K.; Van Ngo, T.; Kusumawardani, S.; Luangsakul, N. Enhancing banana flour quality through physical modifications and its application in gluten-free chips product. Foods 2024, 13, 593. [Google Scholar] [CrossRef]
- Estévez, M. Critical overview of the use of plant antioxidants in the meat industry: Opportunities, innovative applications and future perspectives. Meat Sci. 2021, 181, 108610. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Wang, H.; Xu, P.; Yao, Y.; Ma, Y.; Wei, Z.; Niu, X.; Shang, Y.; Zhao, D. Effect of grape seed proanthocyanidin on the structural and physicochemical properties of bread during bread fermentation stage. Curr. Res. Food Sci. 2023, 7, 100559. [Google Scholar] [CrossRef]
- Gawlik-Dziki, U.; Świeca, M.; Dziki, D.; Sęczyk, Ł.; Złotek, U.; Różyło, R.; Kaszuba, K.; Ryszawy, D.; Czyż, J. Anticancer and antioxidant activity of bread enriched with broccoli sprouts. Biomed. Res. Int. 2014, 2014, 608053. [Google Scholar] [CrossRef]
- Prokopov, T.; Chonova, V.; Slavov, A.; Dessev, T.; Dimitrov, N.; Petkova, N. Effects on the quality and health-enhancing properties of industrial onion waste powder on bread. J. Food Sci. Technol. 2018, 55, 5091–5097. [Google Scholar] [CrossRef] [PubMed]
- Yusufali, Z.; Follett, P.; Wall, M.; Sun, X. Physiochemical and sensory properties of a turmeric, ginger, and pineapple functional beverage with effects of pulp content. Foods 2024, 13, 718. [Google Scholar] [CrossRef] [PubMed]
- Lučan Čolić, M.; Antunović, M.; Jukić, M.; Popović, I.; Lukinac, J. Sensory acceptance and characterisation of turmeric- and black-pepper-enriched ice cream. Appl. Sci. 2023, 13, 11802. [Google Scholar] [CrossRef]
- Çam, M.; İçyer, N.C.; Erdoğan, F. Pomegranate peel phenolics: Microencapsulation, storage stability and potential ingredient for functional food development. LWT-Food Sci. Technol. 2014, 55, 117–123. [Google Scholar] [CrossRef]
- Hamid; Thakur, N.S.; Sharma, R.; Thakur, A. Optimization of lyophilized microencapsulated phenolic extract concentration for enrichment of yoghurt and effect on chemical parameters, bioactive compounds, antioxidant activity and sensory quality under storage. S. Afr. J. Bot. 2022, 151, 413–422. [Google Scholar] [CrossRef]
- Grassia, M.; Messia, M.C.; Marconi, E.; Demirkol, Ȫ.; Erdoğdu, F.; Sarghini, F.; Cinquanta, L.; Corona, O.; Planeta, D. Microencapsulation of phenolic extracts from cocoa shells to enrich chocolate bars. Plant Foods Hum. Nutr. 2021, 76, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Luca, A.; Cilek, B.; Hasirci, V.; Sahin, S.; Sumnu, G. Storage and baking stability of encapsulated sour cherry phenolic compounds prepared from micro- and nano-suspensions. Food Bioprocess Technol. 2014, 7, 204–211. [Google Scholar] [CrossRef]
- Fang, Z.; Bhandari, B. Encapsulation of polyphenols—A review. Trends Food Sci. Technol. 2010, 21, 510–523. [Google Scholar] [CrossRef]
- Smirnova, E.; Moniruzzaman, M.; Chin, S.; Sureshbabu, A.; Karthikeyan, A.; Do, K.; Min, T. A review of the role of curcumin in metal induced toxicity. Antioxidants 2023, 12, 243. [Google Scholar] [CrossRef]
- Prasad, S.; DuBourdieu, D.; Srivastava, A.; Kumar, P.; Lall, R. Metal–curcumin complexes in therapeutics: An approach to enhance pharmacological effects of curcumin. Int. J. Mol. Sci. 2021, 22, 7094. [Google Scholar] [CrossRef] [PubMed]
- Baum, L.; Ng, A. Curcumin interaction with copper and iron suggests one possible mechanism of action in Alzheimer’s disease animal models. J. Alzheimers Dis. 2004, 6, 367–377. [Google Scholar] [CrossRef]
- Rainey, N.E.; Moustapha, A.; Saric, A.; Nicolas, G.; Sureau, F.; Petit, P.X. Iron chelation by curcumin suppresses both curcumin-induced autophagy and cell death together with iron overload neoplastic transformation. Cell Death Discov. 2019, 5, 150. [Google Scholar] [CrossRef] [PubMed]
- Ak, T.; Gülçin, İ. Antioxidant and radical scavenging properties of curcumin. Chem. Biol. Interact. 2008, 174, 27–37. [Google Scholar] [CrossRef]
- Kim, G.-H.; Duan, Y.; Kim, H.-S. Effects of various extracts from turmeric (Curcuma longa L.) on antioxidant Activity. J. Korean Appl. Sci. Tech. 2016, 33, 521–528. [Google Scholar] [CrossRef]
- Huang, M.-T. Antioxidant and antitumorigenic properties of curcumin. In Food Factors for Cancer Prevention; Springer: Tokyo, Japan; pp. 249–252.
- Gupta, N.; Verma, K.; Nalla, S.; Kulshreshtha, A.; Lall, R.; Prasad, S. Free radicals as a double-edged sword: The cancer preventive and therapeutic roles of curcumin. Molecules 2020, 25, 5390. [Google Scholar] [CrossRef]
- Cox, F.F.; Misiou, A.; Vierkant, A.; Ale-Agha, N.; Grandoch, M.; Haendeler, J.; Altschmied, J. Protective effects of curcumin in cardiovascular diseases—Impact on oxidative stress and mitochondria. Cells 2022, 11, 342. [Google Scholar] [CrossRef] [PubMed]
- Abrahams, S.; Haylett, W.L.; Johnson, G.; Carr, J.A.; Bardien, S. Antioxidant effects of curcumin in models of neurodegeneration, aging, oxidative and nitrosative stress: A review. Neuroscience 2019, 406, 1–21. [Google Scholar] [CrossRef]
Microcapsules | Total Phenolic Content | Total Flavonoid Content | |
---|---|---|---|
(mg gallic acid equivalence/g of extract) | (mg catechin equivalence/g of extract) | ||
CM1 | 278.17 ± 26.20 b | 61.13 ± 2.78 c | |
CM2 | 289.79 ± 26.58 b | 122.64 ± 5.95 a | |
CM3 | 282.04 ± 19.46 b | 82.59 ± 5.93 b | |
CM4 | 366.90 ± 30.32 a | 82.03 ± 2.47 b | |
CM5 | 270.80 ± 18.93 b | 89.08 ± 4.23 b | |
CM6 | 346.36 ± 24.00 a | 91.14 ± 5.96 b |
Microcapsules | Mean ± SD * | ||||
---|---|---|---|---|---|
Metal Chelating | DPPH | ABTS | FRAP | NBT | |
CM1 | 61.52 ± 0.87 a | 47.39 ± 4.15 c | 58.42 ± 1.52 d | 16.85 ± 0.10 d | 50.50 ± 4.90 c |
CM2 | 61.42 ± 1.28 a | 70.72 ± 3.39 a | 105.22 ± 1.73 a | 17.25 ± 0.65 d | 93.84 ± 1.55 a |
CM3 | 64.65 ± 1.75 a | 47.36 ± 1.25 c | 62.28 ± 2.30 d | 19.37 ± 1.93 c | 93.24 ± 3.76 a |
CM4 | 52.41 ± 4.28 b | 58.90 ± 0.46 b | 78.73 ± 3.27 c | 28.95 ± 1.47 a | 84.69 ± 8.02 b |
CM5 | 50.57 ± 1.99 b | 59.86 ± 1.12 b | 81.72 ± 3.24 c | 18.93 ± 0.49 c,d | 85.32 ± 2.01 b |
CM6 | 62.66 ± 3.29 a | 59.89 ± 3.31 b | 87.58 ± 1.33 b | 22.88 ± 1.05 b | 78.41 ± 1.40 b |
Ingredients (in 100 g) | Control Formula | Curcumin Microcapsule Formula |
---|---|---|
Local rice flour (Sang Yod Phattalung) | 76.5 | 76.5 |
Green banana flour | 20 | 20 |
Salt | 0.75 | 0.75 |
Rice bran oil | 1 | 1 |
Stabilizer (INS460ii): cellulose | 1 | 1 |
Sodium carbonate | 0.5 | 0.5 |
CM-6 powder/wall material powder | 0.25 | 0.25 |
Characters | Groups of Volunteers | |
---|---|---|
HFCb (n = 50) | RFCb (n = 50) | |
Overall acceptability | 7.8 ± 1.1 a | 6.9 ± 1.5 b |
Appearance | 7.5 ± 1.2 a | 6.7 ± 1.5 b |
Odor | 7.2 ± 1.4 a | 6.5 ± 1.5 b |
Crispiness | 7.4 ± 1.2 ns | 6.8 ± 1.7 ns |
Taste | 7.8 ± 1.2 a | 6.9 ± 1.7 b |
Texture | 8.0 ± 1.0 a | 7.5 ± 1.4 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awaeloh, N.; Limsuwan, S.; Na-Phatthalung, P.; Kaewmanee, T.; Chusri, S. Novel Development and Sensory Evaluation of Extruded Snacks from Unripe Banana (Musa ABB cv. Kluai ‘Namwa’) and Rice Flour Enriched with Antioxidant-Rich Curcuma longa Microcapsules. Foods 2025, 14, 205. https://doi.org/10.3390/foods14020205
Awaeloh N, Limsuwan S, Na-Phatthalung P, Kaewmanee T, Chusri S. Novel Development and Sensory Evaluation of Extruded Snacks from Unripe Banana (Musa ABB cv. Kluai ‘Namwa’) and Rice Flour Enriched with Antioxidant-Rich Curcuma longa Microcapsules. Foods. 2025; 14(2):205. https://doi.org/10.3390/foods14020205
Chicago/Turabian StyleAwaeloh, Nurulhusna, Surasak Limsuwan, Pinanong Na-Phatthalung, Thammarat Kaewmanee, and Sasitorn Chusri. 2025. "Novel Development and Sensory Evaluation of Extruded Snacks from Unripe Banana (Musa ABB cv. Kluai ‘Namwa’) and Rice Flour Enriched with Antioxidant-Rich Curcuma longa Microcapsules" Foods 14, no. 2: 205. https://doi.org/10.3390/foods14020205
APA StyleAwaeloh, N., Limsuwan, S., Na-Phatthalung, P., Kaewmanee, T., & Chusri, S. (2025). Novel Development and Sensory Evaluation of Extruded Snacks from Unripe Banana (Musa ABB cv. Kluai ‘Namwa’) and Rice Flour Enriched with Antioxidant-Rich Curcuma longa Microcapsules. Foods, 14(2), 205. https://doi.org/10.3390/foods14020205