Enhancement of Antioxidant Activity, Stability, and Structure of Heme-Peptides by L-Lysine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Fractionation of Supernatant
2.4. Recovery Rate and Composition
2.4.1. Recovery Rate of Ferrous Heme
2.4.2. Peptide Content
2.4.3. Ferrous Ion and Iron
2.5. Determination of Antioxidant Activity
2.5.1. DPPH Radical Scavenging Activity
2.5.2. Reducing Power
2.5.3. Iron-Chelating Activity
2.5.4. ABTS·+ Radical Scavenging Activity
2.6. Determination of Structural Properties
2.6.1. Size and Zeta Potential of Heme-Peptides
2.6.2. Fourier-Transform Infrared Spectroscopy of Heme-Peptides
2.6.3. Intrinsic Fluorescence Spectrometry of Heme-Peptides
2.6.4. Scanning Electron Microscopy
2.6.5. Molecular Docking Study
2.7. Stability Characterization of Heme-Peptides
2.7.1. Storage Stability
2.7.2. Metal Ion Stability
2.7.3. Thermal Stability
2.7.4. pH Stability
2.8. Simulated Gastrointestinal Digestion In Vitro
2.8.1. Gastric Digestion
2.8.2. Intestinal Digestion
2.9. Statistical Analysis
3. Results and Discussion
3.1. Lys-Assisted Enzymolytic Preparation of Heme-Peptides
3.1.1. Effects of Lys Concentration on the Preparation of Heme-Peptides
3.1.2. Ultrafiltration
3.1.3. Composition Analysis
3.2. Antioxidant Activity
3.3. Structural Properties
3.3.1. Size and Zeta Potential
3.3.2. FT-IR Spectroscopy
3.3.3. Intrinsic Fluorescence Spectrometry
3.3.4. Micromorphology
3.3.5. Molecular Docking Simulation Analysis
3.4. Stability Characterization Analysis
3.4.1. Effects of Storage Time on Heme-Peptides
3.4.2. Effects of Metal Ions on Heme-Peptides
3.4.3. Effects of Temperature on Heme-Peptides
3.4.4. Effects of pH on Heme-Peptides
3.5. Pepsin–Pancreatin Simulated Digestion In Vitro
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheng, C.; Chen, L.; Zhang, D.; Yu, J.; Zhu, M.; Li, C.; Zheng, X.; Blecker, C.; Li, S. Value-added utilization of hemoglobin and its hydrolysis products from livestock and poultry blood processing by-products: A review. Trends Food Sci. Technol. 2024, 151, 104645. [Google Scholar] [CrossRef]
- Liu, L.; Guo, J.; Wang, Z.; Duan, X.; Zhang, X.; Yu, Y.; Su, K.; Lu, Y.; Wu, T. Effect of interaction between catechin and glycated porcine hemoglobin on its antioxidant functional and structural properties. LWT Food Sci. Technol. 2023, 182, 114868. [Google Scholar] [CrossRef]
- Wang, B.; Cheng, F.; Gao, S.; Ge, W.; Zhang, M. Double enzymatic hydrolysis preparation of heme from goose blood and microencapsulation to promote its stability and absorption. Food Chem. 2017, 217, 699–704. [Google Scholar] [CrossRef] [PubMed]
- Pasricha, S.-R.; Tye-Din, J.; Muckenthaler, M.U.; Swinkels, D.W. Iron deficiency. Lancet 2021, 397, 233–248. [Google Scholar] [CrossRef]
- Park, S.-H.; Lee, Y.; Jeon, H.; Park, J.; Kim, J.; Kang, M.; Namkung, W. Anticancer Effect of Hemin through ANO1 Inhibition in Human Prostate Cancer Cells. Int. J. Mol. Sci. 2024, 25, 6032. [Google Scholar] [CrossRef] [PubMed]
- Tian, T.; Wu, X.; Wu, P.; Lu, X.; Wang, Q.; Lin, Y.; Liu, C.; Zhou, J.; Yu, Y.; Lu, H. High-level expression of leghemoglobin in Kluyveromyces marxianus by remodeling the heme metabolism pathway. Front. Bioeng. Biotechnol. 2024, 11, 1329016. [Google Scholar] [CrossRef] [PubMed]
- Berraquero-García, C.; Almécija, M.C.; Guadix, E.M.; Pérez-Gálvez, R. Valorisation of blood protein from livestock to produce haem iron-fortified hydrolysates with antioxidant activity. Int. J. Food Sci. Technol. 2022, 57, 2479–2486. [Google Scholar] [CrossRef]
- Chang, C.Y.; Wu, K.C.; Chiang, S.H. Antioxidant properties and protein compositions of porcine haemoglobin hydrolysates. Food Chem. 2007, 100, 1537–1543. [Google Scholar] [CrossRef]
- He, L.; Yang, F.; Liang, Y.; Zhang, M.; Liu, X.; Zhao, S.; Jin, G. Process optimisation of haemoglobin hydrolysis by complex proteases to produce haem-enriched peptides and its iron uptake property evaluation by Caco-2 cell model. Int. J. Food Sci. Technol. 2020, 55, 3412–3423. [Google Scholar] [CrossRef]
- Hu, X.; Wu, D.; Tang, L.; Zhang, J.; Zeng, Z.; Geng, F.; Li, H. Binding mechanism and antioxidant activity of piperine to hemoglobin. Food Chem. 2022, 394, 133558. [Google Scholar] [CrossRef] [PubMed]
- Tansukkasem, S.; Kaewpathomsri, P.; Jonjaroen, V.; Payongsri, P.; Lertsiri, S.; Niamsiri, N. Production and Characterization of Heme Iron Polypeptide from the Blood of Skipjack Tuna (Katsuwonus pelamis) Using Enzymatic Hydrolysis for Food Supplement Application. Foods 2023, 12, 3249. [Google Scholar] [CrossRef]
- Song, X.; Cornforth, D.; Whittier, D.; Luo, X. Nitrite spray treatment to promote red color stability of vacuum packaged beef. Meat Sci. 2015, 99, 8–17. [Google Scholar] [CrossRef]
- Zhou, C.; Ye, H.; Nishiumi, T.; Qin, H.; Chen, C. l-Histidine enhances stability of hemoglobin concentrates by coordinating with free iron. Food Res. Int. 2014, 62, 637–643. [Google Scholar] [CrossRef]
- Xu, P.; Zhu, X.; Tan, S.; Qin, H.; Zhou, C. The role of monoxide hemoglobin in color improvement of chicken sausage. Food Sci. Biotechnol. 2016, 25, 409–414. [Google Scholar] [CrossRef]
- Djenane, D.; Roncales, P. Carbon Monoxide in Meat and Fish Packaging: Advantages and Limits. Foods 2018, 7, 12. [Google Scholar] [CrossRef] [PubMed]
- Karwowska, M.; Kononiuk, A. Nitrates/Nitrites in Food-Risk for Nitrosative Stress and Benefits. Antioxidants 2020, 9, 241. [Google Scholar] [CrossRef]
- Guo, X.; Xu, S.; Jiang, P.; Fu, C.; Wang, J.; Meng, X. L-lysine enhances pork color through antioxidant activity and myoglobin conformational changes. Food Res. Int. 2024, 197, 115148. [Google Scholar] [CrossRef]
- Ning, C.; Li, L.; Fang, H.; Ma, F.; Tang, Y.; Zhou, C. l-Lysine/l-arginine/l-cysteine synergistically improves the color of cured sausage with NaNO2 by hindering myoglobin oxidation and promoting nitrosylmyoglobin formation. Food Chem. 2019, 284, 219–226. [Google Scholar] [CrossRef]
- Zhu, X.; Li, L.; Li, S.; Ning, C.; Zhou, C. l–Arginine/l–lysine improves emulsion stability of chicken sausage by increasing electrostatic repulsion of emulsion droplet and decreasing the interfacial tension of soybean oil-water. Food Hydrocoll. 2019, 89, 492–502. [Google Scholar] [CrossRef]
- Barr, I.; Guo, F. Pyridine Hemochromagen Assay for Determining the Concentration of Heme in Purified Protein Solutions. Bio Protoc. 2015, 5, 1594–1601. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Xu, F.; Zhou, H.; Gao, Y.; Zhu, H.; Nie, W.; Wang, Z.; Wang, Y.; Deng, J.; Zhou, K.; et al. Evolution of antioxidant peptides and their proteomic homology during processing of Jinhua ham. LWT Food Sci. Technol. 2022, 166, 113771. [Google Scholar] [CrossRef]
- Wang, Y.; Tan, L.; Zhang, W.; Yang, Y.; Li, C.; Li, H.; Cai, K.; Hu, Y.; Luo, Z.; Liu, M. Injectable Dynamic Hydrogel with Responsive Mechanical Reinforcing Ability Reverses Intervertebral Disc Degeneration by Suppressing Ferroptosis and Restoring Matrix Homeostasis. Adv. Funct. Mater. 2023, 34, 2310416. [Google Scholar] [CrossRef]
- Chen, G.; Wang, S.; Feng, B.; Jiang, B.; Miao, M. Interaction between soybean protein and tea polyphenols under high pressure. Food Chem. 2019, 277, 632–638. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Yi, X.; Jia, S.S.; Liu, C.Y.; Han, Z.W.; Han, B.X.; Jiang, G.C.; Ding, Z.F.; Wang, R.L.; Lv, G.P. Optimization of Three Extraction Methods and Their Effect on the Structure and Antioxidant Activity of Polysaccharides in Dendrobium huoshanense. Molecules 2023, 28, 8019. [Google Scholar] [CrossRef]
- Zheng, Z.; Si, D.; Ahmad, B.; Li, Z.; Zhang, R. A novel antioxidative peptide derived from chicken blood corpuscle hydrolysate. Food Res. Int. 2018, 106, 410–419. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Li, H.; Xu, M.; Li, X.; Li, M. Peptide composition analysis, structural characterization, and prediction of iron binding modes of small molecular weight peptides from mung bean. Food Res. Int. 2024, 175, 113735. [Google Scholar] [CrossRef]
- Zhang, Q.; Tong, X.; Qi, B.; Wang, Z.; Li, Y.; Sui, X.; Jiang, L. Changes in antioxidant activity of Alcalase-hydrolyzed soybean hydrolysate under simulated gastrointestinal digestion and transepithelial transport. J. Funct. Foods 2018, 42, 298–305. [Google Scholar] [CrossRef]
- Zhu, B.; Yang, J.; Yu, J.; Dou, J.; Ning, Y.; Qi, B.; Li, Y. Effects of l-arginine/l-lysine modifications on the protein structure, binding interactions, and functional properties of soy protein hydrolysate. Food Hydrocoll. 2024, 146, 109319. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Zhao, G.X.; Suo, S.K.; Wang, Y.M.; Chi, C.F.; Wang, B. Purification, Identification, Activity Evaluation, and Stability of Antioxidant Peptides from Alcalase Hydrolysate of Antarctic Krill (Euphausia superba) Proteins. Mar. Drugs 2021, 19, 347. [Google Scholar] [CrossRef]
- Zhu, D.; Cheng, S.; Du, M. Oxidation-resistant nanoliposomes loaded with osteogenic peptides: Characteristics, stability and bioaccessibility. Food Res. Int. 2024, 177, 113843. [Google Scholar] [CrossRef]
- Jiang, H.; Xu, Y.; Chen, G.; Liu, T.; Yang, Y.; Mao, X. Digestive properties and peptide profiles exhibited significant differences between skim camel milk and bovine milk powder after static in vitro simulated infant gastrointestinal digestion. Food Res. Int. 2024, 178, 113860. [Google Scholar] [CrossRef]
- Guo, X.Y.; Peng, Z.Q.; Zhang, Y.W.; Liu, B.; Cui, Y.Q. The solubility and conformational characteristics of porcine myosin as affected by the presence of L-lysine and L-histidine. Food Chem. 2015, 170, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Wu, J.; Meng, X.; Zhang, Y.; Peng, Z. Oxidative characteristics and gel properties of porcine myofibrillar proteins affected by l-lysine and l-histidine in a dose-dependent manner at a low and high salt concentration. Int. J. Food Sci. Technol. 2022, 57, 2556–2567. [Google Scholar] [CrossRef]
- Meng, C.; Li, S.; Zhang, D.; Liu, H.; Sun, B. Conjugated molecularly imprinted polymers based on covalent organic frameworks: Fluorescent sensing platform for specific capture of urea and elimination of ethyl carbamate. Spectrochim. Acta Part A 2024, 316, 124357. [Google Scholar] [CrossRef] [PubMed]
- Sun, N.; Cui, P.; Jin, Z.; Wu, H.; Wang, Y.; Lin, S. Contributions of molecular size, charge distribution, and specific amino acids to the iron-binding capacity of sea cucumber (Stichopus japonicus) ovum hydrolysates. Food Chem. 2017, 230, 627–636. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Cui, W.; Zhang, Z.; Zhang, J.; Zhou, H.; Zhou, K.; Xu, Y.; Wang, Z.; Xu, B. Effects of L-lysine and L-arginine on the structure and gel properties of konjac glucomannan. Food Hydrocoll. 2023, 137, 108404. [Google Scholar] [CrossRef]
- Xu, N.; Yang, H.; Wei, R.; Pan, S.; Huang, S.; Xiao, X.; Wen, H.; Xue, W. Fabrication of Konjac glucomannan-based composite hydrogel crosslinked by calcium hydroxide for promising lacrimal plugging purpose. Int. J. Biol. Macromol. 2019, 127, 440–449. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Liu, T.; Zhang, F.; Huang, Y.; Zhang, Y.; Xu, B. Tea polyphenols on emulsifying and antioxidant properties of egg white protein at acidic and neutral pH conditions. LWT Food Sci. Technol. 2022, 153, 112537. [Google Scholar] [CrossRef]
- Dong, J.; Zhou, Y.; Lu, Y.; Lv, Y.; Chi, Y.; He, Q. Effect of Tea Polyphenols on the Oxidation and Color Stability of Porcine Hemoglobin. J. Food Sci. 2019, 84, 2086–2090. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Li, L.; Zhu, X.; Ning, C.; Cai, K.; Zhou, C. Conformational and charge changes induced by l-Arginine and l-lysine increase the solubility of chicken myosin. Food Hydrocoll. 2019, 89, 330–336. [Google Scholar] [CrossRef]
- Insang, S.; Kijpatanasilp, I.; Jafari, S.; Assatarakul, K. Ultrasound-assisted extraction of functional compound from mulberry (Morus alba L.) leaf using response surface methodology and effect of microencapsulation by spray drying on quality of optimized extract. Ultrason. Sonochemistry 2022, 82, 105806. [Google Scholar] [CrossRef]
- Wachirasiri, K.; Wanlapa, S.; Uttapap, D.; Rungsardthong, V. Use of amino acids as a phosphate alternative and their effects on quality of frozen white shrimps (Penaeus vanamei). LWT Food Sci. Technol. 2016, 69, 303–311. [Google Scholar] [CrossRef]
- Zhang, G.; Fang, S.; Regenstein, J.M.; Wang, F. Preparation, characterization and stability of nanoliposomes loaded with peptides from defatted walnut (Juglans regia L.) meal. J. Food Sci. Technol. 2022, 59, 3180–3191. [Google Scholar] [CrossRef] [PubMed]
- Atrian-Blasco, E.; Conte-Daban, A.; Hureau, C. Mutual interference of Cu and Zn ions in Alzheimer’s disease: Perspectives at the molecular level. Dalton Trans. 2017, 46, 12750–12759. [Google Scholar] [CrossRef]
- Ghadiri Khozroughi, A.; Kroh, L.W.; Schluter, O.; Rawel, H. Assessment of the bacterial impact on the post-mortem formation of zinc protoporphyrin IX in pork meat. Food Chem. 2018, 256, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Vraneš, M.; Panić, J.; Tot, A.; Papović, S.; Gadžurić, S.; Podlipnik, Č.; Bešter-Rogač, M. From amino acids to dipeptide: The changes in thermal stability and hydration properties of β-alanine, L-histidine and L-carnosine. J. Mol. Liq. 2021, 328, 115250. [Google Scholar] [CrossRef]
- Liu, T.X.; Wang, J.; Zhao, M.M. In vitro haem solubility of red cell fraction of porcine blood under various treatments. Int. J. Food Sci. Technol. 2010, 45, 719–725. [Google Scholar] [CrossRef]
- In, M.-J.; Kim, D.C.; Chae, H.J.; Oh, N.-S. Effects of degree of hydrolysis and pH on the solubility of heme-iron enriched peptide in hemoglobin hydrolysate. Biosci. Biotechnol. Biochem. 2003, 67, 365–367. [Google Scholar] [CrossRef]
- You, L.; Zhao, M.; Regenstein, J.M.; Ren, J. Changes in the antioxidant activity of loach (Misgurnus anguillicaudatus) protein hydrolysates during a simulated gastrointestinal digestion. Food Chem. 2010, 120, 810–816. [Google Scholar] [CrossRef]
Composition | Iron (mg/g) | Ferrous Ion (μmol/L) | Ferrous Heme (mg/g) |
---|---|---|---|
HP | 2.42 ± 0.22 b | 2.64 ± 0.90 b | 39.02 ± 1.17 b |
Lys-HP | 4.78 ± 0.20 a | 5.86 ± 1.35 a | 68.07 ± 1.53 a |
Sample | DPPH Scavenging Capacity (%) | Reducing Power (Abs) | Iron-Chelating (%) | ABTS·+ Radical Scavenging Activity (%) |
---|---|---|---|---|
HP | 14.32 ± 0.21 b | 0.14 ± 0.01 b | 45.25 ± 1.31 b | 75.14 ± 0.62 b |
Lys-HP | 19.74 ± 0.34 a | 0.16 ± 0.01 a | 60.32 ± 0.80 a | 87.67 ± 1.75 a |
Sample | Size (nm) | Zeta Potential (mV) | Secondary Structures (%) | |||
---|---|---|---|---|---|---|
β-Sheet | α-Helix | Random Coil | β-Turn | |||
HP | 229.14 ± 2.31 a | −25.38 ± 1.21 b | 7.94 | 4.02 | 53.57 | 34.47 |
Lys-HP | 179.38 ± 4.18 b | −39.65 ± 1.31 a | 56.92 | 21.46 | 7.15 | 14.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Cui, W.; Zhou, H.; Zou, L.; Wang, Z.; Cai, K.; Xu, B. Enhancement of Antioxidant Activity, Stability, and Structure of Heme-Peptides by L-Lysine. Foods 2025, 14, 192. https://doi.org/10.3390/foods14020192
Zhang Y, Cui W, Zhou H, Zou L, Wang Z, Cai K, Xu B. Enhancement of Antioxidant Activity, Stability, and Structure of Heme-Peptides by L-Lysine. Foods. 2025; 14(2):192. https://doi.org/10.3390/foods14020192
Chicago/Turabian StyleZhang, Yinghui, Wei Cui, Hui Zhou, Lifang Zou, Zhaoming Wang, Kezhou Cai, and Baocai Xu. 2025. "Enhancement of Antioxidant Activity, Stability, and Structure of Heme-Peptides by L-Lysine" Foods 14, no. 2: 192. https://doi.org/10.3390/foods14020192
APA StyleZhang, Y., Cui, W., Zhou, H., Zou, L., Wang, Z., Cai, K., & Xu, B. (2025). Enhancement of Antioxidant Activity, Stability, and Structure of Heme-Peptides by L-Lysine. Foods, 14(2), 192. https://doi.org/10.3390/foods14020192