Gluten Proteins: Beneficial Factors and Toxic Triggers in Human Health
Abstract
1. Introduction
2. Structure and Composition of Gluten Proteins
2.1. Classification and Structure of Gluten Proteins
2.2. Gluten-Related Proteins in Non-Wheat Cereals
3. Gluten Toxicity: Health Disorders Associated with Gluten Ingestion
3.1. Pathogenesis of CD
3.2. Non-Celiac Gluten Sensitivity
3.3. Wheat Allergy
3.4. Detection and Quantification of Gluten Peptides
4. Beneficial Aspects of Gluten-(Derived Peptides)
5. Strategies to Minimize Gluten Toxicity While Enhancing Health Benefits
5.1. Fermentation with Bacteria Strains
5.2. Combined Enzymatic Strategies: Germination Meets Microbial and Fungal Enzyme Applications
5.3. The Oral Therapy
5.4. Genetic and Breeding Approaches
6. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| APC | Antigen presenting cells |
| ATI | Amylase–trypsin inhibitors |
| CD | Celiac disease |
| FODMAP | Fermentable oligosaccharides, disaccharides, monosaccharides, and polyols |
| GMO | Genetically modified organism |
| IFN-γ | interferon-γ |
| kDa | Kilo Dalton |
| LAB | Lactic acid bacteria |
| LTP | Lipid transfer protein |
| MW | Molecular weight |
| NCGS | Non celiac gluten sensitivity |
| NSAIDs | Non-Steroidal Anti-Inflammatory Drugs |
| NOD | Non-obese diabetic |
| pI | Isoelectric point |
| RBL | Rat basophil leukemia |
| SDS-PAGE | Sodium Dodecyl Sulphate—PolyAcrylamide Gel Electrophoresis |
| WDEIA | Wheat-dependent exercise-induced anaphylaxis |
References
- Shewry, P.R.; Halford, N.G. Cereal seed storage proteins: Structures, properties and role in grain utilization. J. Exp. Bot. 2002, 53, 947–958. [Google Scholar] [CrossRef]
- Caio, G.; Volta, U.; Sapone, A.; Leffler, D.A.; De Giorgio, R.; Catassi, C.; Fasano, A. Celiac disease: A comprehensive current review. BMC Med. 2019, 17, 142. [Google Scholar] [CrossRef]
- Besser, H.A.; Khosla, C. Celiac disease: Mechanisms and emerging therapeutics. Trends Pharmacol. Sci. 2023, 44, 949–962. [Google Scholar] [CrossRef]
- Esfandi, R.; Walters, M.E.; Tsopmo, A. Antioxidant properties and potential mechanisms of hydrolyzed proteins and peptides from cereals. Heliyon 2019, 5, e01538. [Google Scholar] [CrossRef] [PubMed]
- Mamone, G.; Di Stasio, L.; Vitale, S.; Picascia, S.; Gianfrani, C. Analytical and functional approaches to assess the immunogenicity of gluten proteins. Front. Nutr. 2023, 9, 1049623. [Google Scholar] [CrossRef] [PubMed]
- Shewry, P. Wheat grain proteins: Past, present, and future. Cereal Chem. 2023, 100, 9–22. [Google Scholar] [CrossRef]
- Shewry, P.R.; Belton, P.S. What do we really understand about wheat gluten structure and functionality? J. Cereal Sci. 2024, 117, 103895. [Google Scholar] [CrossRef]
- Shewry, P. What is gluten—Why is it special? Front. Nutr. 2019, 6, 101. [Google Scholar] [CrossRef]
- De Santis, M.A.; Giuliani, M.M.; Giuzio, L.; De Vita, P.; Lovegrove, A.; Shewry, P.R.; Flagella, Z. Differences in gluten protein composition between old and modern durum wheat genotypes in relation to 20th century breeding in Italy. Eur. J. Agron. 2017, 87, 19–29. [Google Scholar] [CrossRef]
- Wieser, H.; Koehler, P.; Scherf, K.A. Chemistry of wheat gluten proteins: Qualitative composition. Cereal Chem. 2023, 100, 23–35. [Google Scholar] [CrossRef]
- Kłosok, K.; Welc, R.; Fornal, E.; Nawrocka, A. Effects of Physical and Chemical Factors on the Structure of Gluten, Gliadins and Glutenins as Studied with Spectroscopic Methods. Molecules 2021, 26, 508. [Google Scholar] [CrossRef]
- Ooms, N.; Delcour, J.A. How to impact gluten protein network formation during wheat flour dough making. Curr. Opin. Food Sci. 2019, 25, 88–97. [Google Scholar] [CrossRef]
- Wieser, H. Chemistry of gluten proteins. Food Microbiol. 2007, 24, 115–119. [Google Scholar] [CrossRef]
- Bonomi, F.; Iametti, S.; Mamone, G.; Ferranti, P. The performing protein: Beyond wheat proteomics? Cereal Chem. 2013, 90, 358–366. [Google Scholar] [CrossRef]
- Schalk, K.; Lexhaller, B.; Koehler, P.; Scherf, K.A. Isolation and characterization of gluten protein types from wheat, rye, barley and oats for use as reference materials. PLoS ONE 2017, 12, e0172819. [Google Scholar] [CrossRef]
- Rani, M.; Sogi, D.S.; Gill, B.S. Characterization of gliadin, secalin and hordein fractions using analytical techniques. Sci. Rep. 2021, 11, 23135. [Google Scholar] [CrossRef]
- Mickowska, B.; Socha, P.; Urminská, D. Immunochemical evaluation of proteolysis of cereal proteins causing celiac disease by microbial proteases. Food Agric. Immunol. 2016, 27, 743–757. [Google Scholar] [CrossRef]
- Lexhaller, B.; Colgrave, M.L.; Scherf, K.A. Characterization and relative quantitation of wheat, rye, and barley gluten protein types by liquid chromatography–tandem mass spectrometry. Front. Plant Sci. 2019, 10, 1530. [Google Scholar] [CrossRef] [PubMed]
- Cebolla, Á.; Moreno, M.D.L.; Coto, L.; Sousa, C. Gluten immunogenic peptides as standard for the evaluation of potential harmful prolamin content in food and human specimen. Nutrients 2018, 10, 1927. [Google Scholar] [CrossRef] [PubMed]
- Balakireva, A.V.; Zamyatnin, A.A., Jr. Properties of gluten intolerance: Gluten structure, evolution, pathogenicity and detoxification capabilities. Nutrients 2016, 8, 644. [Google Scholar] [CrossRef]
- Cabanillas, B. Gluten-related disorders: Celiac disease, wheat allergy, and nonceliac gluten sensitivity. Crit. Rev. Food Sci. Nutr. 2020, 60, 2606–2621. [Google Scholar] [CrossRef]
- Shan, L.; Molberg, Ø.; Parrot, I.; Hausch, F.; Filiz, F.; Gray, G.M.; Sollid, L.M.; Khosla, C. Structural basis for gluten intolerance in celiac sprue. Science 2002, 297, 2275–2279. [Google Scholar] [CrossRef]
- Ciccocioppo, R.; Di Sabatino, A.; Corazza, G.R. The immune recognition of gluten in coeliac disease. Clin. Exp. Immunol. 2005, 140, 408–416. [Google Scholar] [CrossRef]
- Camarca, A.; Del Mastro, A.; Gianfrani, C. Repertoire of gluten peptides active in celiac disease patients: Perspectives for translational therapeutic applications. Endocr. Metab. Immune Disord. Drug Targets 2012, 12, 207–219. [Google Scholar] [CrossRef]
- Sollid, L.M.; Tye-Din, J.A.; Qiao, S.W.; Anderson, R.P.; Gianfrani, C.; Koning, F. Update 2020: Nomenclature and listing of celiac disease-relevant gluten epitopes recognized by CD4+ T cells. Immunogenetics 2020, 72, 85–88. [Google Scholar] [CrossRef] [PubMed]
- Chlubnová, M.; Christophersen, A.O.; Sandve, G.K.F.; Lundin, K.E.A.; Jahnsen, J.; Dahal-Koirala, S.; Sollid, L.M. Identification of gluten T cell epitopes driving celiac disease. Sci. Adv. 2023, 9, eade5800. [Google Scholar] [CrossRef] [PubMed]
- Arentz-Hansen, H.; McAdam, S.N.; Molberg, Ø.; Fleckenstein, B.; Lundin, K.E.; Jørgensen, T.J.; Jung, G.; Roepstorff, P.; Sollid, L.M. Celiac lesion T cells recognize epitopes that cluster in regions of gliadins rich in proline residues. Gastroenterology 2002, 123, 803–809. [Google Scholar] [CrossRef]
- Sjöström, H.; Lundin, K.E.; Molberg, O.; Körner, R.; McAdam, S.N.; Anthonsen, D.; Quarsten, H.; Norén, O.; Roepstorff, P.; Thorsby, E.; et al. Identification of a gliadin Tcell epitope in coeliac disease: General importance of gliadin deamidation for intestinal T-cell recognition. Scand. J. Immunol. 1998, 48, 111–115. [Google Scholar] [CrossRef]
- Vader, W.; Kooy, Y.; Van Vellen, P.; De Ru, A.; Harris, D.; Benckhuijsen, W.; Pena, S.; Mearin, L.; Drijfhout, J.W.; Koning, F. The gluten response in children with celiac disease is directed toward multiple gliadin and glutenin peptides. Gastroenterology 2002, 122, 1729–1737. [Google Scholar] [CrossRef]
- Mamone, G.; Ferranti, P.; Melck, D.; Tafuro, F.; Longobardo, L.; Chianese, L.; Addeo, F. Susceptibility to transglutaminase of gliadin peptides predicted by a mass spectrometrybased assay. FEBS Lett. 2004, 562, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Dørum, S.; Arntzen, M.Ø.; Qiao, S.W.; Holm, A.; Koehler, C.J.; Thiede, B.; Sollid, L.M.; Fleckenstein, B. The preferred substrates for transglutaminase 2 in a complex wheat gluten digest are Peptide fragments harboring celiac disease T-cell epitopes. PLoS ONE 2010, 19, e14056. [Google Scholar] [CrossRef]
- Vader, L.W.; Stepniak, D.T.; Bunnik, E.M.; Kooy, Y.M.; de Haan, W.; Drijfhout, J.W.; Van Veelen, P.A.; Koning, F. Characterization of cereal toxicity for celiac disease patients based on protein homology in grains. Gastroenterology 2003, 125, 1105–1113. [Google Scholar] [CrossRef]
- Tye-Din, J.A.; Stewart, J.A.; Dromey, J.A.; Beissbarth, T.; van Heel, D.A.; Tatham, A.; Henderson, K.; Mannering, S.I.; Gianfrani, C.; Jewell, D.P.; et al. Comprehensive, quantitative mapping of T cell epitopes in gluten in celiac disease. Sci. Transl. Med. 2010, 2, 41–51. [Google Scholar] [CrossRef]
- Gianfrani, C.; Camarca, A.; Mazzarella, G.; Di Stasio, L.; Giardullo, N.; Ferranti, P.; Picariello, G.; Rotondi Aufiero, V.; Picascia, S.; Troncone, R.; et al. Extensive in vitro gastrointestinal digestion markedly reduces the immune-toxicity of Triticum monococcum wheat: Implication for celiac disease. Mol. Nutr. Food Res. 2015, 59, 1844–1854. [Google Scholar] [CrossRef]
- Mamone, G.; Nitride, C.; Picariello, G.; Addeo, F.; Ferranti, P.; Mackie, A. Tracking the fate of pasta (T. durum semolina) immunogenic proteins by in vitro simulated digestion. J. Agric. Food Chem. 2015, 63, 2660–2667. [Google Scholar] [CrossRef] [PubMed]
- Boukid, F.; Prandi, B.; Faccini, A.; Sforza, S. A Complete Mass Spectrometry (MS)-Based Peptidomic Description of Gluten Peptides Generated During In Vitro Gastrointestinal Digestion of Durum Wheat: Implication for Celiac Disease. J. Am. Soc. Mass Spectrom. 2019, 30, 1481–1490. [Google Scholar] [CrossRef] [PubMed]
- Shan, L.; Qiao, S.W.; Arentz-Hansen, H.; Molberg, Ø.; Gray, G.M.; Sollid, L.M.; Khosla, C. Identification and analysis of multivalent proteolytically resistant peptides from gluten: Implications for celiac sprue. J. Proteome Res. 2005, 4, 1732–1741. [Google Scholar] [CrossRef]
- Barone, M.V.; Troncone, R.; Auricchio, S. Gliadin peptides as triggers of the proliferative and stress/innate immune response of the celiac small intestinal mucosa. Int. J. Mol. Sci. 2014, 15, 20518–20537. [Google Scholar] [CrossRef] [PubMed]
- Mamone, G.; Ferranti, P.; Rossi, M.; Roepstorff, P.; Fierro, O.; Malorni, A.; Addeo, F. Identification of a peptide from alpha-gliadin re-sistant to digestive enzymes: Implications for celiac disease. J. Chromatogr. B 2007, 855, 236–241. [Google Scholar] [CrossRef]
- Iacomino, G.; Fierro, O.; D’Auria, S.; Picariello, G.; Ferranti, P.; Liguori, C.; Addeo, F.; Mamone, G. Structural analysis and Caco-2 cell permeability of the celiac-toxic A-gliadin peptide 31–55. J. Agric. Food Chem. 2013, 61, 1088–1096. [Google Scholar] [CrossRef]
- Palanski, B.A.; Weng, N.; Zhang, L.; Hilmer, A.J.; Fall, L.A.; Swaminathan, K.; Jabri, B.; Sousa, C.; Fernandez-Becker, N.Q.; Khosla, C.; et al. An efficient urine peptidomics workflow identifies chemically defined dietary gluten peptides from patients with celiac disease. Nat. Commun. 2022, 13, 888. [Google Scholar] [CrossRef]
- Akobeng, A.K.; Singh, P.; Kumar, M.; Al Khodor, S. Role of the gut microbiota in the pathogenesis of coeliac disease and potential therapeutic implications. Eur. J. Nutr. 2020, 59, 3369–3390. [Google Scholar] [CrossRef]
- Wieser, H.; Segura, V.; Ruiz-Carnicer, Á.; Sousa, C.; Comino, I. Food safety and cross-contamination of gluten-free products: A narrative review. Nutrients 2021, 13, 2244. [Google Scholar] [CrossRef]
- Corazza, G.R.; Troncone, R.; Lenti, M.V.; Silano, M. Pediatric and Adult Celiac Disease: A Clinically Oriented Perspective; Elsevier: Amsterdam, The Netherlands, 2024. [Google Scholar]
- Rotondi Aufiero, V.; Fasano, A.; Mazzarella, G. Non-celiac gluten sensitivity: How its gut immune activation and potential dietary management differ from celiac disease. Mol. Nutr. Food Res. 2018, 62, 1700854. [Google Scholar] [CrossRef]
- Zevallos, V.F.; Raker, V.; Tenzer, S.; Jimenez-Calvente, C.; Ashfaq-Khan, M.; Rüssel, N.; Pickert, G.; Schild, H.; Steinbrink, K.; Schuppan, D. Nutritional Wheat Amylase-Trypsin Inhibitors Promote Intestinal Inflammation via Activation of Myeloid Cells. Gastroenterology 2017, 152, 1100–1113. [Google Scholar] [CrossRef] [PubMed]
- Vaquero, L.; Comino, I.; Vivas, S.; Rodríguez-Martín, L.; Giménez, M.J.; Pastor, J.; Sousa, C.; Barro, F. Tritordeum: A novel cereal for food processing with good acceptability and significant reduction in gluten immunogenic peptides in comparison with wheat. J. Sci. Food Agric. 2018, 98, 2201–2209. [Google Scholar] [CrossRef]
- De Caro, S.; Venezia, A.; Di Stasio, L.; Danzi, D.; Pignone, D.; Mamone, G.; Iacomino, G. Tritordeum: Promising Cultivars to Improve Health. Foods 2024, 13, 661. [Google Scholar] [CrossRef] [PubMed]
- Manza, F.; Lungaro, L.; Costanzini, A.; Caputo, F.; Carroccio, A.; Mansueto, P.; Seidita, A.; Raju, S.A.; Volta, U.; De Giorgio, R.; et al. Non-Celiac Gluten/Wheat Sensitivity-State of the Art: A Five-Year Narrative Review. Nutrients 2025, 17, 220. [Google Scholar] [CrossRef]
- Sapone, A.; Bai, J.C.; Ciacci, C.; Dolinsek, J.; Green, P.H.; Hadjivassiliou, M.; Kaukinen, K.; Rostami, K.; Sanders, D.S.; Schumann, M.; et al. Spectrum of gluten-related disorders: Consensus on new nomenclature and classification. BMC Med. 2012, 10, 13. [Google Scholar] [CrossRef] [PubMed]
- Tranquet, O.; Larré, C.; Denery-Papini, S. Allergic reactions to hydrolysed wheat proteins: Clinical aspects and molecular structures of the allergens involved. Crit. Rev. Food Sci. Nutr. 2020, 60, 147–156. [Google Scholar] [CrossRef]
- Denery-Papini, S.; Pineau, F.; Bodinier, M.; Branlard, G.; Faye, A.; Tranquet, O.; Larre, C.; Monoret-Vautrin, D.A. Allergens and epitopes involved in food allergy to wheat and their presence in different wheat genotypes. Gluten Proteins 2009, 280–284. [Google Scholar]
- Srisuwatchari, W.; Kanchanapoomi, K.; Pacharn, P. Molecular Diagnosis to IgE-mediated Wheat Allergy and Wheat-Dependent Exercise-Induced Anaphylaxis. Clin Rev Allergy Immunol. 2025, 68, 47. [Google Scholar] [CrossRef]
- Wang, Y.; Weng, J.; Zhu, C.; Ai, R.; Zhou, J.; Wang, C.; Chen, Q.; Fu, L. Allergenicity assessment and allergen profile analysis of different Chinese wheat cultivars. World Allergy Organ. J. 2021, 14, 100559. [Google Scholar] [CrossRef]
- Picariello, G.; Mamone, G.; Addeo, F.; Ferranti, P. The frontiers of mass spectrometry-based techniques in food allergenomics. J. Chromatogr. A 2011, 1218, 7386–7398. [Google Scholar] [CrossRef]
- Ricci, G.; Andreozzi, L.; Cipriani, F.; Giannetti, A.; Gallucci, M.; Caffarelli, C. Wheat allergy in children: A comprehensive update. Medicina 2019, 55, 400. [Google Scholar] [CrossRef]
- Ribeiro, M.; de Sousa, T.; Sabença, C.; Poeta, P.; Bagulho, A.S.; Igrejas, G. Advances in quantification and analysis of the celiac-related immunogenic potential of gluten. Compr. Rev. Food Sci. Food Saf. 2021, 20, 4278–4298. [Google Scholar] [CrossRef]
- Munshi, M.; Deb, S. Gluten Detection in Foods. In Challenges and Potential Solutions in Gluten Free Product Development; Springer International Publishing: Cham, Switzerland, 2021; pp. 111–140. [Google Scholar]
- Méndez, E.; Vela, C.; Immer, U.; Janssen, F.W. Report of a collaborative trial to investigate the performance of the R5 enzyme linked immunoassay to determine gliadin in gluten-free food. Eur. J. Gastroenterol. Hepatol. 2005, 17, 1053–1063. [Google Scholar] [CrossRef]
- Schopf, M.; Scherf, K.A. Wheat cultivar and species influence variability of gluten ELISA analyses based on polyclonal and monoclonal antibodies R5 and G12. J. Cereal Sci. 2018, 83, 32–41. [Google Scholar] [CrossRef]
- Panda, R.; Garber, E.A. Detection and quantitation of gluten in fermented-hydrolyzed foods by antibody-based methods: Challenges, progress, and a potential path forward. Front. Nutr. 2019, 6, 97. [Google Scholar] [CrossRef] [PubMed]
- Masiri, J.; Benoit, L.; Katepalli, M.; Meshgi, M.; Cox, D.; Nadala, C.; Sung, S.-L.; Samadpour, M. Novel monoclonal antibody-based immunodiagnostic assay for rapid detection of deamidated gluten residues. J. Agric. Food Chem. 2016, 64, 3678–3687. [Google Scholar] [CrossRef] [PubMed]
- Panda, R.; Boyer, M.; Garber, E.A. A multiplex competitive ELISA for the detection and characterization of gluten in fermented-hydrolyzed foods. Anal. Bioanal. Chem. 2017, 409, 6959–6973. [Google Scholar] [CrossRef]
- Comino, I.; Real, A.; Vivas, S.; Síglez, M.Á.; Caminero, A.; Nistal, E.; Casqueiro, J.; Rodríguez-Herrera, A.; Cebolla, A.; Sousa, C. Monitoring of gluten-free diet compliance in celiac patients by assessment of gliadin 33-mer equivalent epitopes in feces. Am. J. Clin. Nutr. 2012, 95, 670–677. [Google Scholar] [CrossRef]
- Scherf, K.A.; Poms, R.E. Recent developments in analytical methods for tracing gluten. J. Cereal Sci. 2016, 67, 112–122. [Google Scholar] [CrossRef]
- Segura, V.; Siglez, M.Á.; Ruiz-Carnicer, Á.; Martín-Cabrejas, I.; van der Hofstadt, M.; Mellado, E.; Comino, I.; Sousa, C. A highly sensitive method for the detection of hydrolyzed gluten in beer samples using LFIA. Foods 2022, 12, 160. [Google Scholar] [CrossRef] [PubMed]
- Slot, I.B.; Van Der Fels-Klerx, H.J.; Bremer, M.G.; Hamer, R.J. Immunochemical detection methods for gluten in food products: Where do we go from here? Crit. Rev. Food Sci. Nutr. 2016, 56, 2455–2466. [Google Scholar] [CrossRef]
- Alves, T.O.; D’Almeida, C.T.; Scherf, K.A.; Ferreira, M.S. Modern approaches in the identification and quantification of immunogenic peptides in cereals by LC-MS/MS. Front. Plant Sci. 2019, 10, 1470. [Google Scholar] [CrossRef]
- Lu, Y.; Ji, H.; Chen, Y.; Li, Z.; Timira, V. A systematic review on the recent advances of wheat allergen detection by mass spectrometry: Future prospects. Crit. Rev. Food Sci. Nutr. 2023, 63, 12324–12340. [Google Scholar] [CrossRef]
- Schalk, K.; Lang, C.; Wieser, H.; Koehler, P.; Scherf, K.A. Quantitation of the immunodominant 33-mer peptide from α-gliadin in wheat flours by liquid chromatography tandem mass spectrometry. Sci. Rep. 2017, 7, 45092. [Google Scholar] [CrossRef]
- Malalgoda, M.; Meinhardt, S.W.; Simsek, S. Detection and quantitation of immunogenic epitopes related to celiac disease in historical and modern hard red spring wheat cultivars. Food Chem. 2018, 264, 101–107. [Google Scholar] [CrossRef]
- de Lourdes Moreno, M.; Cebolla, Á.; Muñoz-Suano, A.; Carrillo-Carrion, C.; Comino, I.; Pizarro, Á.; León, F.; Rodríguez-Herrera, A.; Sousa, C. Detection of gluten immunogenic peptides in the urine of patients with coeliac disease reveals transgressions in the gluten-free diet and incomplete mucosal healing. Gut 2017, 66, 250–257. [Google Scholar] [CrossRef]
- Murray, J.A.; Syage, J.A.; Wu, T.T.; Dickason, M.A.; Ramos, A.G.; Van Dyke, C.; Horwath, I.; Lavin, P.T.; Mäki, M.; Hujoel, I.; et al. CeliacShield Study Group. Latiglutenase Protects the Mucosa and Attenuates Symptom Severity in Patients with Celiac Disease Exposed to a Gluten Challenge. Gastroenterology 2022, 163, 1510–1521. [Google Scholar] [CrossRef] [PubMed]
- Weng, Z.; Chen, Y.; Liang, T.; Lin, Y.; Cao, H.; Song, H.; Xiong, L.; Wang, F.; Shen, X.; Xiao, J. A review on processing methods and functions of wheat germ-derived bioactive peptides. Crit. Rev. Food Sci. Nutr. 2023, 63, 5577–5593. [Google Scholar] [CrossRef]
- Karami, Z.; Butkinaree, C.; Somsong, P.; Duangmal, K. Assessment of the DPP-IV inhibitory potential of mung bean and adzuki bean protein hydrolysates using enzymatic hydrolysis process: Specificity of peptidases and novel peptides. Int. J. Food Sci. Technol. 2023, 58, 2995–3005. [Google Scholar] [CrossRef]
- Mora, L.; Toldrá, F. Advanced enzymatic hydrolysis of food proteins for the production of bioactive peptides. Curr. Opin. Food Sci. 2023, 49, 1009. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Cheng, W.L.; Li, X.D.; Wang, X.; Yang, F.W.; Xiao, J.S.; Li, Y.X.; Zhao, G.P. Extraction, bioactive function and application of wheat germ protein/peptides: A review. Curr. Res. Food Sci. 2023, 6, 100512. [Google Scholar] [CrossRef]
- Liu, W.; Ren, J.; Wu, H.; Zhang, X.; Han, L.; Gu, R. Inhibitory effects and action mechanism of five antioxidant peptides derived from wheat gluten on cells oxidative stress injury. Food Biosci. 2023, 56, 103236. [Google Scholar] [CrossRef]
- Li-Chan, E.C.Y. Bioactive peptides and protein hydrolysates: Research trends and challenges for application as nutraceuticals and functional food ingredients. Curr. Opin. Food Sci. 2015, 1, 28–37. [Google Scholar] [CrossRef]
- Liu, W.Y.; Zhang, J.T.; Miyakawa, T.; Li, G.M.; Gu, R.Z.; Tanokura, M. Antioxidant properties and inhibition of angiotensin-converting enzyme by highly active peptides from wheat gluten. Sci. Rep. 2021, 11, 5206. [Google Scholar] [CrossRef]
- Asoodeh, A.; Haghighi, L.; Chamani, J.; Ansari-Ogholbeyk, M.A.; Mojallal-Tabatabaei, Z.; Lagzian, M. Potential angiotensin I converting enzyme inhibitory peptides from gluten hydrolysate: Biochemical characterization and molecular docking study. J. Cereal Sci. 2014, 60, 6092–6098. [Google Scholar] [CrossRef]
- Wang, X.; Fu, J.; Bhullar, K.S.; Chen, B.; Liu, H.; Zhang, Y.; Wang, C.; Liu, C.; Su, D.; Ma, X.; et al. Identification, in silico selection, and mechanistic investigation of antioxidant peptides from corn gluten meal hydrolysate. Food Chem. 2024, 446, 138777. [Google Scholar] [CrossRef] [PubMed]
- Kaur, L.; Mao, B.; Beniwal, A.S.; Abhilasha, R.; Kaur, F.M.; Singh Chian, J. Alternative proteins vs animal proteins: The influence of structure and processing on their gastro-small intestinal digestion. Trends Food Sci. Technol. 2022, 122, 275–286. [Google Scholar] [CrossRef]
- Manai, F.; Zanoletti, L.; Morra, G.; Mansoor, S.; Carriero, F.; Bozzola, E.; Muscianisi, S.; Comincini, S. Gluten Exorphins Promote Cell Proliferation through the Activation of Mitogenic and Pro-Survival Pathways. Int. J. Mol. Sci. 2023, 24, 3912. [Google Scholar] [CrossRef]
- Croall, I.D.; Hoggard, N.; Hadjivassiliou, M. Gluten and autism spectrum disorder. Nutrients 2021, 13, 572. [Google Scholar] [CrossRef] [PubMed]
- Di Liberto, D.; D’Anneo, A.; Carlisi, D.; Emanuele, S.; De Blasio, A.; Calvaruso, G.; Giuliano, M.; Lauricella, M. Brain opioid activity and oxidative injury: Different molecular scenarios connecting celiac disease and autistic spectrum disorder. Brain Sci. 2020, 10, 437. [Google Scholar] [CrossRef] [PubMed]
- Kaur, J.; Kumar, V.; Sharma, K.; Kaur, S.; Gat, Y.; Goyal, A.; Tanwar, B. Opioid peptides: An overview of functional significance. Int. J. Pept. Res. Ther. 2020, 26, 33–41. [Google Scholar] [CrossRef]
- Takahashi, M.; Fukunaga, H.; Kaneto, H.; Fukudome, S.; Yoshikawa, M. Behavioral and pharmacological studies on gluten exorphin A5, a newly isolated bioactive food protein fragment, in mice. Jpn. J. Pharmacol. 2000, 84, 259–265. [Google Scholar] [CrossRef]
- Ergün, C.; Urhan, M.; Ayer, A. A review on the relationship between gluten and schizophrenia: Is gluten the cause? Nutr. Neurosci. 2018, 21, 455–466. [Google Scholar] [CrossRef]
- Samaroo, D.; Dickerson, F.; Kasarda, D.D.; Green, P.H.; Briani, C.; Yolken, R.H.; Alaedini, A. Novel immune response to gluten in individuals with schizophrenia. Schizophr. Res. 2010, 118, 248–255. [Google Scholar] [CrossRef]
- Cruz-Chamorro, I.; Álvarez-Sánchez, N.; Santos-Sánchez, G.; Pedroche, J.; Fernández-Pachón, M.S.; Millán, F.; Millán-Linares, M.C.; Lardone, P.J.; Bejarano, I.; Guerrero, J.; et al. Immunomodulatory and Antioxidant Properties of Wheat Gluten Protein Hydrolysates in Human Peripheral Blood Mononuclear Cells. Nutrients 2020, 12, 1673. [Google Scholar] [CrossRef]
- Mamone, G.; Picariello, G. Optimized extraction and large-scale proteomics of pig jejunum brush border membranes for use in in vitro digestion models. Food Res. Int. 2023, 164, 112326. [Google Scholar] [CrossRef]
- Di Stasio, L.; De Caro, S.; Marulo, S.; Ferranti, P.; Picariello, G.; Mamone, G. Impact of porcine brush border membrane enzymes on INFOGEST in vitro digestion model: A step forward to mimic the small intestinal phase. Food Res. Int. 2024, 197, 115300. [Google Scholar] [CrossRef]
- Singh, P.; Arora, A.; Strand, T.A.; Leffler, D.A.; Catassi, C.; Green, P.H.; Kelly, C.P.; Ahuja, V.; Makharia, G.K. Global Prevalence of Celiac Disease: Systematic Review and Meta-analysis. Clin. Gastroenterol. Hepatol. 2018, 16, 823–836. [Google Scholar] [CrossRef]
- Santonicola, A.; Soldaini, C.; Ciacci, C. New therapies in celiac disease. Curr. Opin. Gastroenterol. 2025, 41, 124–131. [Google Scholar] [CrossRef]
- Caputo, I.; Lepretti, M.; Martucciello, S.; Esposito, C. Enzymatic strategies to detoxify gluten: Implications for celiac disease. Enzym. Res. 2010, 174354. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wu, H.; Fu, L. A review of gluten detoxification in wheat for food applications: Approaches, mechanisms, and implications. Crit. Rev. Food Sci. Nutr. 2025, 65, 2100–2116. [Google Scholar] [CrossRef] [PubMed]
- Møller, M.S.; Svensson, B. Enzymes in grain processing. Curr. Opin. Food Sci. 2021, 37, 153–159. [Google Scholar] [CrossRef]
- Sakandar, H.A.; Usman, K.; Imran, M. Isolation and characterization of gluten-degrading Enterococcus mundtii and Wickerhamomyces anomalus, potential probiotic strains from indigenously fermented sourdough (Khamir). LWT 2018, 91, 271–277. [Google Scholar] [CrossRef]
- Reale, A.; Di Stasio, L.; Di Renzo, T.; De Caro, S.; Ferranti, P.; Picariello, G.; Addeo, F.; Mamone, G. Bacteria do it better! Proteomics suggests the molecular basis for improved digestibility of sourdough products. Food Chem. 2021, 359, 129955. [Google Scholar] [CrossRef]
- Bradauskiene, V.; Vaiciulyte-Funk, L.; Shah, B.R.; Cernauskas, D.; Tita, M.A. Recent advances in biotechnological methods for wheat gluten immunotoxicity abolishment–a review. Pol. J. Food Nutr. Sci. 2021, 71, 5–20. [Google Scholar] [CrossRef]
- Socha, P.; Mickowska, B.; Urminská, D.; Kačmárová, K. The use of different proteases to hydrolyze gliadins. J. Microbiol. Biotechnol. Food Sci. 2015, 4, 101–104. [Google Scholar] [CrossRef]
- de la Barca, A.C.; Heredia-Sandoval, N.G.; Mejía-León, M.E. Detoxification of wheat proteins by enzymatic technology. In Biotechnological Strategies for the Treatment of Gluten Intolerance; Academic Press: Cambridge, MA, USA, 2021; pp. 155–176. [Google Scholar]
- Diaz-Mendoza, M.; Diaz, I.; Martinez, M. Insights on the proteases involved in barley and wheat grain germination. Int. J. Mol. Sci. 2019, 20, 2087. [Google Scholar] [CrossRef]
- Bradauskiene, V.; Vaiciulyte-Funk, L.; Cernauskas, D.; Dzingeleviciene, R.; Lima, J.P.; Bradauskaite, A.; Tita, M.A. The efficacy of plant enzymes bromelain and papain as a tool for reducing gluten immunogenicity from wheat bran. Processes 2022, 10, 1948. [Google Scholar] [CrossRef]
- David Troncoso, F.; Alberto Sánchez, D.; Luján Ferreira, M. Production of plant proteases and new biotechnological applications: An updated review. ChemistryOpen 2022, 11, e202200017. [Google Scholar] [CrossRef]
- Li, Y.; Yu, J.; Goktepe, I.; Ahmedna, M. The potential of papain and alcalase enzymes and process optimizations to reduce allergenic gliadins in wheat flour. Food Chem. 2016, 196, 1338–1345. [Google Scholar] [CrossRef]
- Song, P.; Zhang, X.; Wang, S.; Xu, W.; Wang, F.; Fu, R.; Wei, F. Microbial proteases and their applications. Front. Microbiol. 2023, 14, 1236368. [Google Scholar] [CrossRef]
- Rossi, S.; Giordano, D.; Mazzeo, M.F.; Maurano, F.; Luongo, D.; Facchiano, A.; Siciliano, R.A.; Rossi, M. Transamidation down-regulates intestinal immunity of recombinant α-gliadin in HLA-DQ8 transgenic mice. Int. J. Mol. Sci. 2021, 22, 7019. [Google Scholar] [CrossRef]
- Treppiccione, L.; Picarelli, A.; Rossi, M. Beneficial role of microbial transglutaminase in the pathogenetic mechanisms of coeliac disease. J. Pediatr. Gastroenterol. Nutr. 2022, 74, 728–733. [Google Scholar] [CrossRef]
- Yoosuf, S.; Makharia, G.K. Evolving therapy for celiac disease. Front. Pediatr. 2019, 7, 193. [Google Scholar] [CrossRef]
- Alvarez-Sieiro, P.; Martin, M.C.; Redruello, B.; Del Rio, B.; Ladero, V.; Palanski, B.A.; Khosla, C.; Fernandez, M.; Alvarez, M.A. Generation of food-grade recombinant Lactobacillus casei delivering Myxococcus xanthus prolyl endopeptidase. Appl. Microbiol. Biotechnol. 2014, 98, 6689–6700. [Google Scholar] [CrossRef] [PubMed]
- Álvarez Sieiro, P.; Álvarez Sieiro, M.C.; Redruello, B.; Ladero Losada, V.M.; Fernández García, M.; Álvarez González, M.Á. New Strain of Lactobacillus Casei with Ability to Degrade the Immunotoxic Peptide from Gluten. U.S. Patent 20170196918A1, 22 May 2015. [Google Scholar]
- Savvateeva, L.V.; Chepikova, O.E.; Solonkina, A.D.; Sakharov, A.A.; Gorokhovets, N.V.; Golovin, A.V.; Zamyatnin, A.A., Jr. Computational Screening and Experimental Evaluation of Wheat Proteases for Use in the Enzymatic Therapy of Gluten-Related Disorders. Pharmaceuticals 2025, 18, 592. [Google Scholar] [CrossRef]
- Savvateeva, L.V.; Gorokhovets, N.V.; Makarov, V.A.; Serebryakova, M.V.; Solovyev, A.G.; Morozov, S.Y.; Reddy, V.P.; Zernii, E.Y.; Zamyatnin, A.A.; Aliev, G. Glutenase and collagenase activities of wheat cysteine protease Triticain-α: Feasibility for enzymatic therapy assays. Int. J. Biochem. Cell Biol. 2015, 62, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Cavaletti, L.; Taravella, A.; Carrano, L.; Carenzi, G.; Sigurtà, A.; Solinas, N.; De Caro, S.; Di Stasio, L.; Picascia, S.; Laezza, M.; et al. E40, a novel microbial protease efficiently detoxifying gluten proteins, for the dietary management of gluten intolerance. Sci. Rep. 2019, 9, 13147. [Google Scholar] [CrossRef]
- Mamone, G.; Comelli, M.C.; Vitale, S.; Di Stasio, L.; Kessler, K.; Mottola, I.; Siano, F.; Cavaletti, L.; Gianfrani, C. E40 glutenase detoxification capabilities of residual gluten immunogenic peptides in in vitro gastrointestinal digesta of food matrices made of soft and durum wheat. Front. Nutr. 2022, 9, 974771. [Google Scholar] [CrossRef] [PubMed]
- Wolf, C.; Siegel, J.B.; Tinberg, C.; Camarca, A.; Gianfrani, C.; Paski, S.; Guan, R.; Montelione, G.; Baker, D.; Pultz, I.S. Engineering of Kuma030: A gliadin peptidase that rapidly degrades immunogenic gliadin peptides in gastric conditions. J. Am. Chem. Soc. 2015, 137, 13106–13113. [Google Scholar] [CrossRef]
- Pultz, I.S.; Hill, M.; Vitanza, J.M.; Wolf, C.; Saaby, L.; Liu, T.; Winkle, P.; Leffler, D.A. Gluten degradation, pharmacokinetics, safety, and tolerability of TAK-062, an engineered enzyme to treat celiac disease. Gastroenterology 2021, 161, 81–93. [Google Scholar] [CrossRef] [PubMed]
- Picascia, S.; Camarca, A.; Malamisura, M.; Mandile, R.; Galatola, M.; Cielo, D.; Gazza, L.; Mamone, G.; Auricchio, S.; Troncone, R.; et al. In Celiac Disease Patients the In Vivo Challenge with the Diploid Triticum monococcum Elicits a Reduced Immune Response Compared to Hexaploid Wheat. Mol. Nutr. Food Res. 2020, 64, e1901032. [Google Scholar] [CrossRef] [PubMed]
- Kalunke, R.M.; Tundo, S.; Sestili, F.; Camerlengo, F.; Lafiandra, D.; Lupi, R.; Larré, C.; Denery-Papini, S.; Islam, S.; Ma, W.; et al. Reduction of allergenic potential in bread wheat RNAi transgenic lines silenced for CM3, CM16 and 0.28 ATI genes. Int. J. Mol. Sci. 2020, 21, 5817. [Google Scholar] [CrossRef]
- Jouanin, A.; Gilissen, L.J.; Schaart, J.G.; Leigh, F.J.; Cockram, J.; Wallington, E.J.; Boyd, L.A.; van den Broeck, H.C.; Van Der Meer, I.M.; America, A.H.P.; et al. CRISPR/Cas9 gene editing of gluten in wheat to reduce gluten content and exposure—Reviewing methods to screen for coeliac safety. Front. Nutr. 2020, 7, 51. [Google Scholar] [CrossRef]
- Gupta, A.; Hua, L.; Zhang, Z.; Yang, B.; Li, W. CRISPR-induced miRNA156-recognition element mutations in TaSPL13 improve multiple agronomic traits in wheat. Plant Biotechnol. J. 2023, 21, 536–548. [Google Scholar] [CrossRef]
- Sánchez-León, S.; Marín-Sanz, M.; Guzmán-López, M.H.; Gavilán-Camacho, M.; Simón, E.; Barro, F. CRISPR/Cas9-mediated multiplex gene editing of gamma and omega gliadins: Paving the way for gliadin-free wheat. J. Exp. Bot. 2024, 75, 7079–7095. [Google Scholar] [CrossRef]
- Jouanin, A.; Gilissen, L.J.; Boyd, L.A.; Cockram, J.; Leigh, F.J.; Wallington, E.J.; van den Broeck, H.C.; van der Meer, I.M.; Schaart, J.G.; Visser, R.G.F.; et al. Food processing and breeding strategies for coeliac-safe and healthy wheat products. Food Res. Int. 2018, 110, 11–21. [Google Scholar] [CrossRef]
- Kim, S.; Sim, J.R.; Gu, Y.Q.; Altenbach, S.B.; Denery-Papini, S.; Pineau, F.; Tranquet, O.; Yang, Y.-J.; Park, E.J.; Lim, S.-H.; et al. Toward reducing the immunogenic potential of wheat flour: Identification and characterization of wheat lines missing omega-5 gliadins encoded by the 1D chromosome. Theor. Appl. Genet. 2023, 136, 33. [Google Scholar] [CrossRef]
- Nye-Wood, M.G.; Juhász, A.; Bose, U.; Colgrave, M.L. Proteome analysis and epitope mapping in a commercial reduced-gluten wheat product. Front. Nutr. 2021, 8, 705822. [Google Scholar] [CrossRef]
- Yang, J.; Pan, M.; Han, R.; Yang, X.; Liu, X.; Yuan, S.; Wang, S. Food irradiation: An emerging processing technology to improve the quality and safety of foods. Food Rev. Int. 2024, 40, 2321–2343. [Google Scholar] [CrossRef]
- Sakr, A.M. Evaluation of wheat germination for making gluten-free bread. Curr. Sci. Int. 2020, 9, 677–689. [Google Scholar]
- Adrianos, S.L.; Mattioni, B.; Tilley, M. Confirmation of gluten-free status of wheatgrass (Triticum aestivum). Qual. Assur. Saf. Crops Foods 2017, 9, 123–128. [Google Scholar] [CrossRef]
- Di Cagno, R.; De Angelis, M.; Lavermicocca, P.; De Vincenzi, M.; Giovannini, C.; Faccia, M.; Gobbetti, M. Proteolysis by sourdough lactic acid bacteria: Effects on wheat flour protein fractions and gliadin peptides involved in human cereal intolerance. Appl. Environ. Microbiol. 2002, 68, 623–633. [Google Scholar] [CrossRef]
- Di Cagno, R.; De Angelis, M.; Auricchio, S.; Greco, L.; Clarke, C.; De Vincenzi, M.; Giovannini, C.; D’Archivio, M.; Landolfo, F.; Parrilli, G.; et al. Sourdough bread made from wheat and nontoxic flours and started with selected lactobacilli is tolerated in celiac sprue patients. Appl. Environ. Microbiol. 2004, 70, 1088–1096. [Google Scholar] [CrossRef]
- Fernández-Peláez, J.; Paesani, C.; Gómez, M. Sourdough technology as a tool for the development of healthier grain-based products: An update. Agronomy 2020, 10, 1962. [Google Scholar] [CrossRef]
- De Almeida, N.E.C.; Esteves, F.G.; dos Santos-Pinto, J.R.A.; Peres de Paula, C.; Da Cunha, A.F.; Malavazi, I.; Palma, M.S.; Rodrigues-Filho, E. Digestion of intact gluten proteins by Bifidobacterium species: Reduction of cytotoxicity and proinflammatory responses. J. Agric. Food Chem. 2020, 68, 4485–4492. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Wang, J.; Yang, S.; Feng, J.; Jia, F.; Zhang, C. Protein degradation in wheat sourdough fermentation with Lactobacillus plantarum M616. Interdiscip. Sci. Comput. Life Sci. 2015, 7, 205–210. [Google Scholar] [CrossRef] [PubMed]
- El Mecherfi, K.E.; Lupi, R.; Cherkaoui, M.; Albuquerque, M.A.; Todorov, S.D.; Tranquet, O.; Klingebiel, C.; Rogniaux, H.; Denery-Papini, S.; Onno, B.; et al. Fermentation of gluten by Lactococcus lactis LLGKC18 reduces its antigenicity and allergenicity. Probiotics Antimicrob. Proteins 2022, 14, 779–791. [Google Scholar] [CrossRef]
- Leszczyńska, J.; Szczepankowska, A.K.; Majak, I.; Mańkowska, D.; Smolińska, B.; Ścieszka, S.; Diowksz, A.; Cukrowska, B.; Aleksandrzak-Piekarczyk, T. Reducing immunoreactivity of gluten peptides by probiotic lactic acid bacteria for dietary management of gluten-related diseases. Nutrients 2024, 16, 976. [Google Scholar] [CrossRef]
- Zadeike, D.; Cipkute, K.; Cizeikiene, D. Effects of Co-Fermentation with Lactic Acid Bacteria and Yeast on Gliadin Degradation in Whole-Wheat Sourdough. Fermentation 2025, 11, 238. [Google Scholar] [CrossRef]
- Malalgoda, M.; Manthey, F.; Simsek, S. Reducing the celiac disease antigenicity of wheat. Cereal Chem. 2018, 95, 49–58. [Google Scholar] [CrossRef]
- Iacomino, G.; Rotondi Aufiero, V.; Di Stasio, L.; Picascia, S.; Iannaccone, N.; Giardullo, N.; Troncone, R.; Gianfrani, C.; Mamone, G.; Mazzarella, G. Triticum monococcum amylase trypsin inhibitors possess a reduced potential to elicit innate immune response in celiac patients compared to Triticum aestivum. Food Res. Int. 2021, 145, 110386. [Google Scholar] [CrossRef] [PubMed]
- Mamone, G.; Iacomino, G. Comparison of the in vitro toxicity of ancient Triticum monococcum varieties ID331 and Monlis. Int. J. Food Sci. Nutr. 2018, 69, 954–962. [Google Scholar] [CrossRef]
- Di Stasio, L.; Picascia, S.; Auricchio, R.; Vitale, S.; Gazza, L.; Picariello, G.; Gianfrani, C.; Mamone, G. Comparative analysis of in vitro digestibility and immunogenicity of gliadin proteins from durum and einkorn wheat. Front. Nutr. 2020, 7, 56. [Google Scholar] [CrossRef] [PubMed]
- Graça, C.; Lima, A.; Raymundo, A.; Sousa, I. Sourdough fermentation as a tool to improve the nutritional and health-promoting properties of its derived-products. Fermentation 2021, 7, 246. [Google Scholar] [CrossRef]
- Stefańska, I.; Piasecka-Jóźwiak, K.; Kotyrba, D.; Kolenda, M.; Stecka, K.M. Selection of lactic acid bacteria strains for the hydrolysis of allergenic proteins of wheat flour. J. Sci. Food Agric. 2016, 96, 3897–3905. [Google Scholar] [CrossRef]
- Tsafrakidou, P.; Michaelidou, A.M.; Biliaderis, C.G. Fermented cereal-based products: Nutritional aspects, possible impact on gut microbiota and health implications. Foods 2020, 9, 734. [Google Scholar] [CrossRef] [PubMed]
- Fraberger, V.; Ladurner, M.; Nemec, A.; Grunwald-Gruber, C.; Call, L.M.; Hochegger, R.; Domig, K.J.; D’Amico, S. Insights into the potential of sourdough-related lactic acid bacteria to degrade proteins in wheat. Microorganisms 2020, 8, 1689. [Google Scholar] [CrossRef] [PubMed]
- Jaglan, A.; Sadera, G.; Goel, G. Proteolytic efficiency and degradation of gliadin and toxic immunopeptide in laboratory media by indigenous potential probiotic Bacillus strains. Food Humanit. 2025, 4, 100567. [Google Scholar] [CrossRef]
- Thiele, C.; Grassl, S.; Gänzle, M. Gluten hydrolysis and depolymerization during sourdough fermentation. J. Agric. Food Chem. 2004, 52, 1307–1314. [Google Scholar] [CrossRef]
- Nikoloudaki, O.; Celano, G.; Polo, A.; Cappello, C.; Granehäll, L.; Costantini, A.; Vacca, M.; Speckmann, B.; Di Cagno, R.; Francavilla, R.; et al. Novel probiotic preparation with in vivo gluten-degrading activity and potential modulatory effects on the gut microbiota. Microbiol. Spectr. 2024, 12, e03524-23. [Google Scholar] [CrossRef] [PubMed]


| Strategy Type | Process or Method/ | Enzyme/Microbial Strain/Gene/Compound | Experimental Conditions/ Application Method | Mechanism of Action/Impact on Gluten | References |
|---|---|---|---|---|---|
| Enzymatic degradation | Germination | Endogenous enzymes of wheat grains | 8 days (25 °C, 100% humidity) | Reduction of peptides eliciting immune response. | [101,129] |
| Endogenous enzymes of wheat grains | 7 days (20 °C, pH 5.5, 100% humidity) | Degradation of gluten (<LOD). | [130] | ||
| Cysteine protease from barley germination (EP-B2) | 36 h, 100% humidity | Hydrolysis of immunotoxic sequences. | [104] | ||
| Microbial fermentation | Fermentation with LAB | Lactobacillus species: alimentarius 15M, brevis 14G, sanfranciscensis 7A, plantarum CF1, and hilgardii 51B | 24 h at 37 °C | Gluten degradation. | [131,132] |
| Streptococcus thermophilus, Lactobacillus. plantarum, Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus delbrueckii subsp. Bulgaricus | 72 h at 30 °C under anaerobic conditions | Gluten degradation. | [101,133] | ||
| Bifidobacterium species: bifidum, longum, breve, animalis and infantis | 24 h at 30 °C under anaerobic conditions | Proteolysis of gluten proteins. | [134] | ||
| Lactobacillus. plantarum species | 24 h at 30 °C | Hydrolysis and solubilization of wheat proteins. | [135] | ||
| Lactobacillus. sanfranciscensis | 24 h at 30 °C | Gluten degradation. | [102] | ||
| Lactococcus lactis LLGKC18 | 24 h at 37 °C | Degradation of immunodominant sequences of ω-5 gliadin | [136] | ||
| Combination of Lactobacillus casei LC130 and Lactobacillus paracasei LPC100 with the Streptococcus thermophilus | 2 h at 37 °C | Hydrolyzation of immunoreactive gliadin peptides. | [137] | ||
| Combination of Lactobacillus. brevis and Pediococcus pentosaceus | 24 h at 35 °C | Reduced toxic gluten peptides content. | [138] | ||
| Bacillus species: stearothermophilus, subtilis, tequilensis, licheniformis, thermoproteolyticus and cereus QAUSD07 | 1 h at 70 °C pH 8 or 24 h at 37 °C | Degradation of immunogenic peptides such as the 33-mer. | [102,134] | ||
| Fermentation with endo- and exoprotease/peptidase from bacteria, fungi, plants and animals | Proline endoproteases (PEP) from Flavobacterium meningosepticum, Sphingomonas capsulata, and Myxococcus xanthus | 24 h at 37 °C | Reduction of immunoreactive gliadin peptides. | [112,113,136] | |
| Alcalase | 1 h at 50 °C | Reduced the antigenicity of wheat gluten hydrolysates. | [107] | ||
| Plants protease from Nigella Sativa, Nepenthes pitcher (Neprosis), Carica papaya latex (Caricain) | 2 h at 37 °C; 80 min at 37 °C | Hydrolysis of gluten proteins. | [106] | ||
| Plants protease as papain, bromelain and actinidin | 1 h at 65 °C or 70 °C | Hydrolysis of gluten proteins. | [105,106,107] | ||
| Transamidation | Microbial transglutaminase (mTG) | mTG catalyses the transamidation reaction that leads to the formation of an isopeptide bond. | Prevention of the formation of immunodominant gluten peptides. | [109,110] | |
| Oral therapy | Enzyme supplement therapy using either bacterial or fungal endopeptidases or endoproteases | Proline endoproteases (PEP) from Flavobacterium meningosepticum, Sphingomonas capsulata, and Myxococcus xanthus. | Optimal activity pH range of 3–5 (gastric phase) | Efficiently degrades the most immune-toxic gluten. | [37] |
| Kuma 030: engineered endopeptidase derived from the microbial protease of Alicyclobacillus sendaiensis (kumamolisin) | Optimal activity pH 4 (gastric phase) | Efficiently degrades the most immune-toxic gluten. | [118] | ||
| TAK-062: engineered endopeptidase from the precursor Kuma030 | Optimal activity pH 2.5–6.0 (both gastric and intestinal phase) | Degrade > 99% of gluten in a complex study meal in the human stomach and in vitro. | [119] | ||
| Aspergillopepsin (ASP) from Aspergirllus niger | Optimal activity pH 3 (gastric phase) | Hydrolyzation of immunoreactive gliadin peptides. Often used in combination with as EP-B2 or microbial prolyl endopeptidases to enhance the therapeutic efficacy. | [117] | ||
| DPP-IV from Aspergillus oryzae | Optimal activity pH 7 (intestinal phase) | Limited proteolytic effect alone. Often used in combination with PEP. | [75] | ||
| Cysteine protease from wheat germination (Triticain-α) | Optimal activity pH 3–6 (gastric phase) | Hydrolysis of immunotoxic sequences of α-, γ-, ω-gliadin, and glutenin. | [115] | ||
| E40 glutenase from Actinomycete strain Actinoallomurus A8 | Optimal activity pH range of 3–6 (gastric phase) | Degradation of the immunodominant 33-mer peptide and whole gliadin proteins. | [116,117] | ||
| Genetic modification | CRISPR/Cas9 | Mutations of Gli-γ1-1D, Gli-γ2-1B,γ-gliadins, α-gliadins | Gene-editing tool that uses a special protein (Cas9) to cut DNA at exact spots in order to add, remove, or change specific genes. | Removing or reducing the toxic fractions of gluten. | [122,123,124] |
| Chinese Spring | Deletion of the 6DS arm | Remove specific chromosomal regions | Strong reduction of gliadin immunogenicity. | [126] | |
| Gamma irradiation | Deletions in gliadins genes | It cause DNA strand breaks, which may lead to genetic alterations such as deletions, substitutions, or insertions. | Removing or reducing the toxic fractions of gluten. | [128] | |
| RNAi | Translation in gliadins genes | It cause target mRNA degradation, which may lead to genetic alterations | Reducing gliadin expression and developing wheat lines with fewer gluten genes and/or gluten genes with inactivated CD-epitopes. | [139] | |
| Methane sulfonate | Mutations in α- and γ-gliadin genes | G/C to A/T nucleotides in the DNA transition | Removing or reducing the toxic fractions of gluten. | [127] | |
| Plant breeding | Less immunogenic alternative crops | Triticum monoccoum | Ancient wheat varieties that lack the D genome, known to encode highly immunogenic peptides. | Includes significantly fewer toxic sequences. | [120,140,141,142] |
| Synthetic hexaploid wheat | Hybridization of Triticum turgidum ssp. durum with Aegilops tauschii lines | Low levels of CD-toxic gliadins. | [125] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Stasio, L.; Mamone, G. Gluten Proteins: Beneficial Factors and Toxic Triggers in Human Health. Foods 2025, 14, 3403. https://doi.org/10.3390/foods14193403
Di Stasio L, Mamone G. Gluten Proteins: Beneficial Factors and Toxic Triggers in Human Health. Foods. 2025; 14(19):3403. https://doi.org/10.3390/foods14193403
Chicago/Turabian StyleDi Stasio, Luigia, and Gianfranco Mamone. 2025. "Gluten Proteins: Beneficial Factors and Toxic Triggers in Human Health" Foods 14, no. 19: 3403. https://doi.org/10.3390/foods14193403
APA StyleDi Stasio, L., & Mamone, G. (2025). Gluten Proteins: Beneficial Factors and Toxic Triggers in Human Health. Foods, 14(19), 3403. https://doi.org/10.3390/foods14193403

