Geographical Origin Identification of Dendrobium officinale Using Variational Inference-Enhanced Deep Learning
Abstract
1. Introduction
- (1)
- This study addresses the challenges of minimal inter-class feature disparity and restricted intra-class sample availability in Dendrobium officinale image classification by implementing a variational inference-driven latent feature enhancement strategy. The dual-network architecture synergizes prior botanical knowledge extraction with posterior feature generation under Gaussian distribution constraints, enforcing compact intra-class feature clustering and enhanced inter-class separability for improved discriminative learning.
- (2)
- To mitigate overfitting, the framework integrates residual-based convolutional blocks with reparameterization techniques, achieving lightweight deployment and end-to-end optimization. Low-cost, high-efficiency origin identification of samples can be accomplished simply by analyzing images captured by smartphones, breaking through the limitations of traditional identification methods that rely on high-cost equipment (e.g., hyperspectral technology) or expert experience.
- (3)
- Validation through a multi-source image database demonstrates statistically significant improvements in geographical origin classification accuracy compared to conventional models, confirming the framework’s efficacy and generalizability.
2. Materials and Methods
2.1. Image Acquisition
2.2. Symbol Definitions
2.3. VIDE Model Framework
2.3.1. Prior Network
2.3.2. Posterior Network
Algorithm 1 Forward Propagation of VIDE Model |
Require:
Training set , Test set Ensure:
|
2.4. Backbone of the VIDE Model
2.5. Variational Inference Optimization
2.6. Objective Function
3. Experimental Results
3.1. Experimental Details
3.2. Performance Comparison
3.3. Ablation Study
3.4. Analysis of the Impact of Sample Size on Model Performance
3.5. Parameter Sensitivity Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Luo, Z.; Liu, L.; Nie, Q.; Huang, M.; Luo, C.; Sun, Y.; Ma, Y.; Yu, J.; Du, F. HPLC-based metabolomics of Dendrobium officinale revealing its antioxidant ability. Front. Plant Sci. 2023, 14, 1060242. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, X.; Zhu, X.; Hua, Y. Chemical constituents, bioactivities, and pharmacological mechanisms of Dendrobium officinale: A review of the past decade. J. Agric. Food Chem. 2023, 71, 14870–14889. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.H.; Huo, C.Y.; Xu, J.; Han, Q.B.; Li, L.F. Critical review on the research of chemical structure, bioactivities, and mechanism of actions of Dendrobium officinale polysaccharide. Int. J. Biol. Macromol. 2024, 263, 130315. [Google Scholar] [CrossRef]
- Kirkwood, A.; Fisk, I.; Ayed, C.; Xu, Y.; Yang, N. A flavour perspective of Tiepishihu (Dendrobium officinale)–an emerging food ingredient from popular traditional Chinese medicinal plants: A review. Int. J. Food Sci. Technol. 2023, 58, 4921–4930. [Google Scholar] [CrossRef]
- Li, P.; Shen, T.; Li, L.; Wang, Y. Optimization of the selection of suitable harvesting periods for medicinal plants: Taking Dendrobium officinale as an example. Plant Methods 2024, 20, 43. [Google Scholar] [CrossRef] [PubMed]
- Bao, H.; Bao, H.; Wang, Y.; Wang, F.; Jiang, Q.; Li, H.; Ding, Y.; Zhu, C. Variations in Cold Resistance and Contents of Bioactive Compounds among Dendrobium officinale Kimura et Migo Strains. Foods 2024, 13, 1467. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, C.; Chen, Y.; Wang, C.; Lai, Z. Transcriptomic analysis for diurnal temperature differences reveals gene-regulation-network response to accumulation of bioactive ingredients of protocorm-like bodies in Dendrobium officinale. Plants 2024, 13, 874. [Google Scholar] [CrossRef]
- Zhao, Z.; Liang, Z.; Ping, G. Macroscopic identification of Chinese medicinal materials: Traditional experiences and modern understanding. J. Ethnopharmacol. 2011, 134, 556–564. [Google Scholar] [CrossRef]
- Cao, X.; Huang, J.; Chen, J.; Niu, Y.; Wei, S.; Tong, H.; Wu, M.; Yang, Y. Rapid Measurement of Antioxidant Properties of Dendrobium officinale Using Near-Infrared Spectroscopy and Chemometrics. Foods 2024, 13, 1769. [Google Scholar] [CrossRef]
- Danezis, G.P.; Tsagkaris, A.S.; Camin, F.; Brusic, V.; Georgiou, C.A. Food authentication: Techniques, trends & emerging approaches. TrAC Trends Anal. Chem. 2016, 85, 123–132. [Google Scholar] [CrossRef]
- Jiaxin, Z.; Xinhao, Z.; Chaofeng, Z.; Wangning, Z.; Jiangwei, T. Research progress on new techniques and methods for identifying active ingredients in traditional Chinese medicine. Chin. J. Nat. Med. 2025, 23, 1–18. [Google Scholar]
- Li, Y.; Fan, J.; Cheng, X.; Jin, H.; Wang, Y.; Wei, F.; An, F.; Ma, S. New Revolution for Quality Control of TCM in Industry 4.0: Focus on Artificial Intelligence and Bioinformatics. TrAC Trends Anal. Chem. 2024, 181, 118023. [Google Scholar] [CrossRef]
- Cai, Z.; He, M.; Li, C.; Qi, H.; Bai, R.; Yang, J.; Zhang, C. Identification of chrysanthemum using hyperspectral imaging based on few-shot class incremental learning. Comput. Electron. Agric. 2023, 215, 108371. [Google Scholar] [CrossRef]
- Lu, H.; Wang, Y.; Zhu, J.; Huang, J.; Li, F. Rapid analysis of Radix Astragali using a portable Raman spectrometer with 1064-nm laser excitation and data fusion with PLS-DA. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 313, 124087. [Google Scholar] [CrossRef]
- Ding, Q.; Wang, Y.M.; Goh, M. A hybrid interval evidential reasoning-regret decision making model and its application to the behavior of Chinese herbal medicine planting selection. Expert Syst. Appl. 2023, 231, 120681. [Google Scholar] [CrossRef]
- Miao, J.; Huang, Y.; Wang, Z.; Wu, Z.; Lv, J. Image recognition of traditional Chinese medicine based on deep learning. Front. Bioeng. Biotechnol. 2023, 11, 1199803. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Li, J.; Duan, P. The application of machine learning and artificial intelligence technology in the production quality management of traditional Chinese medicine decoction pieces. Int. J. Interact. Des. Manuf. (IJIDeM) 2024, 18, 239–251. [Google Scholar] [CrossRef]
- Gong, K.; Yin, X.; Ying, N.; Wu, M.; Lyu, Y.; Zheng, H.; Jiang, L. Rapid and accurate detection of Dendrobium officinale adulterated with lower-price species using NMR characteristic markers integrated with artificial neural network. J. Food Meas. Charact. 2024, 18, 4845–4852. [Google Scholar] [CrossRef]
- Li, L.; Zhao, Y.; Li, Z.; Wang, Y. Multi-information based on ATR-FTIR and FT-NIR for identification and evaluation for different parts and harvest time of Dendrobium officinale with chemometrics. Microchem. J. 2022, 178, 107430. [Google Scholar] [CrossRef]
- She, X.; Huang, J.; Cao, X.; Wu, M.; Yang, Y. Rapid measurement of total saponins, mannitol, and naringenin in dendrobium officinale by near-infrared spectroscopy and chemometrics. Foods 2024, 13, 1199. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, C.; Guo, F.; Wang, H. Geographical origin identification of dendrobium officinale based on NNRW-stacking ensembles. Mach. Learn. Appl. 2024, 18, 100594. [Google Scholar] [CrossRef]
- Kingma, D.P.; Welling, M. Auto-Encoding Variational Bayes. In Proceedings of the 2nd International Conference on Learning Representations, Banff, AB, Canada, 14–16 April 2014. [Google Scholar]
- Zhang, Y.; Pan, J.; Li, L.K.; Liu, W.; Chen, Z.; Liu, X.; Wang, J. On the properties of kullback-leibler divergence between multivariate gaussian distributions. Adv. Neural Inf. Process. Syst. 2023, 36, 58152–58165. [Google Scholar]
- Katsevich, A.; Rigollet, P. On the approximation accuracy of Gaussian variational inference. Ann. Stat. 2024, 52, 1384–1409. [Google Scholar] [CrossRef]
- Kingma, D.P.; Salimans, T.; Welling, M. Variational dropout and the local reparameterization trick. Adv. Neural Inf. Process. Syst. 2015, 28, 2575–2583. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the 3rd International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Liu, Z.; Mao, H.; Wu, C.Y.; Feichtenhofer, C.; Darrell, T.; Xie, S. A convnet for the 2020s. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 11976–11986. [Google Scholar]
- Tan, M.; Le, Q. Efficientnetv2: Smaller models and faster training. In Proceedings of the International Conference on Machine Learning, PMLR, Virtually, 18–24 July 2021; pp. 10096–10106. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. In Proceedings of the International Conference on Learning Representations, Vienna, Austria, 4 May 2021. [Google Scholar]
- Wang, Y.; Zuo, Z.T.; Huang, H.Y.; Wang, Y.Z. Original plant traceability of Dendrobium species using multi-spectroscopy fusion and mathematical models. R. Soc. Open Sci. 2019, 6, 190399. [Google Scholar] [CrossRef]
- Wei, Y.; Fan, W.; Zhao, X.; Wu, W.; Lu, H. Rapid authentication of Dendrobium officinale by near-infrared reflectance spectroscopy and chemometrics. Anal. Lett. 2015, 48, 817–829. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, Z.; Zhao, X.; Zhang, S.; Lu, H. The rapid determination of total polyphenols content and antioxidant activity in Dendrobium officinale using near-infrared spectroscopy. Anal. Methods 2016, 8, 4584–4589. [Google Scholar] [CrossRef]
- Yang, Y.; She, X.; Cao, X.; Yang, L.; Huang, J.; Zhang, X.; Su, L.; Wu, M.; Tong, H.; Ji, X. Comprehensive evaluation of Dendrobium officinale from different geographical origins using near-infrared spectroscopy and chemometrics. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 277, 121249. [Google Scholar] [CrossRef]
- Han, J.; Hu, Q.; Wang, Y. Geographical origin identification of Dendrobium Officinale based on FT-NIR and ATR-FTIR spectroscopy. Food Biosci. 2025, 63, 105753. [Google Scholar] [CrossRef]
- Li, L.; Zhao, Y.; Li, Z.; Wang, Y. A strategy of fast evaluation for the raw material of Tiepi Fengdou using FT-NIR and ATR-FTIR spectroscopy coupled with chemometrics tools. Vib. Spectrosc. 2022, 123, 103429. [Google Scholar] [CrossRef]
Batch ID | Number of Samples | Planting Region | Cultivation Method | Soil Type | Altitude (m) |
---|---|---|---|---|---|
a | 200 | Libo, Guizhou | Wild-simulated | Red Earth | 300–400 |
b | 200 | Libo, Guizhou | Greenhouse | Red Earth | 300–400 |
c | 200 | Baoshan, Yunnan | Wild-simulated | Red Earth | 1000–1100 |
d | 200 | Baoshan, Yunnan | Greenhouse | Red Earth | 1000–1100 |
e | 200 | Yueqing, Zhejiang | Wild-simulated | Red Earth | 300–400 |
f | 200 | Yueqing, Zhejiang | Greenhouse | Red Earth | 300–400 |
g | 200 | Shaoguan, Guangdong | Wild-simulated | Red Earth | 300–400 |
h | 200 | Shaoguan, Guangdong | Greenhouse | Red Earth | 300–400 |
i | 200 | Laibin, Guangxi | Wild-simulated | Red Earth | 300–400 |
j | 200 | Laibin, Guangxi | Greenhouse | Red Earth | 300–400 |
k | 200 | Yingtan, Jiangxi | Wild-simulated | Red Earth | 300–400 |
Batch ID | Length (cm) | Diameter (cm) | Weight (g) | Internode Length (cm) | Surface Color |
---|---|---|---|---|---|
a | 17.11 ± 2.22 | 0.16 ± 0.03 | 0.56 ± 0.19 | 1.35 ± 0.23 | Yellowish-green |
b | 16.06 ± 2.91 | 0.20 ± 0.03 | 0.52 ± 0.16 | 2.06 ± 0.41 | Yellowish-green |
c | 14.28 ± 2.08 | 0.20 ± 0.03 | 0.67 ± 0.18 | 1.30 ± 0.21 | Yellowish-green |
d | 8.66 ± 0.87 | 0.24 ± 0.03 | 0.64 ± 0.18 | 1.08 ± 0.19 | Yellowish-green |
e | 12.98 ± 2.13 | 0.15 ± 0.02 | 0.29 ± 0.10 | 1.65 ± 0.28 | Yellowish-green |
f | 23.55 ± 3.66 | 0.27 ± 0.03 | 2.53 ± 0.73 | 1.55 ± 0.27 | Yellowish-green |
g | 23.64 ± 3.54 | 0.18 ± 0.03 | 0.75 ± 0.20 | 1.79 ± 0.30 | Yellowish-green |
h | 21.49 ± 1.89 | 0.25 ± 0.03 | 1.67 ± 0.36 | 1.37 ± 0.22 | Yellowish-green |
i | 16.37 ± 2.08 | 0.16 ± 0.03 | 0.43 ± 0.15 | 1.93 ± 0.36 | Yellowish-green |
j | 18.40 ± 3.38 | 0.23 ± 0.03 | 1.34 ± 0.34 | 1.57 ± 0.26 | Yellowish-green |
k | 11.42 ± 1.90 | 0.25 ± 0.02 | 0.82 ± 0.23 | 1.23 ± 0.20 | Yellowish-green |
ANOVA p-value | <0.001 | <0.001 | <0.001 | <0.001 |
Method | Precision (%) | Recall (%) | F1 (%) | Accuracy (%) |
---|---|---|---|---|
Alexnet | 77.24 | 76.62 | 76.93 | 77.21 |
VGGNet | 80.61 | 80.53 | 80.57 | 80.93 |
GoogleNet | 82.17 | 82.66 | 82.41 | 83.14 |
DenseNet-121 | 86.09 | 85.78 | 85.93 | 86.75 |
ResNet-18 | 84.33 | 83.45 | 83.89 | 84.69 |
ResNet-50 | 87.65 | 86.81 | 87.23 | 88.02 |
ConvNeXt | 91.80 | 91.54 | 91.67 | 92.38 |
EfficientNetV2 | 92.28 | 91.93 | 92.10 | 92.86 |
Vision Transformer (ViT) | 89.52 | 88.37 | 88.94 | 90.11 |
VIDE (Ours) | 95.41 | 95.83 | 95.62 | 96.53 |
Method | Precision (%) | Recall (%) | F1 (%) | Accuracy (%) |
---|---|---|---|---|
Alexnet | 75.27 | 73.65 | 74.45 | 74.92 |
VGGNet | 78.43 | 77.88 | 78.15 | 78.85 |
GoogleNet | 81.76 | 81.12 | 81.44 | 82.07 |
DenseNet-121 | 85.88 | 85.36 | 85.62 | 86.73 |
ResNet-18 | 84.15 | 82.27 | 83.20 | 84.14 |
ResNet-50 | 87.39 | 86.44 | 86.91 | 87.79 |
ConvNeXt | 90.66 | 90.61 | 90.63 | 91.68 |
EfficientNetV2 | 91.54 | 90.97 | 91.25 | 92.36 |
Vision Transformer (ViT) | 88.67 | 87.26 | 87.96 | 88.79 |
VIDE (Ours) | 94.37 | 93.92 | 94.14 | 95.21 |
Method | Precision (%) | Recall (%) | F1 (%) | Accuracy (%) |
---|---|---|---|---|
Alexnet | 73.38 | 71.94 | 72.65 | 73.82 |
VGGNet | 77.16 | 75.33 | 76.23 | 77.19 |
GoogleNet | 79.65 | 78.48 | 79.06 | 79.87 |
DenseNet-121 | 83.34 | 81.12 | 82.22 | 83.04 |
ResNet-18 | 81.52 | 79.29 | 80.39 | 81.25 |
ResNet-50 | 84.71 | 82.74 | 83.71 | 84.66 |
ConvNeXt | 86.03 | 87.55 | 86.78 | 87.58 |
EfficientNetV2 | 88.47 | 87.63 | 88.05 | 88.91 |
Vision Transformer (ViT) | 86.29 | 84.75 | 85.51 | 86.64 |
VIDE (Ours) | 91.51 | 92.63 | 92.07 | 92.93 |
Method | Precision (%) | Recall (%) | F1-Score (%) |
---|---|---|---|
w/o Pos | 85.77 | 83.29 | 84.51 |
w/o Pri | 89.34 | 88.56 | 88.95 |
VIDE (Ours) | 91.51 | 92.63 | 92.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Cao, F.; Diao, Y.; He, Y.; Cai, S. Geographical Origin Identification of Dendrobium officinale Using Variational Inference-Enhanced Deep Learning. Foods 2025, 14, 3361. https://doi.org/10.3390/foods14193361
Liu C, Cao F, Diao Y, He Y, Cai S. Geographical Origin Identification of Dendrobium officinale Using Variational Inference-Enhanced Deep Learning. Foods. 2025; 14(19):3361. https://doi.org/10.3390/foods14193361
Chicago/Turabian StyleLiu, Changqing, Fan Cao, Yifeng Diao, Yan He, and Shuting Cai. 2025. "Geographical Origin Identification of Dendrobium officinale Using Variational Inference-Enhanced Deep Learning" Foods 14, no. 19: 3361. https://doi.org/10.3390/foods14193361
APA StyleLiu, C., Cao, F., Diao, Y., He, Y., & Cai, S. (2025). Geographical Origin Identification of Dendrobium officinale Using Variational Inference-Enhanced Deep Learning. Foods, 14(19), 3361. https://doi.org/10.3390/foods14193361