Ultrasound-Assisted Extraction of Bioactives from Spirulina platensis: Optimization and Prediction of Their Properties Using Near-Infrared Spectroscopy Coupled with Artificial Neural Network Modeling
Abstract
1. Introduction
2. Materials and Methods
2.1. Algae and Chemicals
2.2. Methods
2.2.1. Ultrasound-Assisted Extraction of Bioactive Compounds and Process Optimization by Response Surface Methodology
2.2.2. Physical Properties of Extracts
2.2.3. Color Determination of Spirulina platensis Extract Samples
- L* represents the lightness of the sample (ranging from 0 = black to 100 = white),
- a* indicates the red-green axis (negative values = green, positive values = red), and
- b* corresponds to the blue-yellow axis (negative values = blue, positive values = yellow).
2.2.4. Measurement of Protein Concentrations in the Extracts
2.2.5. Measurement of C-Phycocyanin Content
- CPC—C-phycocyanin concentration (mg/mL);
- OD620—optical density at 620 nm;
- OD652—optical density at 652 nm.
2.2.6. Total Phenolic Content of the Extracts Measurement
2.2.7. Determination of Antioxidant Capacity Using the DPPH Method
2.2.8. Determination of Antioxidant Activity Using the FRAP Method
2.2.9. NIR Spectroscopy
2.2.10. Basic Statistical Analysis and Correlation Matrix
2.2.11. Principal Component Analysis (PCA) of Continuous NIR Spectra
2.2.12. Artificial Neural Network (ANN) Modeling
3. Results and Discussion
3.1. Physicochemical Characteristics of Spirulina platensis Blue–Green Algae Extracts Obtained Using Ultrasound-Assisted Extraction
3.2. Optimization of Extraction Conditions for Biologically Active Molecules from the Blue-Green Alga Spirulina platensis
3.3. NIR Spectra of Blue-Green Algae Spirulina platensis Extracts and Artificial Neural Network Models for Predicting Physicochemical Properties of Spirulina platensis Extracts Based on NIR Spectra
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ragaza, J.A.; Hossain, M.S.; Meiler, K.A.; Velasquez, S.F.; Kumar, V. A review on Spirulina: Alternative media for cultivation and nutritive value as an aquafeed. Rev. Aquac. 2020, 12, 2371–2395. [Google Scholar] [CrossRef]
- Kelebek, H.; Uzlasir, T.; Sasmaz, H.K. Bioactive compounds and health benefits of Arthrospira platensis and Chlorella vulgaris: A comprehensive review. Food Nutr. 2025, 1, 100033. [Google Scholar] [CrossRef]
- Sahil, S.; Bodh, S.; Verma, P. Spirulina platensis: A comprehensive review of its nutritional value, antioxidant activity and functional food potential. J. Cell. Biotechnol. 2024, 10, 159–172. [Google Scholar] [CrossRef]
- Janda-Milczarek, K.; Szymczykowska, K.; Jakubczyk, K.; Kupnicka, P.; Skonieczna-Żydecka, K.; Pilarczyk, B.; Tomza-Marciniak, A.; Ligenza, A.; Stachowska, E.; Dalewski, B. Spirulina Supplements as a Source of Mineral Nutrients in the Daily Diet. Appl. Sci. 2023, 13, 1011. [Google Scholar] [CrossRef]
- Marjanović, B.; Benković, M.; Jurina, T.; Sokač Cvetnić, T.; Valinger, D.; Gajdoš Kljusurić, J.; Jurinjak Tušek, A. Bioactive Compounds from Spirulina spp.—Nutritional Value, Extraction, and Application in Food Industry. Separations 2024, 11, 257. [Google Scholar] [CrossRef]
- Bortolini, D.G.; Maciel, G.M.; Fernandes, I.d.A.A.; Pedro, A.C.; Rubio, F.T.V.; Branco, I.G.; Haminiuk, C.W.I. Functional properties of bioactive compounds from Spirulina spp.: Current status and future trends. Food Chem. Mol. Sci. 2022, 5, 100134. [Google Scholar] [CrossRef] [PubMed]
- Bitwell, C.; Indra, S.S.; Luke, C.; Kakoma, M.K. A review of modern and conventional extraction techniques and their applications for extracting phytochemicals from plants. Sci. Afr. 2023, 19, e01585. [Google Scholar] [CrossRef]
- Bhadange, Y.A.; Carpenter, J.; Saharan, V.K. A Comprehensive Review on Advanced Extraction Techniques for Retrieving Bioactive Components from Natural Sources. ACS Omega 2024, 9, 31274. [Google Scholar] [CrossRef]
- Cao, S.; Liang, J.; Chen, M.; Xu, C.; Wang, X.; Qiu, L.; Zhao, X.; Hu, W. Comparative analysis of extraction technologies for plant extracts and absolutes. Front. Chem. 2025, 13, 1536590. [Google Scholar] [CrossRef]
- Putra, N.R.; Yustisia, Y.; Heryanto, R.B.; Asmaliyah, A.; Miswarti, M.; Rizkiyah, D.N.; Yunus, M.A.C.; Irianto, I.; Qomariyah, L.; Rohman, G.A.N. Advancements and challenges in green extraction techniques for Indonesian natural products: A review. S. Afr. J. Chem. Eng. 2023, 46, 88–98. [Google Scholar] [CrossRef]
- Cheriyan, B.V.; Karunakar, K.K.; Anandakumar, R.; Murugathirumal, A.; Kumar, A.S. Eco-friendly extraction technologies: A comprehensive review of modern green analytical methods. Sustain. Chem. Clim. Action 2025, 6, 100054. [Google Scholar] [CrossRef]
- Usman, M.; Nakagawa, M.; Cheng, S. Emerging Trends in Green Extraction Techniques for Bioactive Natural Products. Processes 2023, 11, 3444. [Google Scholar] [CrossRef]
- Trombino, S.; Cassano, R.; Di Gioia, M.L.; Aiello, F. Emerging Trends in Green Extraction Techniques, Chemical Modifications, and Drug Delivery Systems for Resveratrol. Antioxidants 2025, 14, 654. [Google Scholar] [CrossRef]
- Shen, L.; Pang, S.; Zhong, M.; Sun, Y.; Qayum, A.; Liu, Y.; Rashid, A.; Xu, B.; Liang, Q.; Ma, H.; et al. A comprehensive review of ultrasonic assisted extraction (UAE) for bioactive components: Principles, advantages, equipment, and combined technologies. Ultrason. Sonochem. 2023, 101, 106646. [Google Scholar] [CrossRef] [PubMed]
- Sethi, S.; Rathod, V.K. Recent advances in ultrasound-assisted extraction of natural products using novel solvents: A mini-review. Curr. Opin. Chem. Eng. 2025, 48, 101132. [Google Scholar] [CrossRef]
- Kopp, G.; Lauritano, C. Greener Extraction Solutions for Microalgal Compounds. Mar. Drugs 2025, 23, 269. [Google Scholar] [CrossRef]
- Seyyedi-Mansour, S.; Donn, P.; Carpena, M.; Chamorro, F.; Barciela, P.; Perez-Vazquez, A.; Olivia, A.; Jorge, S.; Prieto, M.A. Utilization of Ultrasonic-Assisted Extraction for Bioactive Compounds from Floral Sources. Biol. Life Sci. Forum 2025, 40, 15. [Google Scholar] [CrossRef]
- Roobab, U.; Aadil, R.M.; Kurup, S.S.; Maqsood, S. Comparative evaluation of ultrasound-assisted extraction with other green extraction methods for sustainable recycling and processing of date palm bioresources and by-products: A review of recent research. Ultrason. Sonochem. 2025, 114, 107252. [Google Scholar] [CrossRef] [PubMed]
- Elmas, E.; Şen, F.B.; Kublay, İ.Z.; Baş, Y.; Tüfekci, F.; Derman, H.; Bekdeşer, B.; Aşçı, Y.S.; Capanoglu, E.; Bener, M.; et al. Green Extraction of Antioxidants from Hazelnut By-products Using Microwave-Assisted Extraction, Ultrasound-Assisted Extraction, and Pressurized Liquid Extraction. Food Bioprocess Technol. 2025, 18, 5388–5406. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, H.; Holland, B.; Barrow, C.J.; Suleria, H.A.R. An Optimization of the Extraction of Phenolic Compounds from Grape Marc: A Comparison between Conventional and Ultrasound-Assisted Methods. Chemosensors 2024, 12, 177. [Google Scholar] [CrossRef]
- Anderson-Cook, C.M.; Borror, C.M.; Montgomery, D.C. Response surface design evaluation and comparison. J. Stat. Plan. Inference 2009, 139, 629–641. [Google Scholar] [CrossRef]
- Bleisch, R.; Mühlstädt, G.; Hilpmann, G.; Seibel, L.; Steingröwer, J.; Zahn, S.; Wagemans, A.M.; Krujatz, F. A robust, non-invasive and fast routine for the quantification of the nutritional composition of microalgae biomass slurries based on near-infrared spectroscopy. Algal Res. 2025, 85, 103882. [Google Scholar] [CrossRef]
- Majić, I.; Zajec, M.; Benković, M.; Jurina, T.; Jurinjak Tušek, A.; Valinger, D.; Gajdoš Kljusurić, J. Qualitative and Quantitative Potential of Low-Cost Near-Infrared (NIR) Devices for Rapid Analysis of Infant Formulas for Regular and Special Needs. Processes 2024, 12, 1771. [Google Scholar] [CrossRef]
- Klinar, M.; Benković, M.; Jurina, T.; Jurinjak Tušek, A.; Valinger, D.; Tarandek, S.M.; Prskalo, A.; Tonković, J.; Gajdoš Kljusurić, J. Fast Monitoring of Quality and Adulteration of Blended Sunflower/Olive Oils Applying Near-Infrared Spectroscopy. Chemosensors 2024, 12, 150. [Google Scholar] [CrossRef]
- Jurinjak Tušek, A.; Benković, M.; Malešić, E.; Marić, L.; Jurina, T.; Gajdoš Kljusurić, J.; Valinger, D. Rapid quantification of dissolved solids and bioactives in dried root vegetable extracts using near infrared spectroscopy. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2021, 261, 120074. [Google Scholar] [CrossRef]
- Valinger, D.; Longin, L.; Grbeš, F.; Benković, M.; Jurina, T.; Gajdoš Kljusurić, J.; Jurinjak Tušek, A. Detection of honey adulteration—The potential of UV-VIS and NIR spectroscopy coupled with multivariate analysis. LWT 2021, 145, 111316. [Google Scholar] [CrossRef]
- Dayananda, B.; Chahwala, P.; Cozzolino, D. The Ability of Near-Infrared Spectroscopy to Discriminate Plant Protein Mixtures: A Preliminary Study. AppliedChem 2023, 3, 428–436. [Google Scholar] [CrossRef]
- Jurinjak Tušek, A.; Jurina, T.; Čulo, I.; Valinger, D.; Gajdoš Kljusurić, J.; Benković, M. Application of NIRs coupled with PLS and ANN modelling to predict average droplet size in oil-in-water emulsions prepared with different microfluidic devices. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2022, 270, 120860. [Google Scholar] [CrossRef]
- Basile, T.; Marsico, A.D.; Perniola, R. Use of Artificial Neural Networks and NIR Spectroscopy for Non-Destructive Grape Texture Prediction. Foods 2022, 11, 281. [Google Scholar] [CrossRef] [PubMed]
- Mishra, P.; Passos, D.; Marini, F.; Xu, J.; Amigo, J.M.; Gowen, A.A.; Jansen, J.J.; Biancolillo, A.; Roger, J.M.; Rutledge, D.N.; et al. Deep learning for near-infrared spectral data modelling: Hypes and benefits. TrAC Trends Anal. Chem. 2022, 157, 116804. [Google Scholar] [CrossRef]
- Costa, E.; Ribeiro, M.; Filipe-Ribeiro, L.; Cosme, F.; Nunes, F.M. Protein Extraction from Arthrospira platensis for Use in Food Processing. Med. Sci. Forum 2024, 23, 8. [Google Scholar]
- Yucetepe, A.; Saroglu, O.; Daskaya-Dikmen, C.; Bildik, F.; Ozcelik, B. Optimisation of Ultrasound-Assisted Extraction of Protein from Spirulina platensis Using RSM. Food Technol. Econ. Eng. Phys. Prop. Czech J. Food Sci. 2018, 36, 98–108. [Google Scholar] [CrossRef]
- Yücetepe, A.; Saroğlu, Ö.; Özçelik, B. Response surface optimization of ultrasound-assisted protein extraction from Spirulina platensis: Investigation of the effect of extraction conditions on techno-functional properties of protein concentrates. J. Food Sci. Technol. 2019, 56, 3282–3292. [Google Scholar] [CrossRef]
- Ernst, O.; Zor, T. Linearization of the Bradford protein assay. J. Vis. Exp. 2010, 38, 1918. [Google Scholar]
- Vernès, L.; Abert-Vian, M.; El Maâtaoui, M.; Tao, Y.; Bornard, I.; Chemat, F. Application of ultrasound for green extraction of proteins from spirulina. Mechanism, optimization, modeling, and industrial prospects. Ultrason. Sonochem. 2019, 54, 48–60. [Google Scholar] [CrossRef] [PubMed]
- Pinelo, M.; Rubilar, M.; Jerez, M.; Sineiro, J.; Núñez, M.J. Effect of Solvent, Temperature, and Solvent-to-Solid Ratio on the Total Phenolic Content and Antiradical Activity of Extracts from Different Components of Grape Pomace. J. Agric. Food Chem. 2005, 53, 2111–2117. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Fearn, T. Assessing Calibrations: SEP, RPD, RER and R 2. NIR News 2002, 13, 12–13. [Google Scholar] [CrossRef]
- Begum, N.; Qi, F.; Yang, F.; Khan, Q.U.; Faizan; Fu, Q.; Li, J.; Wang, X.; Wang, X.; Wang, J.; et al. Nutritional Composition and Functional Properties of A. platensis-Derived Peptides: A Green and Sustainable Protein-Rich Supplement. Processes 2024, 12, 2608. [Google Scholar] [CrossRef]
- Spínola, M.P.; Mendes, A.R.; Prates, J.A.M. Chemical Composition, Bioactivities, and Applications of Spirulina (Limnospira platensis) in Food, Feed, and Medicine. Foods 2024, 13, 3656. [Google Scholar] [CrossRef]
- Kamil, S.N.; Tezcanlı, S.; Çelik, Y.; Toprakçı, İ.; Şahin, S. Optimized extraction of Spirulina platensis phenolics using natural deep eutectic solvents for cosmetics. Prep. Biochem. Biotechnol. 2025, 55, 985–998. [Google Scholar] [CrossRef] [PubMed]
- Martins, R.; Mouro, C.; Pontes, R.; Nunes, J.; Gouveia, I. Ultrasound-assisted extraction of bioactive pigments from Spirulina platensis in natural deep eutectic solvents. Bioresour. Bioprocess. 2023, 10, 88. [Google Scholar] [CrossRef]
- Gilmar Gonzales-Condori, E.; Remigia Jara-Quille, V.; Gonzales-Condori, J.; Alvarez-Gonzales, R.; José, S. Technology: Sustainable Engineering for a Diverse, Equitable, and Inclusive Future at the Service of Education, Research, and Industry for a Society 5.0. Hybrid Event. In Proceedings of the 22nd LACCEI International Multi-Conference for Engineering, Education, and Technology, San José, Costa Rica, 17–19 July 2024. [Google Scholar]
- Paramanya, A.; Farah, M.A.; Al-Anazi, K.M.; Devkota, H.P.; Ali, A. Exploring the Potential of Spirulina (Arthrospira platensis) Aqueous Extract in Preventing Glycation of Hemoglobin and pBR322 Plasmid. Pharmacogn. Mag. 2023, 19, 581–591. [Google Scholar] [CrossRef]
- Chu, W.L.; Lim, Y.W.; Radhakrishnan, A.K.; Lim, P.E. Protective effect of aqueous extract from Spirulina platensis against cell death induced by free radicals. BMC Complement. Altern. Med. 2010, 10, 53. [Google Scholar] [CrossRef]
- Kumar, A.; Ramamoorthy, D.; Verma, D.K.; Kumar, A.; Kumar, N.; Kanak, K.R.; Marwein, B.M.; Mohan, K. Antioxidant and phytonutrient activities of Spirulina platensis. Energy Nexus 2022, 6, 100070. [Google Scholar] [CrossRef]
- Obeid, S.; Rida, H.; Peydecastaing, J.; Takache, H.; Ismail, A.; Pontalier, P.Y. Coupling ultrasound and membrane filtration for the fractionation of Spirulina platensis sp. and the recovery of phycocyanin and pigment-free proteins. Biotechnol. Lett. 2025, 47, 8. [Google Scholar] [CrossRef]
- Lupatini, A.L.; de Oliveira Bispo, L.; Colla, L.M.; Costa, J.A.V.; Canan, C.; Colla, E. Protein and carbohydrate extraction from S. platensis biomass by ultrasound and mechanical agitation. Food Res. Int. 2017, 99, 1028–1035. [Google Scholar] [CrossRef] [PubMed]
- Pispas, K.; Manthos, G.; Sventzouri, E.; Geroulia, M.; Mastropetros, S.G.; Ali, S.S.; Kornaros, M. Optimizing Phycocyanin Extraction from Cyanobacterial Biomass: A Comparative Study of Freeze–Thaw Cycling with Various Solvents. Mar. Drugs 2024, 22, 246. [Google Scholar] [CrossRef]
- Nikolova, K.; Petkova, N.; Mihaylova, D.; Gentscheva, G.; Gavrailov, G.; Pehlivanov, I.; Andonova, V. Extraction of Phycocyanin and Chlorophyll from Spirulina by “Green Methods”. Separations 2024, 11, 57. [Google Scholar] [CrossRef]
- Citi, V.; Torre, S.; Flori, L.; Usai, L.; Aktay, N.; Dunford, N.T.; Lutzu, G.A.; Nieri, P. Nutraceutical Features of the Phycobiliprotein C-Phycocyanin: Evidence from Arthrospira platensis (Spirulina). Nutrients 2024, 16, 1752. [Google Scholar] [CrossRef]
- De Amarante, M.C.A.; Corrêa Júnior, L.C.S.; Sala, L.; Kalil, S.J. Analytical grade C-phycocyanin obtained by a single-step purification process. Process Biochem. 2020, 90, 215–222. [Google Scholar] [CrossRef]
- Shafiei, M.; Shafiei, M.; Mohseni Sani, N.; Guo, W.; Guo, S.; Vali, H.; Akbari Noghabi, K. A new and promising C-phycocyanin-producing cyanobacterial strain, Cyanobium sp. MMK01: Practical strategy towards developing a methodology to achieve C-phycocyanin with ultra-high purity. Front. Microbiol. 2024, 15, 1394617. [Google Scholar] [CrossRef] [PubMed]
- Antecka, A.; Klepacz-Smółka, A.; Szeląg, R.; Pietrzyk, D.; Ledakowicz, S. Comparison of three methods for thermostable C-phycocyanin separation and purification. Chem. Eng. Process. Process Intensif. 2022, 171, 108563. [Google Scholar] [CrossRef]
- Alotaiby, S.; Zhao, X.; Boesch, C.; Sergeeva, N.N. Sustainable approach towards isolation of photosynthetic pigments from Spirulina and the assessment of their prooxidant and antioxidant properties. Food Chem. 2024, 436, 137653. [Google Scholar] [CrossRef]
- Krakauskaitė, U.; Aboobacker, S.; Kitrytė-Syrpa, V.; Syrpas, M. Optimised Extraction and Purification of Dual-Function Cosmetic-Grade Phycocyanin and Allophycocyanin from Dried Arthrospira platensis Biomass Using Conventional Methods. Appl. Sci. 2025, 15, 532. [Google Scholar] [CrossRef]
- Athiyappan, K.D.; Routray, W.; Paramasivan, B. Phycocyanin from Spirulina: A comprehensive review on cultivation, extraction, purification, and its application in food and allied industries. Food Humanit. 2024, 2, 100235. [Google Scholar] [CrossRef]
- Lee, J.E.; Jayakody, J.T.M.; Kim, J.I.; Jeong, J.W.; Choi, K.M.; Kim, T.S.; Seo, C.; Azimi, I.; Hyun, J.M.; Ryu, B.M. The Influence of Solvent Choice on the Extraction of Bioactive Compounds from Asteraceae: A Comparative Review. Foods 2024, 13, 3151. [Google Scholar] [CrossRef]
- Catena, S.; Rakotomanomana, N.; Zunin, P.; Boggia, R.; Turrini, F.; Chemat, F. Solubility study and intensification of extraction of phenolic and anthocyanin compounds from Oryza sativa L. ‘Violet Nori’. Ultrason. Sonochem. 2020, 68, 105231. [Google Scholar] [CrossRef]
- Deleu, L.J.; Lambrecht, M.A.; Van de Vondel, J.; Delcour, J.A. The impact of alkaline conditions on storage proteins of cereals and pseudo-cereals. Curr. Opin. Food Sci. 2019, 25, 98–103. [Google Scholar] [CrossRef]
- Rumpf, J.; Burger, R.; Schulze, M. Statistical evaluation of DPPH, ABTS, FRAP, and Folin-Ciocalteu assays to assess the antioxidant capacity of lignins. Int. J. Biol. Macromol. 2023, 233, 123470. [Google Scholar] [CrossRef] [PubMed]
- Zurita, A.; Mateo-Sanz, J.M.; Legrand, J.; Pruvost, J.; Malo, R.H.; Domenech, M.M.; Torrens, E.; Bengoa, C. Optimization of biomolecule extraction from Spirulina platensis with [bmim][Cl]. Algal Res. 2025, 86, 103909. [Google Scholar] [CrossRef]
- Matešić, N.; Jurina, T.; Benković, M.; Panić, M.; Valinger, D.; Gajdoš Kljusurić, J.; Jurinjak Tušek, A. Microwave-assisted extraction of phenolic compounds from Cannabis sativa L.: Optimization and kinetics study. Sep. Sci. Technol. 2021, 56, 2047–2060. [Google Scholar] [CrossRef]
- Salehi, M.; Marashi, P.; Salehi, M.; Ghannad, R. Optimization of the FeCo nanowire fabrication embedded in anodic aluminum oxide template by response surface methodology. J. Ultrafine Grained Nanostruct. Mater. 2014, 47, 27–35. [Google Scholar]
- Marjanović, B.; Sokač Cvetnić, T.; Valinger, D.; Benković, M.; Jurina, T.; Gajdoš Kljusurić, J.; Jurinjak Tušek, A. Application of Portable Near-Infrared Instrument for Analysis of Spirulina platensis Aqueous Extracts. Separations 2024, 11, 190. [Google Scholar] [CrossRef]
- Malletzidou, L.; Kyratzopoulou, E.; Kyzaki, N.; Nerantzis, E.; Kazakis, N.A. Near-Infrared Spectroscopy for Growth Estimation of Spirulina platensis Cultures. Methods Protoc. 2024, 7, 91. [Google Scholar] [CrossRef]
- Wu, L.Y.; Yang, D.S.; Zhao, M.Z.; Meng, F.X. Application of principal component analysis-artificial neural network in near infrared spectroscopy for non-destructive determination of coriolus versicolor. In Proceedings of the 2012 Fifth International Conference on Intelligent Computation Technology and Automation, Zhangjiajie, China, 12–14 January 2012; pp. 106–109. [Google Scholar]
- Beć, K.B.; Grabska, J.; Huck, C.W. Interpretability in near-infrared (NIR) spectroscopy: Current pathways to the long-standing challenge. TrAC Trends Anal. Chem. 2025, 189, 118254. [Google Scholar] [CrossRef]
- Beć, K.B.; Huck, C.W. Breakthrough potential in near-infrared spectroscopy: Spectra simulation. A review of recent developments. Front. Chem. 2019, 7, 440182. [Google Scholar] [CrossRef]
- Cozzolino, D. Conventional Near-Infrared Spectroscopy and Hyperspectral Imaging: Similarities, Differences, Advantages, and Limitations. Molecules 2025, 30, 2479. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wei, C.; Cui, H.; Chen, F.; Hu, K.; Li, A.; Pan, S.; Yang, Y.; Ma, J.; Yang, Z.; et al. High-Sensitivity, High-Resolution Miniaturized Spectrometers for Ultraviolet to Near-Infrared Using Guided-Mode Resonance Filters. Molecules 2024, 29, 5580. [Google Scholar] [CrossRef]
- Yu, B.; Yuan, J.; Yan, C.; Xu, J.; Ma, C.; Dai, H. Impact of Spectral Resolution and Signal-to-Noise Ratio in Vis–NIR Spectrometry on Soil Organic Matter Estimation. Remote Sens. 2023, 15, 4623. [Google Scholar] [CrossRef]
Exp. | S/L (g/L) | pH | T (°C) | t (min) |
---|---|---|---|---|
1. | 15 | 8.5 | 35 | 20 |
2. | 35 | 8.5 | 35 | 20 |
3. | 15 | 8.5 | 35 | 60 |
4. | 35 | 8.5 | 35 | 60 |
5. | 25 | 7 | 25 | 40 |
6. | 25 | 10 | 25 | 40 |
7. | 25 | 7 | 45 | 40 |
8. | 25 | 10 | 45 | 40 |
9. | 25 | 8.5 | 35 | 40 |
10. | 15 | 8.5 | 25 | 40 |
11. | 35 | 8.5 | 25 | 40 |
12. | 15 | 8.5 | 45 | 40 |
13. | 35 | 8.5 | 45 | 40 |
14. | 25 | 7 | 35 | 20 |
15. | 25 | 7 | 35 | 60 |
16. | 25 | 10 | 35 | 20 |
17. | 25 | 10 | 35 | 60 |
18. | 25 | 8.5 | 35 | 40 |
19. | 15 | 7 | 35 | 40 |
20. | 35 | 7 | 35 | 40 |
21. | 15 | 10 | 35 | 40 |
22. | 35 | 10 | 35 | 40 |
23. | 25 | 8.5 | 25 | 20 |
24. | 25 | 8.5 | 25 | 60 |
25. | 25 | 8.5 | 45 | 20 |
26. | 25 | 8.5 | 45 | 60 |
27. | 25 | 8.5 | 35 | 40 |
28. | 25 | 8.5 | 35 | 40 |
29. | 25 | 8.5 | 35 | 40 |
30. | 25 | 8.5 | 35 | 40 |
Exp. | TPC (mgGAE/gdw) | DPPH (mmolTE/gdw) | FRAP (mmolFeSO4·7H2O/gdw) | γTP (mg/mL) | CPC (mg/mL) |
---|---|---|---|---|---|
1 | 5.789 ± 0.156 | 0.003 ± 0.001 | 0.006 ± 0.000 | 24.261 ± 2.007 | 4.334 ± 0.632 |
2 | 12.733 ± 0.487 | 0.009 ± 0.001 | 0.007 ± 0.001 | 25.922 ± 2.916 | 4.797 ± 0.022 |
3 | 8.407 ± 0.730 | 0.006 ± 0.000 | 0.005 ± 0.000 | 34.175 ± 4.961 | 0.400 ± 0.008 |
4 | 14.024 ± 0.365 | 0.012 ± 0.003 | 0.007 ± 0.001 | 28.872 ± 1.910 | 0.686 ± 0.009 |
5 | 8.603 ± 0.174 | 0.018 ± 0.001 | 0.014 ± 0.001 | 18.466 ± 0.225 | 2.529 ± 0.351 |
6 | 11.430 ± 4.867 | 0.020 ± 0.002 | 0.015 ± 0.002 | 27.208 ± 0.441 | 3.903 ± 0.887 |
7 | 10.140 ± 0.435 | 0.018 ± 0.002 | 0.013 ± 0.000 | 27.759 ± 0.936 | 1.113 ± 0.779 |
8 | 12.537 ± 0.869 | 0.020 ± 0.000 | 0.008 ± 0.001 | 20.523 ± 1.968 | 1.035 ± 0.008 |
9 | 9.894 ± 0.435 | 0.017 ± 0.002 | 0.007 ± 0.000 | 27.967 ± 7.904 | 1.368 ± 0.059 |
10 | 30.051 ± 0.261 | 0.008 ± 0.000 | 0.003 ± 0.001 | 25.000 ± 0.503 | 3.001 ± 0.026 |
11 | 13.938 ± 0.243 | 0.027 ± 0.001 | 0.015 ± 0.000 | 24.880 ± 0.793 | 3.565 ± 0.094 |
12 | 7.817 ± 0.104 | 0.018 ± 0.001 | 0.006 ± 0.000 | 24.647 ± 0.979 | 1.141 ± 0.988 |
13 | 13.594 ± 0.000 | 0.030 ± 0.002 | 0.010 ± 0.000 | 26.519 ± 2.264 | 0.877 ± 0.003 |
14 | 11.430 ± 0.695 | 0.028 ± 0.002 | 0.010 ± 0.002 | 17.531 ± 0.547 | 3.887 ± 0.674 |
15 | 11.553 ± 0.695 | 0.026 ± 0.001 | 0.007 ± 0.001 | 44.566 ± 5.330 | 0.388 ± 0.013 |
16 | 13.335 ± 0.087 | 0.019 ±0.003 | 0.034 ± 0.002 | 21.680 ± 2.343 | 5.748 ± 0.150 |
17 | 13.274 ± 0.869 | 0.014 ± 0.001 | 0.016 ± 0.002 | 25.229 ± 0.572 | 1.682 ± 0.163 |
18 | 15.609 ± 0.869 | 0.015 ± 0.001 | 0.012 ± 0.001 | 24.987 ± 5.314 | 1.041 ± 0.169 |
19 | 10.029 ± 0.313 | 0.011 ± 0.001 | 0.007 ± 0.000 | 24.430 ± 2.092 | 1.734 ± 0.150 |
20 | 13.163 ± 0.122 | 0.007 ± 0.001 | 0.009 ± 0.000 | 22.634 ± 1.308 | 1.063 ± 0.005 |
21 | 21.570 ± 0.261 | 0.011 ± 0.001 | 0.006 ± 0.002 | 22.437 ± 3.671 | 4.241 ± 0.577 |
22 | 14.282 ± 1.460 | 0.018 ± 0.005 | 0.017 ± 0.004 | 31.297 ± 9.507 | 1.847 ± 0.438 |
23 | 8.726 ± 0.174 | 0.012 ± 0.001 | 0.009 ± 0.001 | 32.450 ± 5.702 | 0.765 ± 0.022 |
24 | 10.078 ± 0.348 | 0.012 ± 0.001 | 0.007 ± 0.002 | 30.150 ± 2.564 | 3.268 ± 0.142 |
25 | 9.833 ± 1.043 | 0.012 ± 0.001 | 0.009 ± 0.002 | 29.900 ± 4.699 | 3.968 ± 0.345 |
26 | 9.833 ± 1.564 | 0.015 ± 0.001 | 0.005 ± 0.002 | 24.358 ± 0.613 | 0.300 ± 0.004 |
27 | 9.034 ± 0.782 | 0.012 ± 0.001 | 0.006 ± 0.001 | 22.775 ± 5.267 | 1.294 ± 0.075 |
28 | 12.106 ± 0.782 | 0.016 ± 0.003 | 0.009 ± 0.002 | 26.170 ± 0.321 | 1.641 ± 0.015 |
29 | 8.050 ± 0.087 | 0.012 ± 0.001 | 0.007 ± 0.000 | 25.598 ± 3.105 | 2.110 ± 0.322 |
30 | 9.894 ± 0.087 | 0.011 ± 0.001 | 0.006 ± 0.001 | 27.264 ± 5.200 | 1.862 ± 0.040 |
Variable | RSM Predicted Value | Validation Experiment |
---|---|---|
TPC (mgGAE/gdw) | 17.3103 | 16.1115 ± 0.888 |
DPPH (mmolTE/gdw) | 0.0240 | 0.0242 ± 0.003 |
FRAP (mmolFeSO4·7H2O/gdw) | 0.0225 | 0.0219 ± 0.002 |
γTP (mg/mL) | 24.2727 | 26.8771 ± 2.037 |
CPC (mg/mL) | 5.1829 | 5.2008 ± 0.335 |
NIR | Output Variable | ANN Model | R2train/RMSEtrain | R2test/ RMSEtest | R2validation/ RMSEvalidation | Hidden Activation | Output Activation |
---|---|---|---|---|---|---|---|
Semi-process NIR spectrometer | TDS | MLP 5-3-1 | 0.9285 325.3038 | 0.9463 332.5314 | 0.9377 466.1069 | Tanh | Exponential |
L* | MLP 5-5-1 | 0.9669 0.0626 | 0.9934 0.1333 | 0.9105 0.2402 | Logistic | Identity | |
TPC | MLP 5-8-1 | 0.9240 2.1196 | 0.8899 2.6527 | 0.8685 2.8634 | Logistic | Exponential | |
DPPH | MLP 5-5-1 | 0.9426 0.0001 | 0.7858 0.0001 | 0.7679 0.0001 | Tanh | Exponential | |
FRAP | MLP 5-3-1 | 0.9277 0.0001 | 0.8791 0.0001 | 0.8477 0.0001 | Tanh | Identity | |
γTP | MLP 5-10-1 | 0.9032 2.6459 | 0.9009 5.1279 | 0.7942 10.4731 | Tanh | Exponential | |
CPC | MLP 5-10-1 | 0.9472 0.3884 | 0.7919 0.4029 | 0.7766 0.5166 | Tanh | Identity | |
Benchtop NIR spectrometer | TDS | MLP 5-4-1 | 0.9743 285.9742 | 0.8362 584.2002 | 0.8535 761.5806 | Tanh | Tanh |
L* | MLP 5-11-1 | 0.8298 2.9197 | 0.7593 5.2125 | 0.7624 8.7863 | Logistic | Logistic | |
TPC | MLP 5-11-1 | 0.8955 0.0001 | 0.8851 0.0001 | 0.7333 0.0001 | Tanh | Tanh | |
DPPH | MLP 5-8-1 | 0.8901 0.0001 | 0.7897 0.0001 | 0.5755 0.0001 | Tanh | Exponential | |
FRAP | MLP 5-6-1 | 0.8743 0.0003 | 0.7846 0.0009 | 0.5985 0.00012 | Logistic | Identity | |
γTP | MLP 5-8-1 | 0.8742 6.6599 | 0.7845 7.6108 | 0.5913 12.5533 | Tanh | Logistic | |
CPC | MLP 5-8-1 | 0.9363 0.2196 | 0.7285 0.5854 | 0.6913 0.6052 | Tanh | Logistic |
NIR | Output Variable | R2pred | R2pred,adj | RMSEP | SEP | RPD | RER |
---|---|---|---|---|---|---|---|
Semi-process NIR spectrometer | TDS | 0.8780 | 0.8503 | 61.4259 | 11.8214 | 2.8351 | 13.3494 |
L* | 0.9440 | 0.9313 | 0.6401 | 0.1182 | 3.9064 | 21.1236 | |
TPC | 0.8121 | 0.7694 | 2.0706 | 0.3985 | 2.1752 | 11.8596 | |
DPPH | 0.7320 | 0.6711 | 0.0038 | 0.0007 | 1.9063 | 6.9911 | |
FRAP | 0.6866 | 0.6154 | 0.0036 | 0.0007 | 1.6084 | 8.4019 | |
γTP | 0.6704 | 0.5955 | 3.5027 | 0.6741 | 1.6643 | 6.4703 | |
CPC | 0.6676 | 0.5921 | 1.0008 | 0.1926 | 1.7296 | 5.7099 | |
Benchtop NIR spectrometer | TDS | 0.8060 | 0.7620 | 109.6030 | 21.0931 | 2.3080 | 8.6768 |
L* | 0.7565 | 0.7011 | 1.3358 | 0.2571 | 2.0499 | 10.9971 | |
TPC | 0.6693 | 0.5942 | 2.8229 | 0.5433 | 1.6724 | 7.9024 | |
DPPH | 0.4794 | 0.3610 | 0.0041 | 0.0008 | 1.4079 | 5.2696 | |
FRAP | 0.6634 | 0.5869 | 0.0044 | 0.0008 | 1.5026 | 7.4504 | |
γTP | 0.5897 | 0.4965 | 3.2396 | 0.6235 | 1.4901 | 6.7187 | |
CPC | 0.4417 | 0.3148 | 1.1123 | 0.2161 | 1.3491 | 4.9848 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marjanović, B.; Sokač Cvetnić, T.; Valinger, D.; Gajdoš Kljusurić, J.; Jurina, T.; Benković, M.; Jurinjak Tušek, A. Ultrasound-Assisted Extraction of Bioactives from Spirulina platensis: Optimization and Prediction of Their Properties Using Near-Infrared Spectroscopy Coupled with Artificial Neural Network Modeling. Foods 2025, 14, 3358. https://doi.org/10.3390/foods14193358
Marjanović B, Sokač Cvetnić T, Valinger D, Gajdoš Kljusurić J, Jurina T, Benković M, Jurinjak Tušek A. Ultrasound-Assisted Extraction of Bioactives from Spirulina platensis: Optimization and Prediction of Their Properties Using Near-Infrared Spectroscopy Coupled with Artificial Neural Network Modeling. Foods. 2025; 14(19):3358. https://doi.org/10.3390/foods14193358
Chicago/Turabian StyleMarjanović, Blaženko, Tea Sokač Cvetnić, Davor Valinger, Jasenka Gajdoš Kljusurić, Tamara Jurina, Maja Benković, and Ana Jurinjak Tušek. 2025. "Ultrasound-Assisted Extraction of Bioactives from Spirulina platensis: Optimization and Prediction of Their Properties Using Near-Infrared Spectroscopy Coupled with Artificial Neural Network Modeling" Foods 14, no. 19: 3358. https://doi.org/10.3390/foods14193358
APA StyleMarjanović, B., Sokač Cvetnić, T., Valinger, D., Gajdoš Kljusurić, J., Jurina, T., Benković, M., & Jurinjak Tušek, A. (2025). Ultrasound-Assisted Extraction of Bioactives from Spirulina platensis: Optimization and Prediction of Their Properties Using Near-Infrared Spectroscopy Coupled with Artificial Neural Network Modeling. Foods, 14(19), 3358. https://doi.org/10.3390/foods14193358