Aroma Potential of a New Maltose-Negative Yeast Isolate
Abstract
1. Introduction
2. Materials and Methods
2.1. Yeast Strains and Fermentation Trials
2.2. Analytical Determinations
2.3. Sensory Analyses
2.4. Statistical Analysis
3. Results and Discussion
3.1. Analytical Determination Results
3.2. Sensory Analysis Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Montanari, L.; Marconi, O.; Mayer, H.; Fantozzi, P. Production of alcohol-free beer. In Beer in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands; Academic Press: Cambridge, MA, USA, 2009; pp. 61–75. [Google Scholar]
- Brányik, T.; Silva, D.P.; Baszczyňski, M.; Lehnert, R.; e Silva, J.B.A. A review of methods of low alcohol and alcohol-free beer production. J. Food Eng. 2012, 108, 493–506. [Google Scholar] [CrossRef]
- Ghasemi-Varnamkhasti, M.; Mohtasebi, S.S.; Rodriguez-Mendez, M.L.; Lozano, J.; Razavi, S.H.; Ahmadi, H.; Apetrei, C. Classification of non-alcoholic beer based on aftertaste sensory evaluation by chemometric tools. Expert Syst. Appl. 2012, 39, 4315–4327. [Google Scholar] [CrossRef]
- Rossi, S.; Sileoni, V.; Perretti, G.; Marconi, O. Characterization of the volatile profiles of beer using headspace solid-phase microextraction and gas chromatography–mass spectrometry. J. Sci. Food Agric. 2014, 94, 919–928. [Google Scholar] [CrossRef] [PubMed]
- Pires, E.; Brányik, T. Biochemistry of Beer Fermentation; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Piornos, J.A.; Balagiannis, D.P.; Methven, L.; Koussissi, E.; Brouwer, E.; Parker, J.K. Elucidating the odor-active aroma compounds in alcohol-free beer and their contribution to the worty flavor. J. Agric. Food Chem. 2020, 68, 10088–10096. [Google Scholar] [CrossRef]
- Rettberg, N.; Lafontaine, S.; Schubert, C.; Dennenlöhr, J.; Knoke, L.; Diniz-Fischer, P.; Fuchs, J.; Thörner, S. Effect of Production Technique on Pilsner-Style Non-Alcoholic Beer (NAB) Chemistry and Flavor. Beverages 2022, 8, 4. [Google Scholar] [CrossRef]
- Nešpor, J.; Andrés-Iglesias, C.; Karabín, M.; Montero, O.; Blanco, C.A.; Dostálek, P. Volatile compound profiling in czech and spanish lager beers in relation to used production technology. Food Anal. Method. 2019, 12, 2293–2305. [Google Scholar] [CrossRef]
- Muller, C.; Neves, L.E.; Gomes, L.; Guimarães, M.; Ghesti, G. Processes for alcohol-free beer production: A review. Food Sci. Tech-Braz. 2019, 40, 273–281. [Google Scholar] [CrossRef]
- Esslinger, H.M. (Ed.) Handbook of Brewing: Processes, Technology, Markets; John Wiley & Sons: Weinheim, Germany, 2009. [Google Scholar]
- Bellut, K.; Michel, M.; Zarnkow, M.; Hutzler, M.; Jacob, F.; De Schutter, D.P.; Daenen, L.; Lynch, K.M.; Zannini, E.; Arendt, E.K. Application of non-Saccharomyces yeasts isolated from kombucha in the production of alcohol-free beer. Fermentation 2018, 4, 66. [Google Scholar] [CrossRef]
- Haehn, H.; Glaubitz, M. Beer Manufacture. Patent US1898047 A, 21 February 1933. [Google Scholar]
- Huige, N.J.; Sanchez, G.W.; Leidig, A.R. Process for Preparing a Nonalcoholic (Less the 0.5 Volume Percent Alcohol) Malt Beverage. Patent US-4970082-A, 13 November 1990. [Google Scholar]
- Michel, M.; Meier-Dörnberg, T.; Jacob, F.; Methner, F.J.; Wagner, R.S.; Hutzler, M. Pure non-Saccharomyces starter cultures for beer fermentation with a focus on secondary metabolites and practical applications. J. Inst. Brew. 2016, 122, 569–587. [Google Scholar]
- De Francesco, G.; Turchetti, B.; Sileoni, V.; Marconi, O.; Perretti, G. Screening of new strains of Saccharomycodes ludwigii and Zygosaccharomyces rouxii to produce low-alcohol beer. J. Inst. Brew. 2015, 121, 113–121. [Google Scholar] [CrossRef]
- Liu, Y.; Li, H.; Du, J. Non-alcoholic beer production by Saccharomycodes ludwigii. Food Sci. 2011, 32, 186–190. [Google Scholar]
- Mohammadi, A.; Razavi, S.H.; Mousavi, S.M.; Rezaei, K. A comparison between sugar consumption and ethanol production in wort by immobilized Saccharomyces Cerevisiae, Saccharomyces Ludwigii and Saccharomyces Rouxii on Brewer’s Spent Grain. Braz. J. Microbiol. 2011, 42, 605–615. [Google Scholar] [CrossRef] [PubMed]
- Johansson, L.; Nikulin, J.; Juvonen, R.; Krogerus, K.; Magalhães, F.; Mikkelson, A.; Nuppunen-Puputti, M.; Sohlberg, E.; de Francesco, G.; Perretti, G. Sourdough cultures as reservoirs of maltose-negative yeasts for low-alcohol beer brewing. Food Microbiol. 2021, 94, 103629. [Google Scholar] [CrossRef]
- Krogerus, K.; Eerikäinen, R.; Aisala, H.; Gibson, B. Repurposing brewery contaminant yeast as production strains for low-alcohol beer fermentation. Yeast 2021, 39, 156–169. [Google Scholar] [CrossRef] [PubMed]
- Durga Prasad, C.; Vidyalakshmi, R.; Baskaran, N. Hansunela polymorpha: A novel yeast strain for low-alcoholic beer production. Pharma Innov. J. 2021, 10, 1314–1317. [Google Scholar]
- ASBC. ASBC Methods of Analysis, Online. Beer. Approved.Rev. (14). 2025. Available online: https://www.asbcnet.org/Methods/BeerMethods/Pages/default.aspx (accessed on 11 January 2025).
- Štulíková, K.; Bulíř, T.; Nešpor, J.; Jelínek, L.; Karabín, M.; Dostálek, P. Application of high-pressure processing to assure the storage stability of unfiltered lager beer. Molecules 2020, 25, 2414. [Google Scholar] [CrossRef]
- ASBC. Methods of Analysis, Sensory Analysis-7. ASBC Methods of Analysis. 2010. Available online: https://www.asbcnet.org/Methods/SensoryAnalysis/pages/default.aspx (accessed on 11 January 2025).
- Ivanova, N.; Yang, Q.; Bastian, S.E.; Wilkinson, K.L.; Johnson, T.E.; Ford, R. The impact of varying key sensory attributes on consumer perception of beer body. Food Qual. Prefer. 2023, 112, 105004. [Google Scholar] [CrossRef]
- Blanco, C.A.; Andrés-Iglesias, C.; Montero, O. Low-alcohol beers: Flavor compounds, defects, and improvement strategies. Crit. Rev. Food Sci. Nutr. 2016, 56, 1379–1388. [Google Scholar] [CrossRef]
- Piddocke, M.P. The Effect of High Gravity on Brewer’s Yeast Metabolismphysiological Studies and “-Omics” Analyses. Ph.D. Thesis, Technical University of Denmark, Kongens Lyngby, Denmark, 2009. [Google Scholar]
- Tan, Y.; Siebert, K.J. Quantitative structure—activity relationship modeling of alcohol, ester, aldehyde, and ketone flavor thresholds in beer from molecular features. J. Agric. Food Chem. 2004, 52, 3057–3064. [Google Scholar] [CrossRef]
- Kumar, A. Impact of Yeast Strain and Fermentation on Perceived Hop Flavour in Beer. Ph.D. Thesis, University of Otago, Dunedin, New Zealand, 2020. [Google Scholar]
- Xu, Y.; Wang, D.; Hao, J.; Jiang, W.; Liu, Z.; Qin, Q. Flavor contribution of esters in lager beers and an analysis of their flavor thresholds. J. Am. Soc. Brew. Chem. 2017, 75, 201–206. [Google Scholar] [CrossRef]
- Kobayashi, M.; Shimizu, H.; Shioya, S. Beer volatile compounds and their application to low-malt beer fermentation. J. Biosci. Bioeng. 2008, 106, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Willaert, R.; Nedovic, V.A. Primary beer fermentation by immobilised yeast—A review on flavour formation and control strategies. J. Chem. Technol. Biotechnol. Int. Res. Process Environ. Clean. Technol. 2006, 81, 1353–1367. [Google Scholar] [CrossRef]
- Olaniran, A.O.; Hiralal, L.; Mokoena, M.P.; Pillay, B. Flavour-active volatile compounds in beer: Production, regulation and control. J. Inst. Brew. 2017, 123, 13–23. [Google Scholar] [CrossRef]
- Gibson, B.; Geertman, J.; Hittinger, C.; Krogerus, K.; Libkind, D.; Louis, E.J.; Magalhães, F.; Sampaio, J. New yeasts—New brews: Modern approaches to brewing yeast design and development. FEMS Yeast Res. 2017, 17, fox038. [Google Scholar] [CrossRef]
- Saison, D.; De Schutter, D.P.; Uyttenhove, B.; Delvaux, F.; Delvaux, F.R. Contribution of staling compounds to the aged flavour of lager beer by studying their flavour thresholds. Food Chem. 2009, 114, 1206–1215. [Google Scholar] [CrossRef]
- Meilgaard, M.C. Flavor chemistry of beer. II. Flavor and threshold of 239 aroma volatiles. Tech. Quart. Master. Brew. Assoc. Am. 1975, 12, 151–168. [Google Scholar]
- Zhang, S.J.; Petersen, M.A.; Liu, J.; Toldam-Andersen, T.B. Influence of Pre-Fermentation Treatments on Wine Volatile and Sensory Profile of the New Disease Tolerant Cultivar Solaris. Molecules 2015, 20, 21609–21625. [Google Scholar] [CrossRef]
- Yu, H.; Xie, T.; Xie, J.; Chen, C.; Ai, L.; Tian, H. Aroma perceptual interactions of benzaldehyde, furfural, and vanillin and their effects on the descriptor intensities of Huangjiu. Food Res. Int. 2020, 129, 108808. [Google Scholar] [CrossRef]
- Baert, J.J.; De Clippeleer, J.; Hughes, P.S.; De Cooman, L.; Aerts, G. On the origin of free and bound staling aldehydes in beer. J. Agric. Food Chem. 2012, 60, 11449–11472. [Google Scholar] [CrossRef]
- Verbelen, P.J.; Delvaux, F.R. Brewing yeast in action: Beer fermentation. Appl. Mycol. 2009, 7, 110–135. [Google Scholar]
- Brányik, T.; Vicente, A.A.; Dostálek, P.; Teixeira, J.A. A review of flavour formation in continuous beer fermentations. J. Inst. Brew. 2008, 114, 3–13. [Google Scholar] [CrossRef]
- Gamero, A.; Ferreira, V.; Pretorius, I.S.; Querol, A. Wine, beer and cider: Unravelling the aroma profile. In Molecular Mechanisms in Yeast Carbon Metabolism; Springer Nature: Berlin/Heidelberg, Germany, 2014; pp. 261–297. [Google Scholar]
- Bellut, K.; Michel, M.; Zarnkow, M.; Hutzler, M.; Jacob, F.; Atzler, J.J.; Hoehnel, A.; Lynch, K.M.; Arendt, E.K. Screening and application of Cyberlindnera yeasts to produce a fruity, non-alcoholic beer. Fermentation 2019, 5, 103. [Google Scholar] [CrossRef]
- Strejc, J.; Siříšťová, L.; Karabín, M.; Almeida e Silva, J.B.; Brányik, T. Production of alcohol-free beer with elevated amounts of flavouring compounds using lager yeast mutants. J. Inst. Brew. 2013, 119, 149–155. [Google Scholar] [CrossRef]
- Missbach, B.; Majchrzak, D.; Sulzner, R.; Wansink, B.; Reichel, M.; Koenig, J. Exploring the flavor life cycle of beers with varying alcohol content. Food Sci. Nutr. 2017, 5, 889–895. [Google Scholar] [CrossRef]
- Cordente, A.G.; Solomon, M.; Schulkin, A.; Francis, I.L.; Barker, A.; Borneman, A.R.; Curtin, C.D. Novel wine yeast with ARO4 and TYR1 mutations that overproduce ‘floral’aroma compounds 2-phenylethanol and 2-phenylethyl acetate. Appl. Microbiol. Biot. 2018, 102, 5977–5988. [Google Scholar] [CrossRef]
- Viejo, C.G.; Fuentes, S.; Torrico, D.D.; Godbole, A.; Dunshea, F.R. Chemical characterization of aromas in beer and their effect on consumers liking. Food Chem. 2019, 293, 479–485. [Google Scholar] [CrossRef]
- Kinčl, T.; Dostálek, P.; Brányik, T.; Olšovská, J. High-gravity brewing without adjuncts–The effect on beer parameters. LWT 2021, 148, 111755. [Google Scholar] [CrossRef]
- Pires, E.J.; Teixeira, J.A.; Brányik, T.; Vicente, A.A. Yeast: The soul of beer’s aroma—A review of flavour-active esters and higher alcohols produced by the brewing yeast. Appl. Microbiol. Biot. 2014, 98, 1937–1949. [Google Scholar] [CrossRef] [PubMed]
- Hazelwood, L.A.; Daran, J.-M.; Van Maris, A.J.; Pronk, J.T.; Dickinson, J.R. The Ehrlich pathway for fusel alcohol production: A century of research on Saccharomyces cerevisiae metabolism. Appl. Environ. Microbiol. 2008, 74, 2259–2266. [Google Scholar] [CrossRef] [PubMed]
- Simões, J.; Coelho, E.; Magalhães, P.; Brandão, T.; Rodrigues, P.; Teixeira, J.A.; Domingues, L. Exploiting non-conventional yeasts for low-alcohol beer production. Microorganisms 2023, 11, 316. [Google Scholar] [CrossRef]
- Wang, Y.-P.; Wei, X.-Q.; Guo, X.-W.; Xiao, D.-G. Effect of the deletion of genes related to amino acid metabolism on the production of higher alcohols by Saccharomyces cerevisiae. Biomed. Res. Int. 2020, 2020, 6802512. [Google Scholar] [CrossRef]
- Christiaens, J.F.; Franco, L.M.; Cools, T.L.; De Meester, L.; Michiels, J.; Wenseleers, T.; Hassan, B.A.; Yaksi, E.; Verstrepen, K.J. The fungal aroma gene ATF1 promotes dispersal of yeast cells through insect vectors. Cell Rep. 2014, 9, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Perpète, P.; Collin, S. Influence of beer ethanol content on the wort flavour perception. Food Chem. 2000, 71, 379–385. [Google Scholar] [CrossRef]
- Marconi, O.; Rossi, S.; Galgano, F.; Sileoni, V.; Perretti, G. Influence of yeast strain, priming solution and temperature on beer bottle conditioning. J. Sci. Food Agric. 2016, 96, 4106–4115. [Google Scholar] [CrossRef]
- Peppard, T.; Halsey, S. Malt flavour—Transformation of carbonyl compounds by yeast during fermentation. J. Inst. Brew. 1981, 87, 386–390. [Google Scholar] [CrossRef]
- Beal, A.D.; Mottram, D.S. Compounds contributing to the characteristic aroma of malted barley. J. Agric. Food Chem. 1994, 42, 2880–2884. [Google Scholar] [CrossRef]
- Perpete, P.; Collin, S. Contribution of 3-methylthiopropionaldehyde to the worty flavor of alcohol-free beers. J. Agric. Food Chem. 1999, 47, 2374–2378. [Google Scholar] [CrossRef]
- Schieberle, P.; Komarek, D. (Eds.) Changes in Key Aroma Compounds During Natural Beer Aging; ACS Publications: Washington, DC, USA, 2003. [Google Scholar]
- Liu, S.-Q.; Hui Quek, A.Y. Evaluation of beer fermentation with a novel yeast Williopsis saturnus. Food Technol. Biotech. 2016, 54, 403–412. [Google Scholar] [CrossRef]
- Vesely, P.; Lusk, L.; Basarova, G.; Seabrooks, J.; Ryder, D. Analysis of aldehydes in beer using solid-phase microextraction with on-fiber derivatization and gas chromatography/mass spectrometry. J. Agric. Food Chem. 2003, 51, 6941–6944. [Google Scholar] [CrossRef]
- Linnakoski, R.; Jyske, T.; Eerikäinen, R.; Veteli, P.; Cortina-Escribano, M.; Magalhães, F.; Järvenpää, E.; Heikkilä, L.; Hutzler, M.; Gibson, B. Brewing potential of strains of the boreal wild yeast Mrakia gelida. Front. Microbiol. 2023, 14, 1108961. [Google Scholar] [CrossRef]
- Gibson, B.; Vidgren, V.; Peddinti, G.; Krogerus, K. Diacetyl control during brewery fermentation via adaptive laboratory engineering of the lager yeast Saccharomyces pastorianus. J. Ind. Microbiol. Biotechnol. 2018, 45, 1103–1112. [Google Scholar] [CrossRef] [PubMed]
- Krogerus, K.; Gibson, B.R. 125th anniversary review: Diacetyl and its control during brewery fermentation. J. Inst. Brew. 2013, 119, 86–97. [Google Scholar]
- Bellut, K.; Krogerus, K.; Arendt, E.K. Strains Isolated From Kombucha: Fundamental Insights, and Practical Application in Low Alcohol Beer Brewing. Front. Microbiol. 2020, 11, 764. [Google Scholar] [CrossRef]
- Horák, T.; Čulík, J.; Jurková, M.; Čejka, P.; Kellner, V. Determination of free medium-chain fatty acids in beer by stir bar sorptive extraction. J. Chromatogr. A 2008, 1196, 96–99. [Google Scholar] [CrossRef]
- Holt, S.; Miks, M.H.; de Carvalho, B.T.; Foulquie-Moreno, M.R.; Thevelein, J.M. The molecular biology of fruity and floral aromas in beer and other alcoholic beverages. FEMS Microbiol. Rev. 2019, 43, 193–222. [Google Scholar] [CrossRef]
- Jackowski, M.; Czepiela, W.; Hampf, L.; Żuczkowski, W.; Dymkowski, T.; Trusek, A. Comparison of two commercially available strains, Saccharomycodes ludwigii and Torulaspora delbrueckii, for the production of low-alcohol beer. Beverages 2023, 9, 66. [Google Scholar] [CrossRef]
- Cui, D.-Y.; Ge, J.-L.; Song, Y.-M.; Feng, P.-P.; Lin, L.-C.; Guo, L.-Y.; Zhang, C.-Y. Regulating the ratio of higher alcohols to esters by simultaneously overexpressing ATF1 and deleting BAT2 in brewer’s yeast Saccharomyces pastorianus. Food Biosci. 2021, 43, 101231. [Google Scholar] [CrossRef]
- De Francesco, G.; Sannino, C.; Sileoni, V.; Marconi, O.; Filippucci, S.; Tasselli, G.; Turchetti, B. Mrakia gelida in brewing process: An innovative production of low alcohol beer using a psychrophilic yeast strain. Food Microbiol. 2018, 76, 354–362. [Google Scholar] [CrossRef]
- van Rijswijck, I.M.; Wolkers–Rooijackers, J.C.; Abee, T.; Smid, E.J. Performance of non-conventional yeasts in co-culture with brewers’ yeast for steering ethanol and aroma production. Microb. Biotechnol. 2017, 10, 1591–1602. [Google Scholar] [CrossRef] [PubMed]
- Bellut, K.; Arendt, E.K. Chance and challenge: Non-saccharomyces yeasts in nonalcoholic and low alcohol beer brewing–A review. J. Am. Soc. Brew. Chem. 2019, 77, 77–91. [Google Scholar] [CrossRef]
- Narziss, L.; Miedaner, H.; Kern, E.; Leibhard, M. Technology and composition of non-alcoholic beer. Processes using arrested fermentation; Brauwelt International: Nuremberg, Germany, 1992; Volume 4, pp. 396–398. [Google Scholar]
Physico-Chemical Parameters | M-I | Control—S. ludwigii |
---|---|---|
Original extract (% w/w) | 5.34 ± 0.20 | 5.39 ± 0.20 |
Alcohol (% vol.) | 0.42 ± 0.09 | 0.35 ± 0.09 |
Apparent extract (% w/w) | 4.69 ± 0.30 | 4.84 ± 0.30 |
pH | 4.76 ± 0.30 | 4.76 ± 0.30 |
Color (EBC) | 7.85 ± 1.30 | 7.80 ± 1.30 |
Density (g/cm3) | 1.01592 | 1.01679 |
Substance | Concentration [mg/L] | ||||
---|---|---|---|---|---|
M-I | S. ludwigii | Flavor in Beer | Perception Threshold (ppm) | References | |
Acetate Esters | |||||
Ethyl acetate | 6.86 | 3.41 | Solvent, fruity, sweetish | 21 | [26] |
Propyl acetate | 0.01 | 0.002 | Celery and raspberry | 30 | [27,28] |
Isobutyl acetate | 0.03 | 0.004 | Fruit, solvent | 1 | [29] |
Isoamyl acetate | 0.66 | 0.06 | Banana, apple, solvent, ester, pear | 1.4 | [26] |
2-Phenylethyl acetate | 0.31 | 0.05 | Roses, honey, apple, sweetish | 3.8 | [30] |
Ethyl Esters | |||||
Ethyl butyrate | 0.10 | 0.05 | Papaya, cream, pineapple | 0.4 | [29] |
Ethyl hexanoate (caproate) | 0.27 | 0.20 | Sour apple, aniseed | 0.17 | [31] |
Ethyl octanoate (caprylate) | 0.14 | 0.06 | Sour Apple | 0.3 | [31] |
Ethyl decanoate (caprate) | 0.03 | 0.04 | Brandy | 1.5 | [27,28] |
Higher Alcohols | |||||
2-Methyl-1-propanol | 1.24 | 0.81 | Alcohol | 200 | [32] |
3-Methyl-1-butanol | 4.51 | 1.75 | Alcohol | 70 | [32] |
2-Methyl-1-butanol | 2.32 | 1.42 | Alcohol, banana, medicinal, solvent | 65 | [25] |
2-Phenylethanol | 7.05 | 3.64 | Roses, sweetish, perfumed | 125 | [32] |
Hop Derived Terpenoid | |||||
Linalool | 0.03 | 0.03 | Citrus, floral | 0.08 | [27,33] |
Aldehydes | |||||
2-Methylpropanal | 11.56 | 22.75 | Grainy, varnish, fruity | 1 | [34,35] |
2-Methylbutanal | 4.62 | 7.59 | Almond, apple-like, malty | 1.25 | [27,34] |
3-Methylbutanal | 13.63 | 18.40 | Malty, cherry, almond, chocolate | 0.6 | [34,35] |
Heptanal | 0.30 | 0.33 | Fat, citrus, rancid | 0.08 | [27,36] |
Octanal | 0.15 | 0.18 | Fat, soap, lemon, green | 0.04 | [27,36] |
Benzaldehyde | 8.83 | 8.70 | Almond-like | 2 | [27,37] |
Trans-2-nonenal | 0.12 | 0.25 | Cardboard, papery, cucumber | 0.00011 | [27,38] |
Vicinal Diketones | |||||
Diacetyl | 33.34 | 33.42 | Butterscotch | 0.15 | [32] |
Pentadion (2,3 Pentandion) | 34.23 | 10.74 | Butterscotch and toffee | 0.9 | [27,37] |
Volatile Fatty Acids | |||||
Hexanoic acid (caproic) | 1.09 | 0.18 | Goaty, fatty acid | 8 | [25] |
Octanoic acid (caprylic) | 1.36 | 0.30 | Goaty, fatty acid | 14 | [39] |
Decanoic acid (capric) | 0.29 | 0.40 | Waxy, rancid | 10 | [39] |
Number of Tasters | Correct Answers a | Result | M-I Sample Rating b | S. ludwigii Sample Rating b |
---|---|---|---|---|
18 | 10 from 18 | There is a sensory difference between the samples | 2.4 | 3.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karaoğlan, S.Y.; Jung, R.; Jelínek, L.; Karabín, M.; Kinčl, T.; Dostálek, P. Aroma Potential of a New Maltose-Negative Yeast Isolate. Foods 2025, 14, 3357. https://doi.org/10.3390/foods14193357
Karaoğlan SY, Jung R, Jelínek L, Karabín M, Kinčl T, Dostálek P. Aroma Potential of a New Maltose-Negative Yeast Isolate. Foods. 2025; 14(19):3357. https://doi.org/10.3390/foods14193357
Chicago/Turabian StyleKaraoğlan, Selin Yabacı, Rudolf Jung, Lukáš Jelínek, Marcel Karabín, Tomáš Kinčl, and Pavel Dostálek. 2025. "Aroma Potential of a New Maltose-Negative Yeast Isolate" Foods 14, no. 19: 3357. https://doi.org/10.3390/foods14193357
APA StyleKaraoğlan, S. Y., Jung, R., Jelínek, L., Karabín, M., Kinčl, T., & Dostálek, P. (2025). Aroma Potential of a New Maltose-Negative Yeast Isolate. Foods, 14(19), 3357. https://doi.org/10.3390/foods14193357