Antioxidant, Antidiabetic, Anti-Obesity, and Anti-Inflammatory Activity of Tomato-Based Functional Snack Bars Enriched with Pea and RuBisCO Proteins
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Bar Samples Composition and Extraction
- Sample 1-Pea-protein-added microwave-vacuum-dried tomato snack bars.Sample 2-RuBisCO-protein-added microwave-vacuum-dried tomato snack bars.Sample 3-Pea-protein-added conventionally dried tomato snack bars.Sample 4-RuBisCO-protein-added conventionally dried tomato snack bars.
2.3. Polyphenol and Flavonoid Content
2.4. Antioxidant Activity In Vitro
2.5. Biofunctional Properties of Snack Bar Extracts
2.6. Static In Vitro Simulated Gastrointestinal Digestion and Protein and Peptide Content
2.7. Human Intestinal Cell Culture
2.8. Cell Viability and Reactive Oxygen Species Determination
2.9. Gene Expression Analysis with Real-Time RT-PCR
2.10. Statistical Analysis
3. Results
3.1. Bioactive Content of Snack Bars
3.2. In Vitro Antioxidant Capacity of the Different Snack Bar Samples
3.3. DPP-IV and Pancreatic Lipase Inhibition
3.4. Protein and Peptide Content Following In Vitro Simulated Gastrointestinal Digestion
3.5. Cell Viability and Intracellular ROS Levels in HT-29 Cells
3.6. Anti-Inflammatory Effects of Snack Bars on HT-29 Cells
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Granato, D.; Barba, F.J.; Kovačević, D.B.; Lorenzo, J.M.; Cruz, A.G.; Putnik, P. Functional Foods: Product Development, Technological Trends, Efficacy Testing, and Safety. Annu. Rev. Food Sci. Technol. 2020, 11, 93–118. [Google Scholar] [CrossRef]
- Koubaa, M.; Barba, F.J.; Bursać Kovačević, D.; Putnik, P.; Santos, M.D.; Queirós, R.P.; Moreira, S.A.; Inácio, R.S.; Fidalgo, L.G.; Saraiva, J.A. Chapter 22—Pulsed Electric Field Processing of Fruit Juices. In Fruit Juices; Rajauria, G., Tiwari, B.K., Eds.; Academic Press: San Diego, CA, USA, 2018; pp. 437–449. ISBN 978-0-12-802230-6. [Google Scholar]
- Gul, M.R.; Ince, A.E.; Ozel, B.; Uslu, A.K.; Çetin, M.; Mentes, D.; Sumnu, S.G.; Oztop, M.H. Effect of Microwave-Vacuum Drying on the Physicochemical Properties of a Functional Tomato Snack Bar. J. Sci. Food Agric. 2024, 104, 83–92. [Google Scholar] [CrossRef]
- Putnik, P.; Bursać Kovačević, D.; Režek Jambrak, A.; Barba, F.J.; Cravotto, G.; Binello, A.; Lorenzo, J.M.; Shpigelman, A. Innovative “Green” and Novel Strategies for the Extraction of Bioactive Added Value Compounds from Citrus Wastes—A Review. Molecules 2017, 22, 680. [Google Scholar] [CrossRef]
- Bursać Kovačević, D.; Maras, M.; Barba, F.J.; Granato, D.; Roohinejad, S.; Mallikarjunan, K.; Montesano, D.; Lorenzo, J.M.; Putnik, P. Innovative Technologies for the Recovery of Phytochemicals from Stevia Rebaudiana Bertoni Leaves: A Review. Food Chem. 2018, 268, 513–521. [Google Scholar] [CrossRef]
- Athira, V.A.; Gokulvel, E.; Nandhu Lal, A.M.; Venugopalan, V.V.; Rajkumar; Venkatesh, T. Advances in Drying Techniques for Retention of Antioxidants in Agro Produces. Crit. Rev. Food Sci. Nutr. 2023, 63, 10849–10865. [Google Scholar] [CrossRef] [PubMed]
- Gill, A.; Meena, G.; Singh, A. Snack Bars as Functional Foods: A Review. Diamond 2022, 9, 1324–1331. [Google Scholar]
- Boukid, F.; Klerks, M.; Pellegrini, N.; Fogliano, V.; Sanchez-Siles, L.; Roman, S.; Vittadini, E. Current and Emerging Trends in Cereal Snack Bars: Implications for New Product Development. Int. J. Food Sci. Nutr. 2022, 73, 610–629. [Google Scholar] [CrossRef] [PubMed]
- Obeid, C.A.; Gubbels, J.S.; Jaalouk, D.; Kremers, S.P.J.; Oenema, A. Adherence to the Mediterranean Diet among Adults in Mediterranean Countries: A Systematic Literature Review. Eur. J. Nutr. 2022, 61, 3327–3344. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Schwedhelm, C.; Galbete, C.; Hoffmann, G. Adherence to Mediterranean Diet and Risk of Cancer: An Updated Systematic Review and Meta-Analysis. Nutrients 2017, 9, 1063. [Google Scholar] [CrossRef]
- Capurso, A.; Crepaldi, G.; Capurso, C. The Mediterranean Diet: A Pathway to Successful Aging. Aging Clin. Exp. Res. 2020, 32, 1187–1188. [Google Scholar] [CrossRef]
- Saini, R.K.; Rengasamy, K.R.R.; Mahomoodally, F.M.; Keum, Y.-S. Protective Effects of Lycopene in Cancer, Cardiovascular, and Neurodegenerative Diseases: An Update on Epidemiological and Mechanistic Perspectives. Pharmacol. Res. 2020, 155, 104730. [Google Scholar] [CrossRef]
- Wang, J.; Kadyan, S.; Ukhanov, V.; Cheng, J.; Nagpal, R.; Cui, L. Recent Advances in the Health Benefits of Pea Protein (Pisum sativum): Bioactive Peptides and the Interaction with the Gut Microbiome. Curr. Opin. Food Sci. 2022, 48, 100944. [Google Scholar] [CrossRef]
- Dukić, J.; Košpić, K.; Kelava, V.; Mavrić, R.; Nutrizio, M.; Balen, B.; Butorac, A.; Halil Öztop, M.; Režek Jambrak, A. Alternative Methods for RuBisCO Extraction from Sugar Beet Waste: A Comparative Approach of Ultrasound and High Voltage Electrical Discharge. Ultrason. Sonochem. 2023, 99, 106535. [Google Scholar] [CrossRef]
- Di Stefano, E.; Agyei, D.; Njoku, E.N.; Udenigwe, C.C. Plant RuBisCo: An Underutilized Protein for Food Applications. J. Am. Oil Chem. Soc. 2018, 95, 1063–1074. [Google Scholar] [CrossRef]
- Grácio, M.; Oliveira, S.; Lima, A.; Boavida Ferreira, R. RuBisCO as a Protein Source for Potential Food Applications: A Review. Food Chem. 2023, 419, 135993. [Google Scholar] [CrossRef]
- Akyüz, A.; Tekin, İ.; Aksoy, Z.; Ersus, S. Determination of Process Parameters and Precipitation Methods for Potential Large-Scale Production of Sugar Beet Leaf Protein Concentrate. J. Sci. Food Agric. 2024, 104, 3235–3245. [Google Scholar] [CrossRef]
- Sinem, A.; Behiç, M.; Mecit, Ö.H.; Aziz, T. Production and Characterisation of Microfluidized Olive Powder. Int. J. Food Sci. Technol. 2024, 59, 4907–4920. [Google Scholar] [CrossRef]
- Lim, K.J.A.; Cabajar, A.A.; Lobarbio, C.F.Y.; Taboada, E.B.; Lacks, D.J. Extraction of Bioactive Compounds from Mango (Mangifera indica L. var. Carabao) Seed Kernel with Ethanol–Water Binary Solvent Systems. J. Food Sci. Technol. 2019, 56, 2536–2544. [Google Scholar] [CrossRef]
- Wu, Y.; Gao, H.; Wang, Y.; Peng, Z.; Guo, Z.; Ma, Y.; Zhang, R.; Zhang, M.; Wu, Q.; Xiao, J.; et al. Effects of Different Extraction Methods on Contents, Profiles, and Antioxidant Abilities of Free and Bound Phenolics of Sargassum Polycystum from the South China Sea. J. Food Sci. 2022, 87, 968–981. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. In Methods in Enzymology; Oxidants and Antioxidants Part A; Academic Press: Cambridge, MA, USA, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Kim, D.-O.; Chun, O.K.; Kim, Y.J.; Moon, H.-Y.; Lee, C.Y. Quantification of Polyphenolics and Their Antioxidant Capacity in Fresh Plums. J. Agric. Food Chem. 2003, 51, 6509–6515. [Google Scholar] [CrossRef] [PubMed]
- Boudjou, S.; Oomah, B.D.; Zaidi, F.; Hosseinian, F. Phenolics Content and Antioxidant and Anti-Inflammatory Activities of Legume Fractions. Food Chem. 2013, 138, 1543–1550. [Google Scholar] [CrossRef]
- Ninfali, P.; Mea, G.; Giorgini, S.; Rocchi, M.; Bacchiocca, M. Antioxidant Capacity of Vegetables, Spices and Dressings Relevant to Nutrition. Br. J. Nutr. 2005, 93, 257–266. [Google Scholar] [CrossRef]
- Colosimo, R.; Gabriele, M.; Cifelli, M.; Longo, V.; Domenici, V.; Pucci, L. The Effect of Sourdough Fermentation on Triticum Dicoccum from Garfagnana: 1H NMR Characterization and Analysis of the Antioxidant Activity. Food Chem. 2020, 305, 125510. [Google Scholar] [CrossRef]
- Bustanji, Y.; Al-Masri, I.M.; Mohammad, M.; Hudaib, M.; Tawaha, K.; Tarazi, H.; Alkhatib, H.S. Pancreatic Lipase Inhibition Activity of Trilactone Terpenes of Ginkgo Biloba. J. Enzym. Inhib. Med. Chem. 2011, 26, 453–459. [Google Scholar] [CrossRef]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST Static In Vitro Simulation of Gastrointestinal Food Digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef]
- Rieder, A.; Afseth, N.K.; Böcker, U.; Knutsen, S.H.; Kirkhus, B.; Mæhre, H.K.; Ballance, S.; Wubshet, S.G. Improved Estimation of In Vitro Protein Digestibility of Different Foods Using Size Exclusion Chromatography. Food Chem. 2021, 358, 129830. [Google Scholar] [CrossRef]
- Boskou, D. 1—Olive Fruit, Table Olives, and Olive Oil Bioactive Constituents. In Olive and Olive Oil Bioactive Constituents; Boskou, D., Ed.; AOCS Press: Champaign, IL, USA, 2015; pp. 1–30. ISBN 978-1-63067-041-2. [Google Scholar]
- Zuorro, A. Enhanced Lycopene Extraction from Tomato Peels by Optimized Mixed-Polarity Solvent Mixtures. Molecules 2020, 25, 2038. [Google Scholar] [CrossRef]
- Shahidi, F.; Yeo, J. Insoluble-Bound Phenolics in Food. Molecules 2016, 21, 1216. [Google Scholar] [CrossRef] [PubMed]
- Murador, D.; Braga, A.R.; Da Cunha, D.; De Rosso, V. Alterations in Phenolic Compound Levels and Antioxidant Activity in Response to Cooking Technique Effects: A Meta-Analytic Investigation. Crit. Rev. Food Sci. Nutr. 2018, 58, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhou, F.; Xiong, L.; Mao, S.; Hu, Y.; Lu, B. Comparison of Phenolic Compounds, Tocopherols, Phytosterols and Antioxidant Potential in Zhejiang Pecan [Carya cathayensis] at Different Stir-Frying Steps. LWT—Food Sci. Technol. 2015, 62, 541–548. [Google Scholar] [CrossRef]
- Torres, C.A.; Sepúlveda, G.; Concha-Meyer, A.A. Effect of Processing on Quality Attributes and Phenolic Profile of Quince Dried Bar Snack. J. Sci. Food Agric. 2019, 99, 2556–2564. [Google Scholar] [CrossRef]
- Lourenço, S.C.; Moldão-Martins, M.; Alves, V.D. Antioxidants of Natural Plant Origins: From Sources to Food Industry Applications. Molecules 2019, 24, 4132. [Google Scholar] [CrossRef]
- Petcu, C.D.; Tăpăloagă, D.; Mihai, O.D.; Gheorghe-Irimia, R.-A.; Negoiță, C.; Georgescu, I.M.; Tăpăloagă, P.R.; Borda, C.; Ghimpețeanu, O.M. Harnessing Natural Antioxidants for Enhancing Food Shelf Life: Exploring Sources and Applications in the Food Industry. Foods 2023, 12, 3176. [Google Scholar] [CrossRef] [PubMed]
- López-Alarcón, C.; Denicola, A. Evaluating the Antioxidant Capacity of Natural Products: A Review on Chemical and Cellular-Based Assays. Anal. Chim. Acta 2013, 763, 1–10. [Google Scholar] [CrossRef]
- Kobbi, S.; Bougatef, A.; Le flem, G.; Balti, R.; Mickael, C.; Fertin, B.; Chaabouni, S.; Dhulster, P.; Nedjar, N. Purification and Recovery of RuBisCO Protein from Alfalfa Green Juice: Antioxidative Properties of Generated Protein Hydrolysate. Waste Biomass-Valoriz. 2017, 8, 493–504. [Google Scholar] [CrossRef]
- Williams, P.A.; Phillips, G.O. Gums and Stabilisers for the Food Industry 17: The Changing Face of Food Manufacture: The Role of Hydrocolloids; Royal Society of Chemistry: London, UK, 2014; ISBN 978-1-84973-883-5. [Google Scholar]
- Palermo, M.; Pellegrini, N.; Fogliano, V. The Effect of Cooking on the Phytochemical Content of Vegetables. J. Sci. Food Agric. 2014, 94, 1057–1070. [Google Scholar] [CrossRef]
- Huang, X.; Yan, C.; Lin, M.; He, C.; Xu, Y.; Huang, Y.; Zhou, Z. The Effects of Conjugation of Walnut Protein Isolate with Polyphenols on Protein Solubility, Antioxidant Activity, and Emulsifying Properties. Food Res. Int. 2022, 161, 111910. [Google Scholar] [CrossRef]
- Udenigwe, C.C.; Gong, M.; Wu, S. In Silico Analysis of the Large and Small Subunits of Cereal RuBisCO as Precursors of Cryptic Bioactive Peptides. Process. Biochem. 2013, 48, 1794–1799. [Google Scholar] [CrossRef]
- Subramaniyan, V.; Hanim, Y.U. Role of Pancreatic Lipase Inhibition in Obesity Treatment: Mechanisms and Challenges towards Current Insights and Future Directions. Int. J. Obes. 2025, 49, 492–506. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Warren, F.J.; Gidley, M.J. Natural Products for Glycaemic Control: Polyphenols as Inhibitors of Alpha-Amylase. Trends Food Sci. Technol. 2019, 91, 262–273. [Google Scholar] [CrossRef]
- Liu, T.-T.; Liu, X.-T.; Chen, Q.-X.; Shi, Y. Lipase Inhibitors for Obesity: A Review. Biomed. Pharmacother. 2020, 128, 110314. [Google Scholar] [CrossRef]
- Rajan, L.; Palaniswamy, D.; Mohankumar, S.K. Targeting Obesity with Plant-Derived Pancreatic Lipase Inhibitors: A Comprehensive Review. Pharmacol. Res. 2020, 155, 104681. [Google Scholar] [CrossRef]
- Tanambell, H.; Danielsen, M.; Devold, T.G.; Møller, A.H.; Dalsgaard, T.K. In Vitro Protein Digestibility of RuBisCO from Alfalfa Obtained from Different Processing Histories: Insights from Free N-Terminal and Mass Spectrometry Study. Food Chem. 2024, 434, 137301. [Google Scholar] [CrossRef]
- Ducrocq, M.; Boire, A.; Bourlieu-Lacanal, C.; Barron, C.; Nawrocka, A.; Morel, M.-H.; Anton, M.; Micard, V. In Vitro Protein Digestibility of RuBisCO-Enriched Wheat Dough: A Comparative Study with Pea and Gluten Proteins. Food Funct. 2024, 15, 5132–5146. [Google Scholar] [CrossRef]
- Ataseven, D.; Öztürk, A.; Özkaraca, M.; Joha, Z. Anticancer Activity of Lycopene in HT-29 Colon Cancer Cell Line. Med Oncol. 2023, 40, 127. [Google Scholar] [CrossRef]
- Hurley, B.P.; Pirzai, W.; Eaton, A.D.; Harper, M.; Roper, J.; Zimmermann, C.; Ladics, G.S.; Layton, R.J.; Delaney, B. An Experimental Platform Using Human Intestinal Epithelial Cell Lines to Differentiate between Hazardous and Non-Hazardous Proteins. Food Chem. Toxicol. 2016, 92, 75–87. [Google Scholar] [CrossRef]
- Dixon, S.J.; Stockwell, B.R. The Role of Iron and Reactive Oxygen Species in Cell Death. Nat. Chem. Biol. 2014, 10, 9–17. [Google Scholar] [CrossRef] [PubMed]
- do Carmo, M.A.V.; Granato, D.; Azevedo, L. Chapter Seven—Antioxidant/pro-Oxidant and Antiproliferative Activities of Phenolic-Rich Foods and Extracts: A Cell-Based Point of View. In Advances in Food and Nutrition Research; Granato, D., Ed.; Application of Polyphenols in Foods and Food Models; Academic Press: Cambridge, MA, USA, 2021; Volume 98, pp. 253–280. [Google Scholar]
- Andrés, C.M.C.; Pérez de la Lastra, J.M.; Juan, C.A.; Plou, F.J.; Pérez-Lebeña, E. Polyphenols as Antioxidant/Pro-Oxidant Compounds and Donors of Reducing Species: Relationship with Human Antioxidant Metabolism. Processes 2023, 11, 2771. [Google Scholar] [CrossRef]
- Joyner, P.M. Protein Adducts and Protein Oxidation as Molecular Mechanisms of Flavonoid Bioactivity. Molecules 2021, 26, 5102. [Google Scholar] [CrossRef]
- Nakao, S.; Ogtata, Y.; Shimizu, E.; Yamazaki, M.; Furuyama, S.; Sugiya, H. Tumor Necrosis Factor α (TNF-α)-Induced Prostaglanding E2 Release Is Mediated by the Activation of Cyclooxygenase-2 (COX-2)Transcription via NFκB in Human Gingival Fibroblasts. Mol. Cell. Biochem. 2002, 238, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Ke, J.; Long, X.; Liu, Y.; Zhang, Y.F.; Li, J.; Fang, W.; Meng, Q.G. Role of NF-ΚB in TNF-α-Induced COX-2 Expression in Synovial Fibroblasts from Human TMJ. J. Dent. Res. 2007, 86, 363–367. [Google Scholar] [CrossRef]
- Kim, Y.H.; Kim, K.J. Upregulation of Prostaglandin E2 by Inducible Microsomal Prostaglandin E Synthase-1 in Colon Cancer. Ann. Coloproctol. 2022, 38, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; DuBois, R.N. The Role of COX-2 in Intestinal Inflammation and Colorectal Cancer. Oncogene 2010, 29, 781–788. [Google Scholar] [CrossRef] [PubMed]
- Sebastián, V.P.; Salazar, G.A.; Coronado-Arrázola, I.; Schultz, B.M.; Vallejos, O.P.; Berkowitz, L.; Álvarez-Lobos, M.M.; Riedel, C.A.; Kalergis, A.M.; Bueno, S.M. Heme Oxygenase-1 as a Modulator of Intestinal Inflammation Development and Progression. Front. Immunol. 2018, 9, 781–788. [Google Scholar] [CrossRef] [PubMed]
- Haines, D.D.; Tosaki, A. Heme Degradation in Pathophysiology of and Countermeasures to Inflammation-Associated Disease. Int. J. Mol. Sci. 2020, 21, 9698. [Google Scholar] [CrossRef]
- Loboda, A.; Damulewicz, M.; Pyza, E.; Jozkowicz, A.; Dulak, J. Role of Nrf2/HO-1 System in Development, Oxidative Stress Response and Diseases: An Evolutionarily Conserved Mechanism. Cell. Mol. Life Sci. 2016, 73, 3221–3247. [Google Scholar] [CrossRef]
Sample | ||||
---|---|---|---|---|
Ingredients | 1 | 2 | 3 | 4 |
Tomato (g) | 100 | 100 | 100 | 100 |
Pectin type | LMP | LMP | LMP | LMP |
Pectin amount (g) | 1 | 1 | 1 | 1 |
Protein type | PEA | RUBISCO | PEA | RUBISCO |
Protein amount (g) | 10 | 1 | 10 | 1 |
Salt (g) | 2 | 2 | 2 | 2 |
Tomato powder (g) | 5 | 9.5 | 5 | 9.5 |
Tomato peel powder (g) | 5 | 9.5 | 5 | 9.5 |
Olive powder (g) | 2 | 2 | 2 | 2 |
Basil (g) | 1 | 1 | 1 | 1 |
Thyme (g) | 1 | 1 | 1 | 1 |
Red pepper (g) | 1 | 1 | 1 | 1 |
Total weight (g) | 128 | 128 | 128 | 128 |
Process Parameters | ||||
MW power * (%) | 60 | 60 | - | - |
Drying duration (min) | 10 | 10 | - | - |
Vacuum pressure (Torr) | 380 | 380 | - | - |
Oven temperature (°C) | - | - | 120 | 120 |
Drying duration (min) | - | - | 90 | 90 |
Samples | Polyphenols (mg GAE/g DW) | Flavonoids (mg CE/g DW) | |
---|---|---|---|
Microwave | Pea bar | 7.00 ± 0.17 c | 3.61 ± 0.45 b |
Rubisco bar | 10.12 ± 0.27 a | 5.61 ± 0,47 a | |
Oven | Pea bar | 9.01 ± 0.50 b | 3.94 ± 0.54 b |
Rubisco bar | 9.94 ± 0.41 a | 5.65 ± 0.42 a |
Samples | DPPH (EC50 mg/mL) | ORAC (µmol TE/g DW) | FRAP (µM Fe2+) | |
---|---|---|---|---|
Microwave | Pea bar | 0.67 ± 0.09 b | 184.16 ± 15.44 b | 3291.56 ± 233.75 b |
Rubisco bar | 0.46 ± 0.09 a | 226.80 ± 22.42 a | 4561.25 ± 94.77 a | |
Oven | Pea bar | 0.63 ± 0.06 b | 198.86 ± 20.87 ab | 3877.50 ± 221.31 ab |
Rubisco bar | 0.60 ± 0.09 ab | 202.25 ± 11.47 ab | 4549.38 ± 584.96 a |
Samples | DPP-IV (% Inhibition) | Lipase (EC50 µg/mL) | |
---|---|---|---|
Microwave | Pea bar | 16.3 ± 2.8 b | 1238.7 ± 99.7 c |
Rubisco bar | 44.3 ± 3.9 a | 505.8 ± 22.0 a | |
Oven | Pea bar | 14.1 ± 0.4 b | 1012.7 ± 64.3 b |
Rubisco bar | 46.8 ± 1.2 a | 503.7 ± 19.2 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomassi, E.; Gabriele, M.; Sgalippa, A.; Gul, M.R.; Tas, O.; Oztop, M.H.; Pucci, L. Antioxidant, Antidiabetic, Anti-Obesity, and Anti-Inflammatory Activity of Tomato-Based Functional Snack Bars Enriched with Pea and RuBisCO Proteins. Foods 2025, 14, 3340. https://doi.org/10.3390/foods14193340
Tomassi E, Gabriele M, Sgalippa A, Gul MR, Tas O, Oztop MH, Pucci L. Antioxidant, Antidiabetic, Anti-Obesity, and Anti-Inflammatory Activity of Tomato-Based Functional Snack Bars Enriched with Pea and RuBisCO Proteins. Foods. 2025; 14(19):3340. https://doi.org/10.3390/foods14193340
Chicago/Turabian StyleTomassi, Elena, Morena Gabriele, Agnese Sgalippa, Muhammed Rasim Gul, Ozan Tas, Mecit Halil Oztop, and Laura Pucci. 2025. "Antioxidant, Antidiabetic, Anti-Obesity, and Anti-Inflammatory Activity of Tomato-Based Functional Snack Bars Enriched with Pea and RuBisCO Proteins" Foods 14, no. 19: 3340. https://doi.org/10.3390/foods14193340
APA StyleTomassi, E., Gabriele, M., Sgalippa, A., Gul, M. R., Tas, O., Oztop, M. H., & Pucci, L. (2025). Antioxidant, Antidiabetic, Anti-Obesity, and Anti-Inflammatory Activity of Tomato-Based Functional Snack Bars Enriched with Pea and RuBisCO Proteins. Foods, 14(19), 3340. https://doi.org/10.3390/foods14193340