Development and Characterization of Films Containing Sichuan Pepper Extract to Extend the Shelf Life of Refrigerated Beef Patties
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extract Preparation
2.3. Preparation of Films
2.4. Antioxidant Activity and Polyphenolic Content of the Extracts
2.4.1. DPPH
2.4.2. ABTS
2.4.3. Determination of Total Polyphenolic Content
2.5. Film Characterization
2.5.1. Transmittance
2.5.2. Morphology and Microstructure of Films
2.5.3. Molecular Structures and Functional Groups
2.5.4. Mechanical Properties
2.6. Meat Preservation
2.6.1. Beef Patties
2.6.2. pH
2.6.3. Metmyoglobin
2.6.4. Color (CIELab)
2.6.5. Microbiology
2.6.6. Fatty Acid Content
2.6.7. Lipid Oxidation
2.7. Statistical Analysis
3. Results and Discussion
3.1. Radical-Scavenging Activity and Polyphenolic Content of Sichuan Pepper Extract
3.2. Results Obtained from Film Characterization
3.2.1. Visual Aspect of Alginate and Gelatin Films
3.2.2. Light Transmission and Opacity of Films
3.2.3. Findings of Morphology and Microstructure of Films
3.2.4. Mechanical Resistance of the Films
3.2.5. Identification of Molecular Structures and Functional Groups
3.3. Meat Quality and Preservation
3.3.1. pH Determination
3.3.2. Metmyoglobin and Color
3.3.3. Evolution of Bacterial Growth
3.3.4. Lipid Profile of the Patties
3.3.5. Secondary Lipid Oxidation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sundqvist-Andberg, H.; Åkerman, M. Sustainability governance and contested plastic food packaging—An integrative review. J. Clean. Prod. 2021, 306, 127111. [Google Scholar] [CrossRef]
- Yerramathi, B.B.; Muniraj, B.A.; Donadi, J.; Bandi, K.; Kola, M. Transformation of alginate based films into food packaging material—Confines and possibilities as a renewable resource: A review. React. Funct. Polym. 2025, 215, 106358. [Google Scholar] [CrossRef]
- Wang, C.; Song, Z.; Cao, Y.; Han, L.; Yu, Q.; Han, G.; Zhu, X. Characterization of sodium alginate-carrageenan films prepared by adding peanut shell flavonoids as an antioxidant: Application in chilled pork preservation. Int. J. Biol. Macromol. 2024, 266, 131081. [Google Scholar] [CrossRef]
- Sebranek, J.G.; Sewalt, V.J.H.; Robbins, K.L.; Houser, T.A. Comparison of a natural rosemary extract and BHA/BHT for relative antioxidant effectiveness in pork sausage. Meat Sci. 2005, 69, 289–296. [Google Scholar] [CrossRef]
- Vayalil, P.K. Antioxidant and Antimutagenic Properties of Aqueous Extract of Date Fruit (Phoenix dactylifera L. Arecaceae). J. Agric. Food Chem. 2002, 50, 610–617. [Google Scholar] [CrossRef]
- Decker, E.A.; Chan, W.K.M.; Livisay, S.A.; Butterfield, D.A.; Faustman, C. Interactions Between Carnosine and the Different Redox States of Myoglobin. J. Food Sci. 1995, 60, 1201–1204. [Google Scholar] [CrossRef]
- Ito, N.; Hirose, M.; Fukushima, S.; Tsuda, H.; Shirai, T.; Tatematsu, M. Studies on antioxidants: Their carcinogenic and modifying effects on chemical carcinogenesis. Food Chem. Toxicol. 1986, 24, 1071–1082. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Li, S.; Ho, C.T. Chemical composition, sensory properties and application of Sichuan pepper (Zanthoxylum genus). Food Sci. Hum. Wellness 2019, 8, 115–125. [Google Scholar] [CrossRef]
- Zeng, M.; Wang, J.; Zhang, M.; Chen, J.; He, Z.; Qin, F.; Xu, Z.; Cao, D.; Chen, J. Inhibitory effects of Sichuan pepper (Zanthoxylum bungeanum) and sanshoamide extract on heterocyclic amine formation in grilled ground beef patties. Food Chem. 2018, 239, 111–118. [Google Scholar] [CrossRef]
- Ivane, N.M.A.; Haruna, S.A.; Zekrumah, M.; Roméo Elysé, F.K.; Hassan, M.O.; Hashim, S.B.H.; Tahir, H.E.; Zhang, D. Composition, mechanisms of tingling paresthesia, and health benefits of Sichuan pepper: A review of recent progress. Trends Food Sci. Technol. 2022, 126, 1–12. [Google Scholar] [CrossRef]
- Xia, Y.; Kuda, T.; Miyashita, A.; Yamamoto, M.; Koga, K.; Nakamura, A.; Takahashi, H. Effects of cumin, coriander, and sichuan pepper on microbiota and the antioxidant capacities of human faecal cultures. Food Humanit. 2023, 1, 1091–1098. [Google Scholar] [CrossRef]
- Abka-khajouei, R.; Tounsi, L.; Shahabi, N.; Patel, A.K.; Abdelkafi, S.; Michaud, P. Structures, Properties and Applications of Alginates. Mar. Drugs 2022, 20, 364. [Google Scholar] [CrossRef]
- Pawar, S.N.; Edgar, K.J. Alginate derivatization: A review of chemistry, properties and applications. Biomaterials 2012, 33, 3279–3305. [Google Scholar] [CrossRef]
- Ahmed, S. (Ed.) Alginates: Applications in the Biomedical and Food Industries; Scrivener Publishing: Beverly, MA, USA; Wiley: Hoboken, NJ, USA, 2019. [Google Scholar]
- Ureña, M.; Carullo, D.; Phùng, T.T.-T.; Fournier, P.; Farris, S.; Lagorce, A.; Karbowiak, T. Effect of polymer structure on the functional properties of alginate for film or coating applications. Food Hydrocoll. 2024, 149, 109557. [Google Scholar] [CrossRef]
- Alkan, D.; Yemenicioğlu, A. Potential application of natural phenolic antimicrobials and edible film technology against bacterial plant pathogens. Food Hydrocoll. 2016, 55, 1–10. [Google Scholar] [CrossRef]
- Fabra, M.J.; Falcó, I.; Randazzo, W.; Sánchez, G.; López-Rubio, A. Antiviral and antioxidant properties of active alginate edible films containing phenolic extracts. Food Hydrocoll. 2018, 81, 96–103. [Google Scholar] [CrossRef]
- Tyuftin, A.A.; Kerry, J.P. Gelatin films: Study review of barrier properties and implications for future studies employing biopolymer films. Food Packag. Shelf Life 2021, 29, 100688. [Google Scholar] [CrossRef]
- Dille, M.J.; Haug, I.J.; Draget, K.I. Gelatin and collagen. In Handbook of Hydrocolloids; Elsevier: Amsterdam, The Netherlands, 2021; pp. 1073–1097. [Google Scholar] [CrossRef]
- Bonilla, J.; Sobral, P.J.A. Investigation of the physicochemical, antimicrobial and antioxidant properties of gelatin-chitosan edible film mixed with plant ethanolic extracts. Food Biosci. 2016, 16, 17–25. [Google Scholar] [CrossRef]
- Gallego, M.; Gordon, M.; Segovia, F.; Almajano Pablos, M. Gelatine-Based Antioxidant Packaging Containing Caesalpinia decapetala and Tara as a Coating for Ground Beef Patties. Antioxidants 2016, 5, 10. [Google Scholar] [CrossRef]
- Chaari, M.; Elhadef, K.; Akermi, S.; Ben Akacha, B.; Fourati, M.; Chakchouk Mtibaa, A.; Ennouri, M.; Sarkar, T.; Shariati, M.A.; Rebezov, M.; et al. Novel Active Food Packaging Films Based on Gelatin-Sodium Alginate Containing Beetroot Peel Extract. Antioxidants 2022, 11, 2095. [Google Scholar] [CrossRef]
- Cabeza de Vaca, M.; Ramírez, R.; Rocha-Pimienta, J.; Tejerina, D.; Delgado-Adámez, J. Effects of Gelatin/Chitosan and Chitosan Active Films with Rice Bran Extract for the Preservation of Fresh Pork Meat. Gels 2025, 11, 338. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, C.; Du, B.; Yue, X. Preservative effect of chitosan-gelatine composite incorporated with pomegranate peel polyphenol on fresh meat. Int. Food Res. J. 2024, 31, 239–252. [Google Scholar] [CrossRef]
- Aloui, H.; Deshmukh, A.R.; Khomlaem, C.; Kim, B.S. Novel composite films based on sodium alginate and gallnut extract with enhanced antioxidant, antimicrobial, barrier and mechanical properties. Food Hydrocoll. 2021, 113, 106508. [Google Scholar] [CrossRef]
- Lopes, A.; Melo, A.; Caleja, C.; Pereira, E.; Finimundy, T.; Afonso, T.; Silva, S.; Ivanov, M.; Soković, M.; Tavaria, F.; et al. Evaluation of Antimicrobial and Antioxidant Activities of Alginate Edible Coatings Incorporated with Plant Extracts. Coatings 2023, 13, 1487. [Google Scholar] [CrossRef]
- Maqsood, S.; Benjakul, S. Comparative studies of four different phenolic compounds on in vitro antioxidative activity and the preventive effect on lipid oxidation of fish oil emulsion and fish mince. Food Chem. 2010, 119, 123–132. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT—Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Villasante, J.; Ouerfelli, M.; Bobet, A.; Metón, I.; Almajano, M.P. The Effects of Pecan Shell, Roselle Flower and Red Pepper on the Quality of Beef Patties during Chilled Storage. Foods 2020, 9, 1692. [Google Scholar] [CrossRef] [PubMed]
- De Moraes Crizel, T.; De Oliveira Rios, A.; Alves, V.D.; Bandarra, N.; Moldão-Martins, M.; Hickmann Flôres, S. Biodegradable Films Based on Gelatin and Papaya Peel Microparticles with Antioxidant Properties. Food Bioprocess Technol. 2018, 11, 536–550. [Google Scholar] [CrossRef]
- Gallego, M.; Gordon, M.; Segovia, F.; Almajano, M. Caesalpinia decapetala Extracts as Inhibitors of Lipid Oxidation in Beef Patties. Molecules 2015, 20, 13913–13926. [Google Scholar] [CrossRef] [PubMed]
- ISO 4833-1:2013; Microbiology of the Food Chain—Horizontal Method for the Enumeration of Microorganisms—Part 1: Colony Count at 30 Degrees C by the Pour Plate Technique. International Organization for Standardization (ISO): Geneva, Switzerland, 2013. Available online: https://www.iso.org/standard/53728.html (accessed on 26 July 2025).
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Villasante, J.; Girbal, M.; Metón, I.; Almajano, M.P. Effects of Pecan Nut (Carya illinoiensis) and Roselle Flower (Hibiscus sabdariffa) as Antioxidant and Antimicrobial Agents for Sardines (Sardina pilchardus). Molecules 2018, 24, 85. [Google Scholar] [CrossRef]
- Qi, J.; Pan, Z.; Wang, X.; Zhang, N.; He, G.; Jiang, X. Research advances of Zanthoxylum bungeanum Maxim. polyphenols in inflammatory diseases. Front. Immunol. 2024, 15, 1305886. [Google Scholar] [CrossRef]
- Yang, L.C.; Li, R.; Tan, J.; Jiang, Z.T. Polyphenolics Composition of the Leaves of Zanthoxylum bungeanum Maxim. Grown in Hebei, China, and Their Radical Scavenging Activities. J. Agric. Food Chem. 2013, 61, 1772–1778. [Google Scholar] [CrossRef]
- Li, J.H.; Miao, J.; Wu, J.L.; Chen, S.F.; Zhang, Q.Q. Preparation and characterization of active gelatin-based films incorporated with natural antioxidants. Food Hydrocoll. 2014, 37, 166–173. [Google Scholar] [CrossRef]
- Ahmad, M.; Hani, N.M.; Nirmal, N.P.; Fazial, F.F.; Mohtar, N.F.; Romli, S.R. Optical and thermo-mechanical properties of composite films based on fish gelatin/rice flour fabricated by casting technique. Prog. Org. Coat. 2015, 84, 115–127. [Google Scholar] [CrossRef]
- Norajit, K.; Kim, K.M.; Ryu, G.H. Comparative studies on the characterization and antioxidant properties of biodegradable alginate films containing ginseng extract. J. Food Eng. 2010, 98, 377–384. [Google Scholar] [CrossRef]
- Gómez-Guillén, M.C.; Ihl, M.; Bifani, V.; Silva, A.; Montero, P. Edible films made from tuna-fish gelatin with antioxidant extracts of two different murta ecotypes leaves (Ugni molinae Turcz). Food Hydrocoll. 2007, 21, 1133–1143. [Google Scholar] [CrossRef]
- Huo, J.; Wang, L.; Su, S.; Yu, X.; Duan, Y.; Wang, P.; Xiao, Z. Development and characterization of soy protein isolate-based emulsion films with green sichuan pepper essential oil: Functional and structural insights. Food Res. Int. 2025, 211, 116365. [Google Scholar] [CrossRef]
- Benlloch-Tinoco, M.; Gentile, P.; Taylor, L.; Girón-Hernández, J. Alginate edible films as delivery systems for green tea polyphenols. Food Hydrocoll. 2025, 158, 110518. [Google Scholar] [CrossRef]
- Villasante, J.; Martin-Lujano, A.; Almajano, M.P. Characterization and Application of Gelatin Films with Pecan Walnut and Shell Extract (Carya illinoiensis). Polymers 2020, 12, 1424. [Google Scholar] [CrossRef]
- Wang, Y.; Luo, J.; Hou, X.; Wu, H.; Li, Q.; Li, S.; Luo, Q.; Li, M.; Liu, X.; Shen, G.; et al. Physicochemical, antibacterial, and biodegradability properties of green Sichuan pepper (Zanthoxylum armatum DC.) essential oil incorporated starch films. LWT 2022, 161, 113392. [Google Scholar] [CrossRef]
- Silva Iahnke, A.O.; Monte, M.L.; Sant’Anna Cadaval, T.R.; Almeida Pinto, L.A. Electrospinning of gelatin fine fibers loaded with hop waste extract: Development, characterization, and application as antioxidant chitosan bilayer films. J. Mol. Liq. 2025, 426, 127364. [Google Scholar] [CrossRef]
- Hosseini, S.F.; Gómez-Guillén, M.C. A state-of-the-art review on the elaboration of fish gelatin as bioactive packaging: Special emphasis on nanotechnology-based approaches. Trends Food Sci. Technol. 2018, 79, 125–135. [Google Scholar] [CrossRef]
- Nurdianti, L.; Rusdiana, T.; Sopyan, I.; Putriana, N.A.; Aiman, H.R.; Fajria, T.R. Characteristic Comparison of an Intraoral Thin Film Containing Astaxanthin Nanoemulsion Using Sodium Alginate and Gelatin Polymers. Turk. J. Pharm. Sci. 2021, 18, 289–295. [Google Scholar] [CrossRef]
- Muyonga, J.H.; Cole, C.G.B.; Duodu, K.G. Fourier transform infrared (FTIR) spectroscopic study of acid soluble collagen and gelatin from skins and bones of young and adult Nile perch (Lates niloticus). Food Chem. 2004, 86, 325–332. [Google Scholar] [CrossRef]
- Guo, Y.; Qin, W.; Hou, Y.; Zhu, W.; Zhao, H.; Zhang, X.; Jiao, K. Extraction, purification, structural characteristics and biological properties of the polysaccharides from Rubus L: A review. Food Chem. 2025, 478, 143711. [Google Scholar] [CrossRef]
- Cortez-Vega, W.R.; Pizato, S.; Prentice, C. Quality of Raw Chicken Breast Stored at 5c and Packaged Under Different Modified Atmospheres. J. Food Saf. 2012, 32, 360–368. [Google Scholar] [CrossRef]
- Manzoor, A.; Ahmad, S. Flaxseed gum based biocomposite film modified with betel leaf extract: A novel packaging material for oxidative stability of meat patties. Meat Sci. 2024, 209, 109401. [Google Scholar] [CrossRef] [PubMed]
- Bojorges, H.; Ríos-Corripio, M.A.; Hernández-Cázares, A.S.; Hidalgo-Contreras, J.V.; Contreras-Oliva, A. Effect of the application of an edible film with turmeric (Curcuma longa L.) on the oxidative stability of meat. Food Sci. Nutr. 2020, 8, 4308–4319. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Zhao, Y.; Yan, L.; Luo, J.; Yan, W.; Zhang, J. Improving the lipid oxidation of beef patties by plasma-modified essential oil/protein edible composite films. LWT 2022, 154, 112662. [Google Scholar] [CrossRef]
- Suman, S.P.; Joseph, P. Myoglobin Chemistry and Meat Color. Annu. Rev. Food Sci. Technol. 2013, 4, 79–99. [Google Scholar] [CrossRef] [PubMed]
- Motoyama, M.; Kobayashi, M.; Sasaki, K.; Nomura, M.; Mitsumoto, M. Pseudomonas spp. convert metmyoglobin into deoxymyoglobin. Meat Sci. 2010, 84, 202–207. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, X.; Duan, X.; Holman, B.W.B.; Zhu, L.; Yang, X.; Hopkins, D.L.; Luo, X.; Sun, B.; Zhang, Y. The retail color characteristics of vacuum-packaged beef m. longissimus lumborum following long-term superchilled storage. Meat Sci. 2023, 196, 109050. [Google Scholar] [CrossRef]
- Jakobsen, M.; Bertelsen, G. Colour stability and lipid oxidation of fresh beef. Development of a response surface model for predicting the effects of temperature, storage time, and modified atmosphere composition. Meat Sci. 2000, 54, 49–57. [Google Scholar] [CrossRef]
- Fernández, J.; Pérez-Álvarez, J.A.; Fernández-López, J.A. Thiobarbituric acid test for monitoring lipid oxidation in meat. Food Chem. 1997, 59, 345–353. [Google Scholar] [CrossRef]
- Geng, L.; Liu, K.; Zhang, H. Lipid oxidation in foods and its implications on proteins. Front. Nutr. 2023, 10, 1192199. [Google Scholar] [CrossRef] [PubMed]
- Pinto, L.A.D.M.; Nascimento, K.F.; Cardoso, M.A.P.; Madrona, G.S.; Scapim, M.R.D.S.; Vital, A.C.P.; Guerrero, A.; Prado, I.N.D. Quality assessment of beef burgers packaged in active paper with cinnamon essential oil. Food Sci. Technol. 2023, 43, 6–7. [Google Scholar] [CrossRef]
- Abdallah, M.R.; Mohamed, M.A.; Mohamed, H.; Emara, M.T. Application of alginate and gelatin-based edible coating materials as alternatives to traditional coating for improving the quality of pastirma. Food Sci. Biotechnol. 2018, 27, 1589–1597. [Google Scholar] [CrossRef] [PubMed]
WA | Water-based alginate film |
WG | Water-based gelatin film |
A2.5 | 2.5% extract-based alginate film |
G2.5 | 2.5% extract-based gelatin film |
A5 | 5% extract-based alginate film |
G5 | 5% extract-based gelatin film |
Film * | E (MPa) | σ Max (MPa) | ε Max (%) | h (mm) |
---|---|---|---|---|
WA | 375.0 ± 49.50 b | 8.95 ± 1.63 b | 7.55 ± 0.07 b | 0.075 ± 0.004 b |
A2.5 | 495.0 ± 50.91 b | 15.65 ± 1.34 b | 6.70 ± 0.56 b | 0.082 ± 0.009 b |
A5 | 231.0 ± 27.90 b | 10.05 ± 4.17 b | 9.05 ± 5.59 b | 0.089 ± 0.001 b |
WG | 1156.0 ± 302.64 a | 46.45 ± 3.75 a | 10.05 ± 1.77 b | 0.119 ± 0.009 a |
G2.5 | 581.0 ± 59.39 b | 38.0 ± 0.99 a | 30.80 ± 0.71 a | 0.125 ± 0.005 a |
G5 | 215.5 ± 9.19 b | 5.90 ± 0.21 b | 4.50 ± 0.14 b | 0.067 ± 0.003 b |
Sample * | Day 0 | Day 3 | Day 4 | Day 5 | Day 6 | Day 7 |
---|---|---|---|---|---|---|
WA | 5.44 ± 0.05 aC | 5.52 ± 0.02 bcC | 5.60 ± 0.01 cC | 5.90 ± 0.06 bcAB | 5.81 ± 0.13 cdB | 6.10 ± 0.10 eA |
WG | 5.44 ± 0.05 aD | 5.60 ± 0.02 aCD | 5.71 ± 0.08 bcC | 6.10 ± 0.11 abB | 6.11 ± 0.15 bcdB | 6.38 ± 0.03 dA |
A2.5 | 5.44 ± 0.05 aC | 5.58 ± 0.01 aBC | 5.61 ± 0.09 bcBC | 5.89 ± 0.10 bcB | 6.43 ± 0.29 abA | 6.60 ± 0.08 bcA |
G2.5 | 5.44 ± 0.05 aD | 5.55 ± 0.01 abcCD | 5.76 ± 0.02 abcC | 6.22 ± 0.11 aB | 6.35 ± 0.21 abB | 6.75 ± 0.05 bA |
A5 | 5.44 ± 0.05 aD | 5.57 ± 0.01 abD | 5.97 ± 0.16 aC | 5.97 ± 0.04 abcC | 6.30 ± 0.07 abB | 6.62 ± 0.05 bcA |
G5 | 5.44 ± 0.05 aE | 5.51 ± 0.03 cE | 5.76 ± 0.05 abcD | 6.13 ± 0.10 abC | 6.59 ± 0.11 aB | 7.00 ± 0.07 aA |
C− | 5.44 ± 0.05 aD | 5.57 ± 0.02 abCD | 5.84 ± 0.11 abC | 6.22 ± 0.15 aB | 6.26 ± 0.16 abcAB | 6.54 ± 0.05 cdA |
C+ | 5.50 ± 0.03 aC | 5.57 ± 0.02 aC | 5.72 ± 0.01 bcB | 5.72 ± 0.03 cB | 5.79 ± 0.04 dB | 6.03 ± 0.07 eA |
Fatty Acid | Day 0 | Day 7 | |||||||
---|---|---|---|---|---|---|---|---|---|
(%) | C− | C− | WA | WG | A2.5 | G2.5 | A5 | G5 | C+ |
C12:0 | 0.07 ± 0.00 c | 0.07 ± 0.00 c | 0.15 ± 0.01 a | 0.09 ± 0.09 b | 0.07 ± 0.00 c | 0.06 ± 0.00 d | 0.07 ± 0.06 c | 0.07 ± 0.05 c | 0.07 ± 0.00 c |
C14:0 | 3.11 ± 0.01 f | 3.93 ± 0.05 b | 3.08 ± 0.00 g | 1.53 ± 0.04 h | 3.11 ± 0.02 f | 4.37 ± 0.00 a | 3.37 ± 0.01 d | 3.46 ± 0.00 c | 3.26 ± 0.05 e |
C15:0 | 0.49 ± 0.01 d | 0.50 ± 0.01 c | 0.47 ± 0.01 f | 0.48 ± 0.00 e | 0.47 ± 0.00 f | 0.66 ± 0.00 a | 0.51 ± 0.14 b | 0.50 ± 0.00 c | 0.50 ± 0.05 c |
C16:0 | 30.06 ± 0.01 f | 30.54 ± 0.06 b | 28.93 ± 0.00 h | 30.21 ± 0.02 d | 29.20 ± 0.02 g | 28.71 ± 0.01 i | 30.75 ± 0.02 a | 30.23 ± 0.00 c | 30.13 ± 0.06 e |
C17:0 | 1.37 ± 0.59 a | 1.30 ± 0.02 d | 1.36 ± 0.00 b | 1.30 ± 0.14 d | 1.31 ± 0.00 c | 1.30 ± 0.28 d | 1.30 ± 0.06 d | 1.26 ± 0.22 e | 1.31 ± 0.68 c |
C18:0 | 14.10 ± 0.02 a | 13.74 ± 0.18 c | 13.88 ± 0.01 b | 13.18 ± 0.16 g | 12.99 ± 0.04 i | 13.06 ± 0.00 h | 13.22 ± 0.00 f | 13.69 ± 0.22 d | 13.61 ± 0.18 e |
C20:0 | 0.08 ± 0.00 f | 0.09 ± 0.00 e | 0.23 ± 0.01 a | 0.18 ± 0.00 b | 0.12 ± 0.00 c | 0.07 ± 0.00 g | 0.10 ± 0.00 d | 0.07 ± 0.00 g | 0.06 ± 0.00 h |
C21:0 | 0.17 ± 0.00 c | 0.15 ± 0.00 e | 0.14 ± 0.00 f | 0.15 ± 0.00 e | 0.07 ± 0.02 g | 0.22 ± 0.00 a | 0.16 ± 0.00 d | 0.14 ± 0.01 f | 0.18 ± 0.00 b |
C22:0 | 0.11 ± 0.01 a | 0.04 ± 0.00 e | ND | ND | ND | 0.09 ± 0.07 b | 0.08 ± 0.00 c | 0.07 ± 0.00 f | 0.08 ± 0.00 c |
C14:1 | 0.79 ± 0.00 g | 0.87 ± 0.01 c | 0.75 ± 0.00 i | 0.84 ± 0.00 e | 0.81 ± 0.01 f | 0.76 ± 0.00 h | 0.92 ± 0.00 a | 0.89 ± 0.00 b | 0.85 ± 0.01 d |
C15:1 | 0.09 ± 0.03 b | 0.09 ± 0.00 b | 0.08 ± 0.01 c | 0.07 ± 0.00 d | 0.79 ± 0.07 a | 0.04 ± 0.00 e | 0.09 ± 0.02 b | 0.09 ± 0.00 b | 0.01 ± 0.07 f |
C16:1 | 3.39 ± 0.03 g | 3.81 ± 0.08 b | 3.24 ± 0.01 i | 3.75 ± 0.02 c | 3.51 ± 0.06 f | 3.26 ± 0.03 h | 3.82 ± 0.04 a | 3.54 ± 0.05 e | 3.60 ± 0.08 d |
C17:1 | 1.01 ± 0.03 a | 0.97 ± 0.08 d | 1.00 ± 0.01 b | 1.01 ± 0.06 a | 1.00 ± 0.06 b | 0.99 ± 0.04 c | 0.70 ± 0.05 f | 0.90 ± 0.00 e | 1.00 ± 0.08 b |
C18:1 trans | ND | 0.25 ± 0.03 f | 3.12 ± 0.01 c | 3.06 ± 0.03 d | 3.41 ± 0.03 b | 1.98 ± 0.03 e | 0.15 ± 0.03 g | 3.91 ± 0.03 a | ND |
C18:1 cis | 42.53 ± 1.29 b | 42.03 ± 2.50 e | 41.36 ± 0.01 g | 42.05 ± 2.50 d | 41.89 ± 0.62 f | 41.20 ± 0.83 h | 42.35 ± 0.19 c | 38.94 ± 0.52 i | 42.94 ± 2.50 a |
C20:1 | 0.07 ± 0.01 b | 0.06 ± 0.08 c | ND | ND | ND | 0.07 ± 0.02 b | 0.08 ± 0.00 a | 0.07 ± 0.00 b | 0.07 ± 0.08 b |
C20:3 | ND | 0.05 ± 0.08 d | 0.12 ± 0.01 b | 0.12 ± 0.07 b | 0.10 ± 0.06 c | ND | 0.13 ± 0.00 a | 0.03 ± 0.00 e | ND |
C18:2 cis | 2.03 ± 0.71 b | 1.63 ± 0.01 e | 1.60 ± 0.01 f | 1.65 ± 0.07 d | 1.65 ± 0.06 d | 2.33 ± 0.00 a | 1.72 ± 0.01 c | 1.59 ± 0.33 g | 1.72 ± 0.88 c |
C18:2 trans | 0.09 ± 0.02 c | 0.07 ± 0.08 d | 0.05 ± 0.01 f | 0.06 ± 0.06 e | 0.06 ± 0.03 e | 0.14 ± 0.00 a | 0.09 ± 0.01 c | 0.10 ± 0.00 b | 0.10 ± 0.00 b |
C18:3 ga | 0.08 ± 0.02 c | 0.06 ± 0.08 d | 0.23 ± 0.01 a | ND | 0.04 ± 0.00 f | 0.10 ± 0.01 b | 0.10 ± 0.01 b | 0.05 ± 0.00 e | 0.04 ± 0.00 f |
C18:3 alph | 0.24 ± 0.02 c | 0.24 ± 0.08 c | 0.22 ± 0.01 e | 0.23 ± 0.00 d | ND | 0.32 ± 0.01 a | 0.22 ± 0.01 e | 0.23 ± 0.02 d | 0.25 ± 0.00 b |
C20:2 n-6 | ND | ND | ND | ND | ND | ND | 0.01 ± 0.00 a | 0.01 ± 0.00 a | ND |
C20:5 n-3(EPA) | 0.11 ± 0.01 b | 0.04 ± 0.08 g | 0.18 ± 0.01 a | ND | 0.06 ± 0.00 e | 0.08 ± 0.41 d | 0.10 ± 0.01 c | 0.05 ± 0.00 f | 0.06 ± 0.00 e |
SFA | 49.57 b | 50.36 a | 48.39 f | 47.13 h | 47.35 g | 48.54 e | 49.56 b | 49.51 c | 49.22 d |
MUFA | 47.90 g | 48.13 f | 49.68 b | 50.91 a | 50.81 a | 48.50 cd | 48.25 ef | 48.38 de | 48.58 c |
PUFA | 2.53 b | 2.04 g | 2.28 c | 1.95 h | 1.77 i | 2.95 a | 2.18 e | 2.10 f | 2.19 d |
MUFA + PUFA/SFA | 1.01 | 1.00 | 1.07 | 1.12 | 1.11 | 1.06 | 1.02 | 1.02 | 1.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mus-León, I.; Muñoz-Núñez, M.; Villasante, J.; Codina-Torrella, I.; Almajano, M.P. Development and Characterization of Films Containing Sichuan Pepper Extract to Extend the Shelf Life of Refrigerated Beef Patties. Foods 2025, 14, 3335. https://doi.org/10.3390/foods14193335
Mus-León I, Muñoz-Núñez M, Villasante J, Codina-Torrella I, Almajano MP. Development and Characterization of Films Containing Sichuan Pepper Extract to Extend the Shelf Life of Refrigerated Beef Patties. Foods. 2025; 14(19):3335. https://doi.org/10.3390/foods14193335
Chicago/Turabian StyleMus-León, Inés, María Muñoz-Núñez, Juliana Villasante, Idoia Codina-Torrella, and María Pilar Almajano. 2025. "Development and Characterization of Films Containing Sichuan Pepper Extract to Extend the Shelf Life of Refrigerated Beef Patties" Foods 14, no. 19: 3335. https://doi.org/10.3390/foods14193335
APA StyleMus-León, I., Muñoz-Núñez, M., Villasante, J., Codina-Torrella, I., & Almajano, M. P. (2025). Development and Characterization of Films Containing Sichuan Pepper Extract to Extend the Shelf Life of Refrigerated Beef Patties. Foods, 14(19), 3335. https://doi.org/10.3390/foods14193335