Speculation on the Mechanism of Parkinson’s Disease Induced by Risk Residual Pesticides in Fresh Jujube and Hawthorn Through Network Toxicology and Molecular Docking Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Screening of Potentially Hazardous Pesticide Residues in Fresh Jujube and Hawthorn
2.2. Target Screening of Risk Pesticide Residues and Parkinson’s Disease
2.2.1. Target Prediction of Parkinson’s Disease
2.2.2. Target Prediction of Toxic Substances
2.2.3. Intersection Gene Analysis
2.3. Pathway Enrichment Analysis of Target
2.4. Molecular Docking
2.5. Molecular Dynamics Simulation
3. Results and Discussion
3.1. Risk Pesticide Residues in Hawthorn
Pesticide Name | Pesticide Type | MRL 1 (mg/kg) |
---|---|---|
phorate | insecticide | 0.01 |
deltamethrin | insecticide | 0.05 |
isofenphos-methyl | insecticide | 0.01 |
fenitrothion | insecticide | 0.50 |
Abamectin 2 | insecticide | 0.05 |
trichlorfon | insecticide | 0.30 |
fenvalerate | insecticide | 0.20 |
carbendazim | bactericide | 0.50 |
3.2. Identification of Toxic Targets and Biological Mechanisms Related to Parkinson’s Disease
3.3. GO Enrichment and KEGG Pathway Analysis
3.4. Construction of Enrichment Analysis Network Diagram and Drug-Disease Target Network Diagram
3.5. Screening Pesticide Targets Related to Parkinson’s Disease
3.6. Molecular Docking Analysis
3.7. Molecular Dynamics Simulation Reveals the Stability of the Complex
3.7.1. Stability Analysis of ACTB_Abamectin Complex
3.7.2. Stability Analysis of AKT1_Abamectin Complex
3.7.3. Stability Analysis of ALB_Abamectin Complex
3.7.4. Stability Analysis of TP53_Abametin Complex
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PD | Parkinson’s Disease |
UPLC-MS/MS | Ultra Performance Liquid Chromatography–Tandem Mass Spectrometry |
PPI | Protein–Protein Interaction |
GO | Gene Ontology |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
DS | Discovery Studio |
GAFF | Generalized Amber Force Field |
TIP3P | Transferable Intermolecular Potential |
EM | Energy Minimization |
PME | Particle Mesh Ewald |
MD | Molecular Dynamics |
References
- Kulcsarova, K.; Skorvanek, M.; Postuma, R.B.; Berg, D. Defining Parkinson’s Disease: Past and Future. J. Parkinsons Dis. 2024, 14, S257–S271. [Google Scholar] [CrossRef]
- Kalyanaraman, B.; Cheng, G.; Hardy, M. Gut microbiome, short-chain fatty acids, alpha-synuclein, neuroinflammation, and ROS/RNS: Relevance to Parkinson’s disease and therapeutic implications. Redox Biol. 2024, 71, 103092. [Google Scholar] [CrossRef]
- Beitz, J.M. Parkinson’s disease: A review. Front. Biosci. (Sch. Ed). 2014, 6, 65–74. [Google Scholar] [CrossRef]
- Bonifati, V.; De Michele, G.; Lücking, C.B.; Dürr, A.; Fabrizio, E.; Ambrosio, G.; Vanacore, N.; De Mari, M.; Marconi, R.; Capus, L.; et al. The parkin gene and its phenotype. Italian PD Genetics Study Group, French PD Genetics Study Group and the European Consortium on Genetic Susceptibility in Parkinson’s Disease. Neurol. Sci. 2001, 22, 51–52. [Google Scholar] [CrossRef]
- Westenberger, A.; Brüggemann, N.; Klein, C. Genetics of Parkinson’s Disease: From Causes to Treatment. Cold Spring Harb. Perspect. Med. 2025, 15, a041774. [Google Scholar] [CrossRef]
- Nott, A.; Holtman, I.R. Genetic insights into immune mechanisms of Alzheimer’s and Parkinson’s disease. Front. Immunol. 2023, 14, 1168539. [Google Scholar] [CrossRef] [PubMed]
- De Miranda, B.R.; Goldman, S.M.; Miller, G.W.; Greenamyre, J.T.; Dorsey, E.R. Preventing Parkinson’s Disease: An Environmental Agenda. J. Parkinsons Dis. 2022, 12, 45–68. [Google Scholar] [CrossRef] [PubMed]
- Dorsey, E.R.; Bloem, B.R. Parkinson’s Disease Is Predominantly an Environmental Disease. J. Parkinsons Dis. 2024, 14, 451–465. [Google Scholar] [CrossRef] [PubMed]
- Moradi Vastegani, S.; Nasrolahi, A.; Ghaderi, S.; Belali, R.; Rashno, M.; Farzaneh, M.; Khoshnam, S.E. Mitochondrial Dysfunction and Parkinson’s Disease: Pathogenesis and Therapeutic Strategies. Neurochem. Res. 2023, 48, 2285–2308. [Google Scholar] [CrossRef]
- Borsche, M.; Pereira, S.L.; Klein, C.; Grünewald, A. Mitochondria and Parkinson’s Disease: Clinical, Molecular, and Translational Aspects. J. Parkinsons Dis. 2021, 11, 45–60. [Google Scholar] [CrossRef]
- Dionísio, P.A.; Amaral, J.D.; Rodrigues, C.M.P. Oxidative stress and regulated cell death in Parkinson’s disease. Ageing Res. Rev. 2021, 67, 101263. [Google Scholar] [CrossRef]
- Trist, B.G.; Hare, D.J.; Double, K.L. Oxidative stress in the aging substantia nigra and the etiology of Parkinson’s disease. Aging Cell. 2019, 18, e13031. [Google Scholar] [CrossRef] [PubMed]
- Sampson, T.R.; Debelius, J.W.; Thron, T.; Janssen, S.; Shastri, G.G.; Ilhan, Z.E.; Challis, C.; Schretter, C.E.; Rocha, S.; Gradinaru, V.; et al. Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson’s Disease. Cell. 2016, 167, 1469–1480.e12. [Google Scholar] [CrossRef] [PubMed]
- Wallen, Z.D.; Demirkan, A.; Twa, G.; Cohen, G.; Dean, M.N.; Standaert, D.G.; Sampson, T.R.; Payami, H. Metagenomics of Parkinson’s disease implicates the gut microbiome in multiple disease mechanisms. Nat. Commun. 2022, 13, 6958. [Google Scholar] [CrossRef] [PubMed]
- Salim, S.; Ahmad, F.; Banu, A.; Mohammad, F. Gut microbiome and Parkinson’s disease: Perspective on pathogenesis and treatment. J. Adv. Res. 2023, 50, 83–105. [Google Scholar] [CrossRef]
- Isik, S.; Yeman Kiyak, B.; Akbayir, R.; Seyhali, R.; Arpaci, T. Microglia Mediated Neuroinflammation in Parkinson’s Disease. Cells 2023, 12, 1012. [Google Scholar] [CrossRef]
- Liu, T.W.; Chen, C.M.; Chang, K.H. Biomarker of Neuroinflammation in Parkinson’s Disease. Int. J. Mol. Sci. 2022, 23, 4148. [Google Scholar] [CrossRef]
- Zhang, W.; Xiao, D.; Mao, Q.; Xia, H. Role of neuroinflammation in neurodegeneration development. Signal Transduct. Target. Ther. 2023, 8, 267. [Google Scholar] [CrossRef]
- Yuan, X.; Tian, Y.; Liu, C.; Zhang, Z. Environmental factors in Parkinson’s disease: New insights into the molecular mechanisms. Toxicol. Lett. 2022, 356, 1–10. [Google Scholar] [CrossRef]
- Jankovic, J.; Tan, E.K. Parkinson’s disease: Etiopathogenesis and treatment. J. Neurol. Neurosurg. Psychiatry 2020, 91, 795–808. [Google Scholar] [CrossRef]
- Bellou, V.; Belbasis, L.; Tzoulaki, I.; Evangelou, E.; Ioannidis, J.P. Environmental risk factors and Parkinson’s disease: An umbrella review of meta-analyses. Park. Relat. Disord. 2016, 23, 1–9. [Google Scholar] [CrossRef]
- Afsheen, S.; Rehman, A.S.; Jamal, A.; Khan, N.; Parvez, S. Understanding role of pesticides in development of Parkinson’s disease: Insights from Drosophila and rodent models. Ageing Res. Rev. 2024, 98, 102340. [Google Scholar] [CrossRef] [PubMed]
- Mostafalou, S.; Abdollahi, M. Pesticides: An update of human exposure and toxicity. Arch. Toxicol. 2017, 91, 549–599. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Song, J.; Zhang, Q.; Yan, S.; Sun, X.; Yi, W.; Pan, R.; Cheng, J.; Xu, Z.; Su, H. Association between organophosphorus pesticide exposure and depression risk in adults: A cross-sectional study with NHANES data. Environ. Pollut. 2023, 316 Pt 1, 120445. [Google Scholar] [CrossRef]
- Narayan, S.; Liew, Z.; Paul, K.; Lee, P.C.; Sinsheimer, J.S.; Bronstein, J.M.; Ritz, B. Household organophosphorus pesticide use and Parkinson’s disease. Int. J. Epidemiol. 2013, 42, 1476–1485. [Google Scholar] [CrossRef]
- Mohammadi, H.; Ghassemi-Barghi, N.; Malakshah, O.; Ashari, S. Pyrethroid exposure and neurotoxicity: A mechanistic approach. Arh. Hig. Rada Toksikol. 2019, 70, 74–89. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, B. Bifenthrin Caused Parkinson’s-Like Symptoms Via Mitochondrial Autophagy and Ferroptosis Pathway Stereoselectively in Parkin-/- Mice and C57BL/6 Mice. Mol. Neurobiol. 2024, 61, 9694–9707. [Google Scholar] [CrossRef]
- Tong, T.; Duan, W.; Xu, Y.; Hong, H.; Xu, J.; Fu, G.; Wang, X.; Yang, L.; Deng, P.; Zhang, J.; et al. Paraquat exposure induces Parkinsonism by altering lipid profile and evoking neuroinflammation in the midbrain. Environ. Int. 2022, 169, 107512. [Google Scholar] [CrossRef]
- Cai, W.; Zhuang, H.; Wang, X.; Fu, X.; Chen, S.; Yao, L.; Sun, M.; Wang, H.; Yu, C.; Feng, T. Functional Nutrients and Jujube-Based Processed Products in Ziziphus jujuba. Molecules 2024, 29, 3437. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.Y.; Sun, X.L.; Yang, X.L.; Shi, P.L.; Xu, L.C.; Guo, Q.M. Botany, traditional uses, phytochemistry and pharmacological activity of Crataegus pinnatifida (Chinese hawthorn): A review. J. Pharm. Pharmacol. 2022, 74, 1507–1545. [Google Scholar] [CrossRef]
- Zhou, Z.; Nan, Y.; Li, X.; Ma, P.; Du, Y.; Chen, G.; Ning, N.; Huang, S.; Gu, Q.; Li, W.; et al. Hawthorn with “homology of medicine and food”: A review of anticancer effects and mechanisms. Front. Pharmacol. 2024, 15, 1384189. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wang, M.; Wang, Z.; Qiu, J.; Wang, Y.; Li, J.; Dong, F.; Huang, X.; Zhao, J.; Xu, T. Polysaccharides from hawthorn fruit alleviate high-fat diet-induced NAFLD in mice by improving gut microbiota dysbiosis and hepatic metabolic disorder. Phytomedicine 2025, 139, 156458. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chai, X.; Zhao, F.; Hou, G.; Meng, Q. Food Applications and Potential Health Benefits of Hawthorn. Foods 2022, 11, 2861. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Wang, T.; Zhu, H. Advancing Computational Toxicology by Interpretable Machine Learning. Environ. Sci. Technol. 2023, 57, 17690–17706. [Google Scholar] [CrossRef]
- Bueso-Bordils, J.I.; Antón-Fos, G.M.; Martín-Algarra, R.; Alemán-López, P.A. Overview of Computational Toxicology Methods Applied in Drug and Green Chemical Discovery. J. Xenobiot. 2024, 14, 1901–1918. [Google Scholar] [CrossRef]
- Del Giudice, G.; Serra, A.; Pavel, A.; Torres Maia, M.; Saarimäki, L.A.; Fratello, M.; Federico, A.; Alenius, H.; Fadeel, B.; Greco, D. A Network Toxicology Approach for Mechanistic Modelling of Nanomaterial Hazard and Adverse Outcomes. Adv. Sci. 2024, 11, e2400389. [Google Scholar] [CrossRef]
- Huang, S. Analysis of environmental pollutant Bisphenol F elicited prostate injury targets and underlying mechanisms through network toxicology, molecular docking, and multi-level bioinformatics data integration. Toxicology 2024, 506, 153847. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, J.; Fu, Q.; Zhao, H.; Wang, Z.; Gao, Y. Efficient evaluation of osteotoxicity and mechanisms of endocrine disrupting chemicals using network toxicology and molecular docking approaches: Triclosan as a model compound. Ecotoxicol. Environ. Saf. 2025, 293, 118030. [Google Scholar] [CrossRef]
- Yıldırım, İ.; Çiftçi, U. Monitoring of pesticide residues in peppers from Çanakkale (Turkey) public market using QuEChERS method and LC-MS/MS and GC-MS/MS detection. Environ. Monit. Assess. 2022, 194, 570. [Google Scholar] [CrossRef]
- Huang, S. Efficient analysis of toxicity and mechanisms of environmental pollutants with network toxicology and molecular docking strategy: Acetyl tributyl citrate as an example. Sci. Total Environ. 2023, 905, 167904. [Google Scholar] [CrossRef]
- Chen, P.; Li, Z.; Miao, G.; Tang, X.; Zhou, C.; Zhao, L.; Jin, X.; Qu, G.; Zheng, Y.; Jiang, G. Aryl Organophosphate Esters and Hemostatic Disruption: Identifying Risk through Machine Learning and Experimental Validation. Environ. Sci. Technol. 2025, 59, 10167–10181. [Google Scholar] [CrossRef]
- Song, Y.; Weng, W.; Wu, S. Investigating the Potential Effects of 6PPDQ on Prostate Cancer Through Network Toxicology and Molecular Docking. Toxics 2024, 12, 891. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Xu, Y.; Han, D.; Feng, F.; Wang, Z.; Gu, C.; Zhou, X.; Wu, Q. Potential mechanism underlying the effect of matrine on COVID-19 patients revealed through network pharmacological approaches and molecular docking analysis. Arch. Physiol. Biochem. 2023, 129, 253–260. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019, 10, 1523. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Chen, M.; Huang, X.; Zhang, G.; Zeng, L.; Zhang, G.; Wu, S.; Wang, Y. SRplot: A free online platform for data visualization and graphing. PLoS ONE 2023, 18, e0294236. [Google Scholar] [CrossRef]
- Khan, F.I.; Lai, D.; Anwer, R.; Azim, I.; Khan, M.K.A. Identifying novel sphingosine kinase 1 inhibitors as therapeutics against breast cancer. J. Enzyme Inhib. Med. Chem. 2020, 35, 172–186. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Zhu, Y.; Yu, Y.; Chen, Y.; He, K.; Liu, J. Sinomenine treats rheumatoid arthritis by inhibiting MMP9 and inflammatory cytokines expression: Bioinformatics analysis and experimental validation. Sci. Rep. 2024, 14, 12786. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, X.; Gan, J.; Chen, S.; Xiao, Z.X.; Cao, Y. CB-Dock2: Improved protein-ligand blind docking by integrating cavity detection, docking and homologous template fitting. Nucleic Acids Res. 2022, 50, W159–W164. [Google Scholar] [CrossRef]
- Pan, Y.; Li, Z.; Zhao, X.; Du, Y.; Zhang, L.; Lu, Y.; Yang, L.; Cao, Y.; Qiu, J.; Qian, Y. Screening of Active Substances Regulating Alzheimer’s Disease in Ginger and Visualization of the Effectiveness on 6-Gingerol Pathway Targets. Foods 2024, 13, 612. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
- Gaudreault, F.; Morency, L.P.; Najmanovich, R.J. NRGsuite: A PyMOL plugin to perform docking simulations in real time using FlexAID. Bioinformatics 2015, 31, 3856–3858. [Google Scholar] [CrossRef]
- Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005, 26, 1701–1718. [Google Scholar] [CrossRef]
- Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J.L.; Dror, R.O.; Shaw, D.E. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 2010, 78, 1950–1958. [Google Scholar] [CrossRef]
- Ozpinar, G.A.; Peukert, W.; Clark, T. An improved generalized AMBER force field (GAFF) for urea. J. Mol. Model. 2010, 16, 1427–1440. [Google Scholar] [CrossRef]
- Nayar, D.; Agarwal, M.; Chakravarty, C. Comparison of Tetrahedral Order, Liquid State Anomalies, and Hydration Behavior of mTIP3P and TIP4P Water Models. J. Chem. Theory Comput. 2011, 7, 3354–3367. [Google Scholar] [CrossRef]
- Donnelly, S.M.; Lopez, N.A.; Dodin, I.Y. Steepest-descent algorithm for simulating plasma-wave caustics via metaplectic geometrical optics. Phys. Rev. E 2021, 104, 025304. [Google Scholar] [CrossRef]
- Brüschweiler, R. Efficient RMSD measures for the comparison of two molecular ensembles. Root-mean-square deviation. Proteins 2003, 50, 26–34. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Liu, J.; Zhao, H.L.; Zhang, L.C.; Yu, R.L.; Kang, C.M. De novo design of dual-target JAK2, SMO inhibitors based on deep reinforcement learning, molecular docking and molecular dynamics simulations. Biochem. Biophys. Res. Commun. 2023, 638, 23–27. [Google Scholar] [CrossRef]
- Baskin, L.S. Electric conductance and pH measurements of isoionic salt-free bovine mercaptalbumin solutions. An evaluation of root-mean-square proton fluctuations. J. Phys. Chem. 1968, 72, 2958–2962. [Google Scholar] [CrossRef] [PubMed]
- MIu, L.; Bogatyreva, N.S.; Galzitskaia, O.V. Radius of gyration is indicator of compactness of protein structure. Mol. Biol. 2008, 42, 701–706. [Google Scholar]
- Davoudmanesh, S.; Mosaabadi, J.M. Investigation of the effect of homocysteinylation of substance P on its binding to the NK1 receptor using molecular dynamics simulation. J. Mol. Model. 2018, 24, 177. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Bie, S.; Li, J.; Yuan, L.; Zhou, L. Comparison on inhibitory effect and mechanism of inhibitors on sPPO and mPPO purified from ‘Lijiang snow’ peach by combining multispectroscopic analysis, molecular docking and molecular dynamics simulation. Food Chem. 2023, 400, 134048. [Google Scholar] [CrossRef]
- Nazar, A.; Abbas, G.; Azam, S.S. Deciphering the Inhibition Mechanism of under Trial Hsp90 Inhibitors and Their Analogues: A Comparative Molecular Dynamics Simulation. J. Chem. Inf. Model. 2020, 60, 3812–3830. [Google Scholar] [CrossRef]
- Dai, S.; Wang, H.; Lin, Z. ACTB Mutations Analysis and Genotype-Phenotype Correlation in Becker’s Nevus. Biomedicines 2021, 9, 1879. [Google Scholar] [CrossRef]
- Baumann, M.; Beaver, E.M.; Palomares-Bralo, M.; Santos-Simarro, F.; Holzer, P.; Povysil, G.; Müller, T.; Valovka, T.; Janecke, A.R. Further delineation of putative ACTB loss-of-function variants: A 4-patient series. Hum. Mutat. 2020, 41, 753–758. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.; Begum, N.; Rajan, S.; Tryphena, K.P.; Khatri, D.K. Role of F-actin-mediated endocytosis and exercise in mitochondrial transplantation in an experimental Parkinson’s disease mouse model. Mitochondrion 2024, 74, 101824. [Google Scholar] [CrossRef]
- Zhao, N.; Wang, J.; Huang, S.; Zhang, J.; Bao, J.; Ni, H.; Gao, X.; Zhang, C. The landscape of programmed cell death-related lncRNAs in Alzheimer’s disease and Parkinson’s disease. Apoptosis 2024, 29, 1584–1599. [Google Scholar] [CrossRef]
- Jiang, Y.; Wu, W.; Xie, L.; Zhou, Y.; Yang, K.; Wu, D.; Xu, W.; Fang, R.; Ge, J. Molecular targets and mechanisms of Sijunzi decoction in the treatment of Parkinson’s disease: Evidence from network pharmacology, molecular docking, molecular dynamics simulation, and experimental validation. Front. Pharmacol. 2024, 15, 1487474. [Google Scholar] [CrossRef]
- Liu, K.; An, J.; Zhang, J.; Zhao, J.; Sun, P.; He, Z. Network pharmacology combined with experimental validation show that apigenin as the active ingredient of Campsis grandiflora flower against Parkinson’s disease by inhibiting the PI3K/AKT/NF-κB pathway. PLoS ONE 2024, 19, e0311824. [Google Scholar] [CrossRef]
- Hällqvist, J.; Bartl, M.; Dakna, M.; Schade, S.; Garagnani, P.; Bacalini, M.; Pirazzini, C.; Bhatia, B.; Schreglmann, S.; Xylaki, M.; et al. Plasma proteomics identify biomarkers predicting Parkinson’s disease up to 7 years before symptom onset. Nat. Commun. 2024, 15, 4759. [Google Scholar] [CrossRef] [PubMed]
- Gan, Y.; Ma, L.; Zhang, Y.; You, J.; Guo, Y.; He, Y.; Wang, L.; He, X.; Li, Y.; Dong, Q.; et al. Large-scale proteomic analyses of incident Parkinson’s disease reveal new pathophysiological insights and potential biomarkers. Nat. Aging 2025, 5, 642–657. [Google Scholar] [CrossRef]
- Liu, F.; Ran, Q.; Li, Z.; Chen, J. The Red Blood Cell Distribution Width-to-Albumin Ratio’s Role in Parkinson’s Disease: A Cross-Sectional Study. J. Clin. Med. 2025, 14, 4908. [Google Scholar] [CrossRef]
- Luo, Q.; Sun, W.; Wang, Y.F.; Li, J.; Li, D.W. Association of p53 with Neurodegeneration in Parkinson’s Disease. Parkinsons Dis. 2022, 2022, 6600944. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.F.; Wang, Y.D.; Gao, S.; Sun, W. Implications of p53 in mitochondrial dysfunction and Parkinson’s disease. Int. J. Neurosci. 2024, 134, 906–917. [Google Scholar] [CrossRef] [PubMed]
- He, Z.Q.; Huan, P.F.; Wang, L.; He, J.C. Paeoniflorin ameliorates cognitive impairment in Parkinson’s disease via JNK/p53 signaling. Metab. Brain Dis. 2022, 37, 1057–1070. [Google Scholar] [CrossRef] [PubMed]
Protein | PDB ID | Vina Score (kcal/mol) | ||||
---|---|---|---|---|---|---|
Abamectin | Deltamethrin | Fenitrothion | Isofenphos-Methyl | Phorate | ||
ACTB | 6NBW | −8.1 | −7.0 | −6.1 | −6.4 | −3.9 |
AKT1 | 3O96 | −8.2 | −9.9 | −6.8 | −7.1 | −4.3 |
ALB | 1BM0 | −10.2 | −9.1 | −6.0 | −6.3 | −4.8 |
TP53 | 1TSR | −8.6 | −8.6 | −6.1 | −5.9 | 4.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, Y.; Liu, W.; Shi, W.; Lv, Y.; Yang, C.; Wang, Y.; Ding, C.; Hao, B. Speculation on the Mechanism of Parkinson’s Disease Induced by Risk Residual Pesticides in Fresh Jujube and Hawthorn Through Network Toxicology and Molecular Docking Analysis. Foods 2025, 14, 3324. https://doi.org/10.3390/foods14193324
Pan Y, Liu W, Shi W, Lv Y, Yang C, Wang Y, Ding C, Hao B. Speculation on the Mechanism of Parkinson’s Disease Induced by Risk Residual Pesticides in Fresh Jujube and Hawthorn Through Network Toxicology and Molecular Docking Analysis. Foods. 2025; 14(19):3324. https://doi.org/10.3390/foods14193324
Chicago/Turabian StylePan, Yecan, Wenkui Liu, Wenxin Shi, Ying Lv, Chen Yang, Yanjie Wang, Chao Ding, and Bianqing Hao. 2025. "Speculation on the Mechanism of Parkinson’s Disease Induced by Risk Residual Pesticides in Fresh Jujube and Hawthorn Through Network Toxicology and Molecular Docking Analysis" Foods 14, no. 19: 3324. https://doi.org/10.3390/foods14193324
APA StylePan, Y., Liu, W., Shi, W., Lv, Y., Yang, C., Wang, Y., Ding, C., & Hao, B. (2025). Speculation on the Mechanism of Parkinson’s Disease Induced by Risk Residual Pesticides in Fresh Jujube and Hawthorn Through Network Toxicology and Molecular Docking Analysis. Foods, 14(19), 3324. https://doi.org/10.3390/foods14193324