Rapid Screening of 20 Pesticide Residues in Tea by Thermal-Assisted Plasma Ionization–Time-of-Flight Mass Spectrometry
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Instruments and Equipment
2.3. Experimental Methods
2.3.1. Preparation of Standard Solutions
2.3.2. Extraction Method and Matrix Calibration Curves
2.3.3. Rapid Screening Mass Spectrometry and Output of Results
2.3.4. Operation Principle
3. Results
3.1. Establishment of a Rapid Screening Mass Spectrometry Database and Analysis Results
3.2. Methodology Validation
3.3. Sample Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fernandes, I.A.A.; Maciel, G.M.; Bortolini, D.G.; Pedro, A.C.; Rubio, F.T.V.; de Carvalho, K.Q.; Haminiuk, C.W.I. The bitter side of teas: Pesticide residues and their impact on human health. Food Chem. Toxicol. 2023, 179, 113955. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Wu, J.; Guo, Y.; Li, C. Pesticide application behavior in green tea cultivation and risk assessment of tea products: A case study of Rizhao green tea. Environ. Monit. Assess. 2024, 196, 656. [Google Scholar] [CrossRef]
- Saito-Shida, S.; Hamasaka, T.; Nemoto, S.; Akiyama, H. Multiresidue determination of pesticides in tea by liquid chromatography-high-resolution mass spectrometry: Comparison between Orbitrap and time-of-flight mass analyzers. Food Chem. 2018, 256, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Aty, A.M.; Choi, J.H.; Rahman, M.M.; Kim, S.W.; Tosun, A.; Shim, J.H. Residues and contaminants in tea and tea infusions: A review. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2014, 31, 1794–1804. [Google Scholar] [CrossRef]
- The Japan Food Chemical Research Foundation, Maximum Residue Limits (MRLs) List of Agricultural Chemicals in Foods. Available online: https://db.ffcr.or.jp/front (accessed on 25 December 2024).
- European Commission, EU Pesticides Database. Available online: https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/start/screen/mrls (accessed on 25 December 2024).
- GB 2763-2021; National Food Safety Standard—Maximum Residue Limits for Pesticides in Food. China Agriculture Press: Beijing, China, 2021. Available online: http://2763.foodvip.net/category/limit/342.html (accessed on 25 December 2024).
- Huang, T.; Tang, H.; Dong, X.; Liu, S.; Xu, W.; Wang, H.; Zong, Q. Determination of 23 Organophosphorus Pesticide Residues in Tea by QuEChERS Extraction with Multi-Walled Carbon Nanotubes (MWCNTs) Coupled to Gas Chromatography. Food Sci. 2018, 39, 315–321. [Google Scholar]
- Guo, D.; Yang, F.; Li, J.; Fu, H. Rapid screening of 350 pesticide residues in tea by gas chromatagraphy coupled with quadrupole time-of-flight mass spectrometry. Chin. J. Anal. Lab. 2019, 38, 1177–1188. [Google Scholar] [CrossRef]
- Jiang, J.; Li, P.; Xie, L.; Ding, X.; Li, Y.; Wang, X.; Wang, X.; Zhang, Q.; Guan, D. Rapid Screening and Simultaneous Confirmation of 64 Pesticide Residues in Vegetable Using Solid Phase Extraction-comprehensive Two-dimensional Gas Chromatography Coupled with Time-of-Flight Mass Spectrometer. Chin. J. Anal. Chem. 2011, 39, 72–76. [Google Scholar]
- Lu, C.; Liu, X.; Dong, F.; Xu, J.; Song, W.; Zhang, C.; Li, Y.; Zheng, Y. Simultaneous determination of pyrethrins residues in teas by ultra-performance liquid chromatography/tandem mass spectrometry. Anal. Chim. Acta. 2010, 678, 56–62. [Google Scholar] [CrossRef]
- Yu, L.; Song, W.; Lu, Y.; Zhao, M.; Zhou, F.; Hu, Y.; Zheng, P. Rapid determination of 204 pesticide residues in tea by ultra performance liquid chromatography coupled with quadrupole-time of flight mass spectrometry. Chin. J. Chromatogr. 2015, 33, 597–612. [Google Scholar] [CrossRef]
- Schurek, J.; Portolés, T.; Hajslova, J.; Riddellova, K.; Hernández, F. Application of head-space solid-phase microextraction coupled to comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry for the determination of multiple pesticide residues in tea samples. Anal. Chim. Acta. 2008, 611, 163–172. [Google Scholar] [CrossRef]
- Chen, T.; Zhu, R.; Zhang, W.; Li, J.; Qiu, G.; Wu, F.; Xu, Y.; Chen, M.; Qi, P. High-throughput screening and quantification of pesticides in Lilii Bulbus using ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Anal. Methods 2023, 15, 5466–5473. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Gong, W.; Lv, W.; Wang, Y.; Dong, W.; Lu, A. Target and suspect screening of pesticide residues in soil samples from peach orchards using liquid chromatography quadrupole time-of-flight mass spectrometry. Ecotoxicol. Environ. Saf. 2023, 253, 114664. [Google Scholar] [CrossRef] [PubMed]
- Cervera, M.I.; Portolés, T.; López, F.J.; Beltrán, J.; Hernández, F. Screening and quantification of pesticide residues in fruits and vegetables making use of gas chromatography-quadrupole time-of-flight mass spectrometry with atmospheric pressure chemical ionization. Anal. Bioanal. Chem. 2014, 406, 6843–6855. [Google Scholar] [CrossRef] [PubMed]
- Grimalt, S.; Sancho, J.V.; Pozo, O.J.; Hernández, F. Quantification, confirmation and screening capability of UHPLC coupled to triple quadrupole and hybrid quadrupole time-of-flight mass spectrometry in pesticide residue analysis. J. Mass Spectrom. 2010, 45, 421–436. [Google Scholar] [CrossRef]
- Sun, B.; Guo, D.; Ding, Z.; Ji, F.; Dong, J.; Yao, J. Rapid Determination of 188 Pesticide Residues in Vegetable by Liquid Chromatography-Ion Trap-Time of Flight Tandem Mass Spectrometry. Chin. J. Instrum. Ana. 2010, 29, 1017–1024. [Google Scholar]
- Zhang, J.; Luo, Y.; Gong, B.; Yue, Z.; Zhao, X.; Zhao, Q. Rapid Screening and Determination of 248 Pesticide Residues in Apples and Lettuces by Liquid Chromatography-Quadrupole Time-of-flight Mass Spectrometry. Chin. J. Instrum. Ana. 2018, 37, 154–164. [Google Scholar]
- Fuente, B.A.; Tian, L.; Liu, L.; Ares, A.M.; Bayen, S.; Bernal, J. Development and validation of a green and practical method for studying pesticides and related chemical compounds in bee pollen samples by UAE-LC-QTOF-MS. J. Food Compos. Anal. 2025, 145, 107765. [Google Scholar] [CrossRef]
- Liu, W.; Chen, Y.; Yin, X.; Liu, F.; Li, W.; Yu, J.; Jing, G.; Liu, W. A rapid and on-site detection of pesticide residue from fruit samples based on surface swab-electrospray ionization-ion mobility spectrometry. Microchem. J. 2022, 182, 107919. [Google Scholar] [CrossRef]
- Qiao, H.; Pan, S.; Cao, N. Research Progress on Rapid Detection of Pesticide Residues in Fruits and Vegetables. Chin. Fru. Vege. 2024, 44, 12–18. [Google Scholar] [CrossRef]
- Li, B.; Zhang, Z.; Kong, J.; Zhang, L.; Guo, C.; Li, C. Research Progress of Ambient Ionization Mass Spectrometry. J. Chin. Mass Spectrom. Soc. 2020, 41, 221–235. [Google Scholar]
- Ranveer, S.A.; Harshitha, C.G.; Dasriya, V.; Tehri, N.; Kumar, N.; Raghu, H.V. Assessment of developed paper strip based sensor with pesticide residues in different dairy environmental samples. Curr. Res. Food Sci. 2022, 6, 100416. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Cui, L.; Zhang, Y.; Zheng, J.; Ai, J. Establishment of a rapid detection method of colloidal gold immunochromatographic competition assay for organophosphorus pesticides. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 2024, 40, 428–434. [Google Scholar] [PubMed]
- Yin, J.; Yan, Y.; Zhang, K.; Fu, H.; Lu, M.; Zhu, H.; Wei, D.; Peng, J.; Lai, W. Novel Dual-Color Immunochromatographic Assay Based on Chrysanthemum-like Au@polydopamine and Colloidal Gold for Simultaneous Sensitive Detection of Paclobutrazol and Carbofuran in Fruits and Vegetables. Foods 2022, 11, 1564. [Google Scholar] [CrossRef]
- Beneito-Cambra, M.; Gilbert-López, B.; Moreno-González, D.; Bouza, M.; Franzke, J.; García-Reyes, J.F.; Molina-Díaz, A. Ambient (desorption/ionization) mass spectrometry methods for pesticide testing in food: A review. Anal. Methods 2020, 12, 4831–4852. [Google Scholar] [CrossRef]
- Li, J.; Liu, J.; Wan, Y.; Wang, J.; Pi, F. Routine analysis of pesticides in foodstuffs: Emerging ambient ionization mass spectrometry as an alternative strategy to be on your radar. Crit. Rev. Food Sci. Nutr. 2023, 63, 7341–7356. [Google Scholar] [CrossRef]
- Al-Amri, I.; Kadim, I.T.; AlKindi, A.; Hamaed, A.; Al-Magbali, R.; Khalaf, S.; Al-Hosni, K.; Mabood, F. Determination of residues of pesticides, anabolic steroids, antibiotics, and antibacterial compounds in meat products in Oman by liquid chromatography/mass spectrometry and enzyme-linked immunosorbent assay. Vet. World 2021, 14, 709–720. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, Y.; Zhu, G.; Tang, F. Enzyme-linked immunosorbent assay for the determination of five organophosphorus pesticides in camellia oil. J. Food Prot. 2014, 77, 1178–1183. [Google Scholar] [CrossRef]
- Wang, J.L.; Zhang, C.Y.; Li, X.; Wang, X.D.; Cao, M.; Asami, T.; Xiong, X.H.; Chen, J.S.; Lu, Y.C. “UV-Driven Self-Cleaning” Magnetic Molecularly Imprinted Absorbents Coupled with LTP-MS and LC-TQ-MS for Rapid High-Throughput Screening and Quantification of Organophosphorus Pesticides in Agro-products. J. Agric. Food Chem. 2023, 71, 7891–7903. [Google Scholar] [CrossRef]
- Bortolini, D.; Haminiuk, C.I.; Pedro, A.C.; Fernandes, I.d.A.A.; Maciel, G.M. Processing, chemical signature and food industry applications of Camellia sinensis teas: An overview. Food Chem. X 2021, 12, 100160. [Google Scholar] [CrossRef] [PubMed]
- Sheng, H.; Zhang, X.; Wang, X.; Zhong, Q.; Luo, F.; Cui, X.; Zhou, L.; Sun, H.; Yang, M.; Lou, Z.; et al. Applications of Time of Flight Mass Spectrometry in Analysis on Pesticide Residues in Fruits, Vegetables and Tea. Chin. J. Instrum. Ana. 2018, 37, 139–153. [Google Scholar] [CrossRef]
- Lv, Y.; Zhao, J.; Xue, H.; Ma, Q. Rapid On-Site Screening of Six Kinds of Pesticide Residues in Cosmetics Containing Plant Extracts by Fan-shaped Paper Spray Ionization and Miniature Mass Spectrometry. Chin. J. Anal. Chem. 2024, 52, 838–845. [Google Scholar] [CrossRef]
- Anastassiades, M.; Lehotay, S.J.; Stajnbaher, D.; Schenck, F.J. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [CrossRef]
- Diaz, R.; Ibanez, M.; Sancho, J.V.; Hernández, F. Target and non-target screening strategies for organic contaminants, residues and illicit substances in food, environmental and human biological samples by UHPLC-QTOF-MS. Anal. Methods-UK 2012, 4, 196–209. [Google Scholar] [CrossRef]
- Wang, Z. Research on Establishment of Pesticides High Resolution Mass Spectral Library and Its Application. Ph.D. Thesis, Yanshan University, Qinhuangdao, China, 2017. [Google Scholar]
- Pang, G.; Fan, C.; Chen, H.; Jin, L.; Chang, Q. Chromatography-Mass Spectrometry Collection of World Commonly Used Pesticides: Collection of Liquid Chromatography Coupled with Quadrupole Orbitrap Mass Spectrometry; Chemical Industry Press: Beijing, China, 2018; pp. 7–1180. [Google Scholar]
- Ministry of Agriculture and Rural Affairs of the People’s Republic of China. NY/T 788-2018; Agricultural Industry Standard of the People’s Republic of China: Guideline for the Testing of Pesticide Residues in Crops. China Agriculture Press: Beijing, China, 2018.
- Pelosi, P.; Gazza, L.; Beni, C.; Barbini, D.A.; Picardo, V.; Gambale, C.; Amendola, G. Processing factors of pesticide residues in durum wheat milling fractions and pasta. Food Chem. 2025, 477, 143622. [Google Scholar] [CrossRef] [PubMed]
- Gierer, F.; Vaughan, S.; Slater, M.; Elmore, J.S.; Girling, R.D. Residue dynamics of a contact and a systemic fungicide in pollen, nectar, and other plant matrices of courgette (Cucurbita pepo L.). Environ. Pollut. 2024, 342, 122931. [Google Scholar] [CrossRef]
- Hrynko, I.; Kaczyński, P.; Pietruszyńska, M.; Łozowicka, B. The effect of food thermal processes on the residue concentration of systemic and non-systemic pesticides in apples. Food Control. 2023, 143, 109267. [Google Scholar] [CrossRef]
- Gałuszka, A.; Migaszewski, Z.; Namieśnik, J. The 12 principles of green analytical chemistry and the significance mnemonic of green analytical practices. TrAC Trends Anal. Chem. 2013, 50, 78–84. [Google Scholar] [CrossRef]
- Meher, A.K.; Zarouri, A. Green Analytical Chemistry—Recent Innovations. Analytica 2025, 6, 10. [Google Scholar] [CrossRef]
Pesticides | Chemical Formula | Type | Family | CAS Number |
---|---|---|---|---|
Acetamiprid | C10H11ClN4 | Insecticide | pyridylmethylamine | 135410-20-7 |
Azoxystrobin | C22H17N3O5 | Fungicide | strobilurin | 131860-33-8 |
Bifenthrin | C23H22ClF3O2 | Acaricide, insecticide | pyrethroid | 82657-04-3 |
Carbendazim | C9H9N3O2 | Fungicide | benzimidazole | 10605-21-7 |
Chlorbenzuron | C14H10Cl2N2O2 | Insecticide | chitin synthesis inhibitor | 57160-47-1 |
Chlorpyrifos | C9H11Cl3NO3PS | Nematocide, acaricide, insecticide | organophosphorus | 2921-88-2 |
Cyromazine | C6H10N6 | Insecticide, acaricide | chitin synthesis inhibitor | 66215-27-8 |
Daminozide | C6H12N2O3 | plant growth regulator | plant growth regulator | 1596-84-5 |
Dimethomorph | C21H22ClNO4 | Fungicide | morpholine | 110488-70-5 |
Forchlorfenuron | C12H10ClN3O | Plant growth regulator | plant growth regulator | 68157-60-8 |
Metalaxyl | C15H21NO4 | Fungicide | anilide | 57837-19-1 |
Methomyl | C5H10N2O2S | Insecticide | carbamate | 16752-77-5 |
Pendimethalin | C13H19N3O4 | Herbicide | dinitroaniline | 40487-42-1 |
Phorat-sulfoxide | C7H17O3PS3 | Insecticide, miticide | organophosphorus | 2588-03-6 |
Phosmet | C11H12NO4PS2 | Insecticide | organothiophosphate | 732-11-6 |
Phosphamidon | C10H19ClNO5P | Insecticide, miticide | organophosphorus | 13171-21-6 |
Prochloraz | C15H16Cl3N3O2 | Fungicide | imidazole | 67747-09-5 |
Pyraclostrobin | C19H18ClN3O4 | Fungicide | carbamate | 175013-18-0 |
Triadimefon | C14H16ClN3O2 | Fungicide | conazole | 43121-43-3 |
Triazophos | C12H16N3O3PS | Nematocide, acaricide, insecticide | organophosphorus | 24017-47-8 |
Pesticide | Linear Range/ (mg/kg) | Matrix | Linear Equation | Correlation Coefficient (R2) | ME (%) | Screening Limit/ (mg/kg) | MRLs for China/ (mg/kg) |
---|---|---|---|---|---|---|---|
acetamiprid | 2~10 | solvent tea | y = 1871x + 131.2 y = 979.1x + 54.1 | 0.998 0.992 | - −47.7% | 2 | 10 |
azoxystrobin | 1~10 | solvent tea | y = 10,187x + 312.2 y = 6146.2x − 732.4 | 0.997 0.999 | - −39.7% | 1 | / |
bifenthrin | 5~50 | solvent tea | y = 675x − 261.4 y = 840x + 181.2 | 0.998 0.987 | - 28.9% | 5 | 5 |
carbendazim | 0.25~10 | solvent tea | y = 4138x + 258.3 y = 6287.8x + 301.2 | 0.997 0.995 | - 52.0% | 0.25 | 5 |
chlorbenzuron | 5~50 | solvent tea | y = 5891.4x + 456.4 y = 2174x + 25.6 | 0.995 0.983 | - −63.1% | 5 | / |
chlorpyrifos | 2~10 | solvent tea | y = 20,466x − 2015.2 y = 14,984x + 1388.6 | 0.997 0.989 | - −26.8% | 2 | 2 |
cyromazine | 0.5~10 | solvent tea | y = 29,657x + 55,174 y = 56,556x – 11,775 | 0.996 0.998 | - −86.2% | 0.5 | / |
daminozide | 1~10 | solvent tea | y = 779.5x + 248.2 y = 1040x + 226.5 | 0.998 0.983 | - 33.4% | 1 | / |
dimethomorph | 5~50 | solvent tea | y = 17,748.5x + 4056.5 y = 10,408x − 8144.5 | 0.995 0.996 | - −41.4% | 5 | / |
forchlorfenuron | 2.5~10 | solvent tea | y = 3517.5x − 643.2 y = 2423.1x − 1387.4 | 0.997 0.999 | - −31.1% | 2.5 | / |
metalaxyl | 0.1~10 | solvent tea | y = 9438x + 4137 y = 16,582x − 1345 | 0.999 0.999 | - 75.7% | 0.1 | / |
methomyl | 0.1~10 | solvent tea | y = 27,446x − 218 y = 35,271x − 358.5 | 0.999 0.999 | - 28.5% | 0.1 | 0.2 |
pendimethalin | 5~50 | solvent tea | y = 1478x + 541.5 y = 2593x + 355.1 | 0.995 0.985 | - 75.4% | 5 | / |
phorat-sulfoxide | 3~10 | solvent tea | y = 18,744x + 7761 y = 23,661x − 9532 | 0.999 0.999 | - 26.2% | 3 | / |
phosmet | 0.5~10 | solvent tea | y = 4329x + 276.5 y = 6381.6x − 86.1 | 0.998 0.995 | - 47.4% | 0.5 | / |
phosphamidon | 0.2~10 | solvent tea | y = 4831x + 633.4 y = 6500x + 418.5 | 0.997 0.992 | - 34.5% | 0.2 | / |
prochloraz | 2~10 | solvent tea | y = 5231.2x + 457.7 y = 2410.9x − 1573.8 | 0.999 0.995 | - −53.9% | 2 | / |
pyraclostrobin | 0.2~10 | solvent tea | y = 8792.4x + 7825.4 y = 14,356x + 18,405 | 0.998 0.991 | - 63.3% | 0.2 | 10 |
triadimefon | 0.5~10 | solvent tea | y = 28,755x + 4217.6 y = 51,418x − 8735.9 | 0.997 0.998 | - 78.8% | 0.5 | / |
triazophos | 0.1~10 | solvent tea | y = 112,691x + 4825.7 y = 84,897x + 8800 | 0.996 0.991 | - −24.7% | 0.1 | / |
Pesticide | Add Level (mg/kg) | Average Concentration Test (mg/kg) | RSD (%) | Average Recovery (%) |
---|---|---|---|---|
Acetamiprid | 2 | 1.85 | 13.1 | 92.5 |
5 | 4.5 | 7.5 | 90.0 | |
10 | 11.13 | 6.3 | 111.3 | |
Azoxystrobin | 1 | 0.78 | 4.7 | 78.0 |
5 | 3.53 | 5.2 | 70.6 | |
10 | 8.66 | 3.8 | 86.6 | |
Bifenthrin | 5 | 3.77 | 5.7 | 75.4 |
10 | 8.54 | 2.9 | 85.4 | |
50 | 44.73 | 7.1 | 89.5 | |
Carbendazim | 0.25 | 0.28 | 7.3 | 112.0 |
2.5 | 2.04 | 2.4 | 81.6 | |
10 | 9.76 | 9.2 | 97.6 | |
Chlorbenzuron | 5 | 5.58 | 2.5 | 111.6 |
10 | 10.65 | 4.6 | 106.5 | |
50 | 48.67 | 3.8 | 97.3 | |
Chlorpyrifos | 2 | 1.57 | 6.6 | 78.5 |
5 | 3.85 | 5.3 | 77.0 | |
10 | 8.04 | 7.4 | 80.4 | |
Cyromazine | 0.5 | 0.38 | 5.5 | 76.0 |
5 | 4.15 | 4.7 | 83.0 | |
10 | 7.96 | 6.4 | 79.6 | |
Daminozide | 1 | 0.76 | 7.1 | 76.0 |
5 | 5.22 | 3.4 | 104.4 | |
10 | 8.75 | 4.5 | 87.5 | |
Dimethomorph | 5 | 5.66 | 7.3 | 113.2 |
10 | 9.43 | 2.9 | 94.3 | |
50 | 52.11 | 5.8 | 104.2 | |
Forchlorfenuron | 2.5 | 2.46 | 4.1 | 98.4 |
5 | 3.99 | 8.2 | 79.8 | |
10 | 9.64 | 4.6 | 96.4 | |
Metalaxyl | 0.1 | 0.11 | 6.3 | 110.0 |
2.5 | 2.89 | 5.3 | 115.6 | |
10 | 8.77 | 7.2 | 87.7 | |
Methomyl | 0.1 | 0.081 | 5.1 | 81.0 |
5 | 5.85 | 4.2 | 117.0 | |
10 | 11.21 | 9.7 | 112.1 | |
Pendimethalin | 5 | 5.67 | 5.6 | 113.4 |
10 | 9.64 | 7.8 | 96.4 | |
50 | 47.58 | 4.8 | 95.2 | |
Phorat-sulfoxide | 3 | 2.56 | 8.4 | 85.3 |
5 | 4.63 | 6.7 | 92.6 | |
10 | 10.55 | 1.8 | 105.5 | |
Phosmet | 0.5 | 0.52 | 3.9 | 104.0 |
2 | 1.63 | 4.1 | 81.5 | |
10 | 8.69 | 1.7 | 86.9 | |
Phosphamidon | 0.2 | 0.18 | 2.3 | 90.0 |
1 | 0.87 | 3.6 | 87.0 | |
10 | 9.78 | 2.7 | 97.8 | |
Prochloraz | 2 | 1.59 | 2.5 | 79.5 |
5 | 3.85 | 5.1 | 77.0 | |
10 | 10.08 | 3.2 | 100.8 | |
Pyraclostrobin | 0.2 | 0.22 | 5.6 | 110.0 |
5 | 4.68 | 4.1 | 93.6 | |
10 | 8.09 | 4.9 | 80.9 | |
Triadimefon | 0.5 | 0.45 | 3.2 | 90.0 |
5 | 5.38 | 5.2 | 107.6 | |
10 | 10.44 | 7.1 | 104.4 | |
Triazophos | 0.1 | 0.076 | 3.5 | 76.0 |
5 | 5.27 | 4.1 | 105.4 | |
10 | 8.42 | 8.8 | 84.2 |
Sample | Detected Pesticides | Screening Concentration (mg/kg) | Full Quantitative Concentration (mg/kg) | Sample Detection Rate (%) |
---|---|---|---|---|
Sample 1 | pyraclostrobin | 0.197 | 0.203 | 66.7 |
Sample 2 | metalaxyl pyraclostrobin | 0.144 0.208 | 0.141 0.311 | |
Sample 3 | ND | ND | ND | |
Sample 4 | pyraclostrobin | 0.434 | 0.517 | |
Sample 5 | ND | ND | ND | |
Sample 6 | pyraclostrobin | 0.298 | 0.325 | |
Sample 7 | ND | ND | ND | |
Sample 8 | pyraclostrobin | 0.536 | 0.642 | |
Sample 9 | pyraclostrobin | 0.855 | 0.919 | |
Sample 10 | ND | ND | ND | |
Sample 11 | pyraclostrobin | 0.375 | 0.418 | |
Sample 12 | ND | ND | ND | |
Sample 13 | pyraclostrobin | 0.553 | 0.483 | |
Sample 14 | pyraclostrobin | 0.691 | 0.577 | |
Sample 15 | metalaxyl | 0.176 | 0.180 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, J.; Zhang, W.; Zhu, C.; Zhang, W.; Yan, M.; Du, H.; Qin, H.; Li, H. Rapid Screening of 20 Pesticide Residues in Tea by Thermal-Assisted Plasma Ionization–Time-of-Flight Mass Spectrometry. Foods 2025, 14, 3310. https://doi.org/10.3390/foods14193310
Mao J, Zhang W, Zhu C, Zhang W, Yan M, Du H, Qin H, Li H. Rapid Screening of 20 Pesticide Residues in Tea by Thermal-Assisted Plasma Ionization–Time-of-Flight Mass Spectrometry. Foods. 2025; 14(19):3310. https://doi.org/10.3390/foods14193310
Chicago/Turabian StyleMao, Jiangsheng, Weiqing Zhang, Chao Zhu, Wenjun Zhang, Mengmeng Yan, Hongxia Du, Hongwei Qin, and Hui Li. 2025. "Rapid Screening of 20 Pesticide Residues in Tea by Thermal-Assisted Plasma Ionization–Time-of-Flight Mass Spectrometry" Foods 14, no. 19: 3310. https://doi.org/10.3390/foods14193310
APA StyleMao, J., Zhang, W., Zhu, C., Zhang, W., Yan, M., Du, H., Qin, H., & Li, H. (2025). Rapid Screening of 20 Pesticide Residues in Tea by Thermal-Assisted Plasma Ionization–Time-of-Flight Mass Spectrometry. Foods, 14(19), 3310. https://doi.org/10.3390/foods14193310