Influencing Factors and Regulatory Mechanisms of Fresh Tea Leaf Quality: A Review
Abstract
1. Introduction
2. The Impact of Genetic Factors on Fresh Tea Leaf Quality and the Underlying Metabolic Mechanisms
2.1. The Impact of Genetic Factors on Polyphenols in Fresh Tea Leaves and the Underlying Metabolic Mechanisms
2.2. The Impact of Genetic Factors on Leaf Color in Fresh Tea Leaves and the Underlying Metabolic Mechanisms
2.3. The Impact of Genetic Factors on Aroma in Fresh Tea Leaves and the Underlying Metabolic Mechanisms
2.4. The Impact of Genetic Factors on Caffeine in Fresh Tea Leaves and the Underlying Metabolic Mechanisms
2.5. The Impact of Genetic Factors on L-Theanine in Fresh Tea Leaves and the Underlying Metabolic Mechanisms
3. Influence of Environmental Factors on the Quality of Fresh Tea Leaves
3.1. Influence of the Subsurface Ecological Environment of Tea Plantations on the Quality of Fresh Tea Leaves
3.1.1. Soil Characteristics
3.1.2. Soil Microorganisms
3.2. Influence of Climatic Conditions on the Quality of Fresh Leaves
3.2.1. Temperature
3.2.2. Light
3.2.3. Moisture
3.2.4. Altitude
3.2.5. Season and Developmental Stage
4. Influence of Management Measures on the Quality of Fresh Tea Leaves
4.1. Cultivation Pattern
4.2. Fertilization
4.3. Pruning
5. Genetic, Environmental, and Management Factors Interact with Each Other
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PAL | Phenylalanine ammonia-lyase |
C4H | Cinnamate 4-hydroxylase |
4CL | 4-coumarate-CoA ligase |
CHS | Chalcone synthase |
CHI | Chalcone Isomerase |
F3′5′H | Flavonoid-3′5′-hydroxylase |
F3′H | Flavonoid 3′-hydroxylase |
F3H | Flavonoid 3-hydroxylase |
FLS | Flavonol synthase |
DFR | Dihydroflavonol-4-reductase |
ANS | Anthocyanin synthase |
UFGT | Flavonoid-3-Oglucosyltransferase |
ANR | Anthocyanidin reductase |
LAR | Leucoanthocyanidin Reductase |
UGGT | Galloyl-1-O-β-d-glucosyltransferase |
ECGT | (epicatechin:1-O-galloyl-β-D-glucose-O-galloyltransferase |
CsFAOMT1 | 3″-O methyltransferase |
CsFAOMT2 | 4″-O methyltransferase |
GluRS | Glutamine tRNA synthetase |
HEMA | Glutamyl-tRNA reductase |
HEML | Glutamate-1-Semialdehyde 2,1-Aminotransferase |
HEMB | 5-Aminolevulinic Acid Dehydratase |
HEMC | Porphobilinogen deaminase |
HEMD | Uroporphyrinogen III Synthase |
HEME | Uroporphyrinogen decarboxylase |
HEMF | Coproporphyrinogen-III oxidase |
HEMG | Protoporphyrinogen oxidase |
CHLH/I/D | Magnesium Chelatase H/I/D Subunit |
CHLM | Magnesium protoporphyrin IX methyltransferase |
DVR | Divinyl reductase |
POR | Protochlorophyllide Oxidoreductase |
CAO | Chlorophyllide a oxygenase |
CHLG | Chlorophyll Synthase |
CLH | Chlorophyll synthetase |
NOL | Chlorophyll b reductase |
SGR | Mg-Dechelatase |
AADC | Aromatic Amino Acid Decarboxylase |
PAAS | Phenylacetal-dehyde synthase |
PAR | Phenylacetaldehyde reductase |
AAAT | Aromatic amino acidaminotransferase |
PAL | Phenylalanineammonia-lyase |
PPAR | Phenylpyruvic acid reductase |
CsAlaDC | Alanine decarboxylase |
GS/GOGAT | Glutamine synthetase |
GDH | Glutamate dehydrogenase |
TS | Theanine synthase |
ThYD | Theanine hydrolase |
LOX | Lipoxygenases |
HPL | Hydroperoxide lyase |
ADH | Alcohol dehydrogenase |
AOS | Acryloyl-coenzyme A synthase |
AOC | Aldehyde oxidase cyclase |
OPR | 12-Oxo-phytodienoate reductase |
JMT | Jasmonic acid carboxyl methyltransferase |
CCD | Carotenoid cleavage dioxygenase |
GES | Geraniol synthase |
SLIS | (S)-Linalool synthase |
RLIS | (R)-Linalool synthase |
AMPD | Adenosine monophosphate deaminase |
IMPDH | Inosine monophosphate deaminase |
5′-Nase | 5′-Nucleotidase |
7-NMT/MXMT | 7-Methylxanthine methyltransferase |
N-MeNase | N-Methyl nucleosidase |
TS | Theobromine synthase |
TCS | Theacrine synthase |
SCPL | Serine carboxypeptidase-like proteins |
MYB | Myeloblastosis |
bHLH | basic helix-loop-helix |
VPBs | Volatile phenylpropanoid/benzenoids |
VFADs | Volatile fatty acid decompositions |
VTs | Volatile terpenes |
COMT | Caffeic acid O-methyltransferase |
CCoCOMT | Caffeoyl-CoA O-methyltransferaseevm |
CAD | Alcoholdehydrogenase |
PPDC | Phenylpyruvate decarboxylase |
DHQ/SDH | 3-dehydroquinic acid/succinate dehydrogenase |
AspAT | Aspartate aminotransferase |
PAT | Phosphinothricin acetyhransferase |
AAPs | Amino acid permease |
AIDA | Alanine decarboxylase |
PKSB | Polyketidesynthases B |
SHMT | Serine hydroxymethyltransferase |
TCA | Citrate cycle |
iPAMP | N-6-iso-pentenyladenosine-5′-monophosphate |
HPLC | High Performance Liquid Chromatography |
LC-MS | Liquid Chromatography-Mass Spectrometry |
GC-MS | Gas Chromatography-Mass Spectrometry |
qPCR | Quantitative Real-time Polymerase Chain Reaction |
PCR-RFLP | Polymerase Chain Reaction-Restriction Fragment Length Polymorphism |
qRT-PCR | Quantitative Real-time Reverse Transcription Polymerase Chain Reaction |
SMRT | Single-molecule real-time |
DNBSEQ | DNA Nanoball Sequencing |
RT-PCR | Reverse Transcription Polymerase Chain Reaction |
UPLC-MS/MS | Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry |
UHPLC-Orbitrap-MS/MS | Ultra-High Performance Liquid Chromatography Combined with Orbitrap Mass Spectrometry |
RP-HPLC | Reversed Phase High Performance Liquid Chromatography |
References
- Wang, Z.; Ahmad, W.; Zhu, A.; Zhao, S.; Ouyang, Q.; Chen, Q. Recent advances review in tea waste: High-value applications, processing technology, and value-added products. Sci. Total Environ. 2024, 946, 174225. [Google Scholar] [CrossRef]
- Zhou, Y.; He, Y.; Zhu, Z. Understanding of formation and change of chiral aroma compounds from tea leaf to tea cup provides essential information for tea quality improvement. Food Res. Int. 2023, 167, 112703. [Google Scholar] [CrossRef]
- Hu, J.; Feng, X.; Song, H.; Hao, Z.; Ma, S.; Hu, H.; Yang, Y.; Zhou, S.; Pan, Y.; Fan, F.; et al. Enzymatic reactions throughout cultivation, processing, storage and post-processing: Progressive sculpture of tea quality. Trends Food Sci. Technol. 2023, 143, 104294. [Google Scholar] [CrossRef]
- Chen, Y.; Han, Y.; Tong, H. Amino acids and flavonoids analysis reveals quality constituents difference among different albino tea resources. Food Chem. 2024, 449, 139200. [Google Scholar] [CrossRef]
- Mei, X.; Lin, C.; Wan, S.; Chen, B.; Wu, H.; Zhang, L. A Comparative Metabolomic Analysis Reveals Difference Manufacture Suitability in “Yinghong 9” and “Huangyu” Teas (Camellia sinensis). Front. Plant Sci. 2021, 12, 767724. [Google Scholar] [CrossRef]
- Gorelick, J.; Bernstein, N. Elicitation: An underutilized tool in the development of medicinal plants as a source of therapeutic secondary metabolites. Adv. Agron. 2014, 124, 201–230. [Google Scholar]
- Li, J.; Xiao, Y.; Zhou, X.; Liao, Y.; Wu, S.; Chen, J.; Qian, J.; Yan, Y.; Tang, J.; Zeng, L. Characterizing the cultivar-specific mechanisms underlying the accumulation of quality-related metabolites in specific Chinese tea (Camellia sinensis) germplasms to diversify tea products. Food Res. Int. 2022, 161, 111824. [Google Scholar] [CrossRef]
- Tang, H.; Zhang, M.; Liu, J.; Cai, J. Metabolomic and Transcriptomic Analyses Reveal the Characteristics of Tea Flavonoids and Caffeine Accumulation and Regulation between Chinese Varieties (Camellia sinensis var. sinensis) and Assam Varieties (C. sinensis var. assamica). Genes 2022, 13, 1994. [Google Scholar] [CrossRef]
- Feng, W.; Zhou, H.; Xiong, Z.; Sheng, C.; Xia, D.; Zhang, J.; Li, T.; Wei, Y.; Deng, W.-W.; Ning, J. Exploring the effect of different tea varieties on the quality of Lu’an Guapian tea based on metabolomics and molecular sensory science. Food Chem. X 2024, 23, 101534. [Google Scholar] [CrossRef]
- Wang, M.; Yang, J.; Li, J.; Zhou, X.; Xiao, Y.; Liao, Y.; Tang, J.; Dong, F.; Zeng, L. Effects of temperature and light on quality-related metabolites in tea [Camellia sinensis (L.) Kuntze] leaves. Food Res. Int. 2022, 161, 111882. [Google Scholar] [CrossRef]
- Xin, W.; Zhang, J.; Yu, Y.; Tian, Y.; Li, H.; Chen, X.; Li, W.; Liu, Y.; Lu, T.; He, B.; et al. Root microbiota of tea plants regulate nitrogen homeostasis and theanine synthesis to influence tea quality. Curr. Biol. 2024, 34, 868–880.e6. [Google Scholar] [CrossRef]
- Zhang, X.; Li, L.; He, Y.; Lang, Z.; Zhao, Y.; Tao, H.; Li, Q.; Hong, G. The CsHSFA-CsJAZ6 module-mediated high temperature regulates flavonoid metabolism in Camellia sinensis. Plant Cell Environ. 2023, 46, 2401–2418. [Google Scholar] [CrossRef]
- Huang, Z.; Cui, C.; Cao, Y.; Dai, J.; Cheng, X.; Hua, S.; Wang, W.; Duan, Y.; Petropoulos, E.; Wang, H.; et al. Tea plant-legume intercropping simultaneously improves soil fertility and tea quality by changing bacillus species composition. Hortic. Res. 2022, 9, uhac046. [Google Scholar] [CrossRef]
- Jin, J.-Q.; Ma, J.-Q.; Ma, C.-L.; Yao, M.-Z.; Chen, L. Determination of Catechin Content in Representative Chinese Tea Germplasms. J. Agric. Food Chem. 2014, 62, 9436–9441. [Google Scholar] [CrossRef]
- Jin, Q.; Wang, Z.; Sandhu, D.; Chen, L.; Shao, C.; Shang, F.; Xie, S.; Huang, F.; Chen, Z.; Zhang, X.; et al. mRNA-miRNA analyses reveal the involvement of CsbHLH1 and miR1446a in the regulation of caffeine biosynthesis in Camellia sinensis. Hortic. Res. 2023, 11, uhad282. [Google Scholar] [CrossRef]
- Yu, Y.; Liang, Z.; Zhang, L.; Zhao, Y.; Chen, Q.; Yang, R. Research progress on unique tea plant germplasm resources in Fujian. Acta Tea Sin. 2023, 64, 1–12. [Google Scholar] [CrossRef]
- Shang, W.; Duan, Z.; Deng, S.; Sun, C.; Yang, Y.; Li, J.; Xia, R.; Liu, B. Specificity evaluation of local tea plant germplasm resources in Yunnan. Chin. Agric. Sci. Bull. 2022, 38, 76–81. [Google Scholar]
- Chen, T.; Ge, Z.; Yang, X.; Wang, X.; Zuo, H.; Liao, Y.; Chen, Z.; Zhang, Z.; Chen, M.; Zhao, J.; et al. Characterization of a new Camellia plant resource with low caffeine and high theobromine for production of a novel natural low-caffeine tea. Food Chem. X 2024, 23, 101586. [Google Scholar] [CrossRef]
- Zhang, S.; Jin, J.; Chen, J.; Ercisli, S.; Chen, L. Purine alkaloids in tea plants: Component, biosynthetic mechanism and genetic variation. Beverage Plant Res. 2022, 2, 13. [Google Scholar] [CrossRef]
- Wang, Z.; Yue, C.; Peng, H.; Jiang, X.; Yang, P. Research progress on screening of tea plant resources with specific chemical component contents. Newsl. Seric. Tea 2018, 19, 27–29+37. [Google Scholar]
- Luo, Y.; Yu, S.; Li, J.; Li, Q.; Wang, K.; Huang, J.; Liu, Z. Molecular Characterization of WRKY Transcription Factors That Act as Negative Regulators of O-Methylated Catechin Biosynthesis in Tea Plants (Camellia sinensis L.). J. Agric. Food Chem. 2018, 66, 11234–11243. [Google Scholar] [CrossRef]
- Lv, H.-P.; Yang, T.; Ma, C.-Y.; Wang, C.-P.; Shi, J.; Zhang, Y.; Peng, Q.-H.; Tan, J.-F.; Guo, L.; Lin, Z. Analysis of naturally occurring 3″-Methyl-epigallocatechin gallate in 71 major tea cultivars grown in China and its processing characteristics. J. Funct. Foods 2014, 7, 727–736. [Google Scholar] [CrossRef]
- Qiu, X. Current status of tea plant variety registration and main characteristics of high-quality germplasm resources in China. J. Zhejiang Agric. Sci. 2024, 65, 1215–1223. [Google Scholar] [CrossRef]
- Kaundun, S.; Matsumoto, S. Development of CAPS markers based on three key genes of the phenylpropanoid pathway in tea, Camellia sinensis (L.) O. Kuntze, and differentiation between assamica and sinensis varieties. Theor. Appl. Genet. 2003, 106, 375–383. [Google Scholar] [CrossRef]
- Kumar, V.; Nadda, G.; Kumar, S.; Yadav, S.K. Transgenic Tobacco Overexpressing Tea cDNA Encoding Dihydroflavonol 4-Reductase and Anthocyanidin Reductase Induces Early Flowering and Provides Biotic Stress Tolerance. PLoS ONE 2013, 8, e65535. [Google Scholar] [CrossRef]
- Jiao, T.; Huang, Y.; Wu, Y.-L.; Jiang, T.; Li, T.; Liu, Y.; Liu, Y.; Han, Y.; Liu, Y.; Jiang, X.; et al. Functional diversity of subgroup 5 R2R3-MYBs promoting proanthocyanidins biosynthesis and their key residues and motifs in tea plant. Hortic. Res. 2023, 10, uhad135. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Y.; Qiu, H.; Guo, Y.; Wan, H.; Zhang, X.; Scossa, F.; Alseekh, S.; Zhang, Q.; Wang, P.; et al. Genome assembly of wild tea tree DASZ reveals pedigree and selection history of tea varieties. Nat. Commun. 2020, 11, 3719. [Google Scholar] [CrossRef]
- Zhao, L.-Q.; Shan, C.-M.; Shan, T.-Y.; Li, Q.-L.; Ma, K.-L.; Deng, W.-W.; Wu, J.-W. Comparative Transcriptomic Analysis Reveals the Regulatory Mechanisms of Catechins Synthesis in Different Cultivars of Camellia sinensis. Food Res. Int. 2022, 157, 111375. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, R.; Liu, S.; Shu, C.; Sun, B.; Zheng, P. Expression analysis and preliminary functional characterization of the R2R3-MYB transcription factor CsTT2 in tea plant (Camellia sinensis). J. Tea Sci. 2022, 42, 463–476. [Google Scholar] [CrossRef]
- Singh, K.; Kumar, S.; Rani, A.; Gulati, A.; Ahuja, P.S. Phenylalanine ammonia-lyase (PAL) and cinnamate 4-hydroxylase (C4H) and catechins (flavan-3-ols) accumulation in tea. Funct. Integr. Genom. 2008, 9, 125–134. [Google Scholar] [CrossRef]
- Dai, X.; Zhuang, J.; Wu, Y.; Wang, P.; Zhao, G.; Liu, Y.; Jiang, X.; Gao, L.; Xia, T. Identification of a Flavonoid Glucosyltransferase Involved in 7-OH Site Glycosylation in Tea plants (Camellia sinensis). Sci. Rep. 2017, 7, 5926. [Google Scholar] [CrossRef]
- Yao, S.; Liu, Y.; Zhuang, J.; Zhao, Y.; Dai, X.; Jiang, C.; Wang, Z.; Jiang, X.; Zhang, S.; Qian, Y.; et al. Insights into acylation mechanisms: Co-expression of serine carboxypeptidase-like acyltransferases and their non-catalytic companion paralogs. Plant J. 2022, 111, 117–133. [Google Scholar] [CrossRef]
- Jiang, X.; Liu, Y.; Li, W.; Zhao, L.; Meng, F.; Wang, Y.; Tan, H.; Yang, H.; Wei, C.; Wan, X.; et al. Tissue-specific, development-dependent phenolic compounds accumulation profile and gene expression pattern in tea plant [Camellia sinensis]. PLoS ONE 2013, 8, e62315. [Google Scholar] [CrossRef]
- Li, P.; Fu, J.; Xu, Y.; Shen, Y.; Zhang, Y.; Ye, Z.; Tong, W.; Zeng, X.; Yang, J.; Tang, D.; et al. CsMYB1 integrates the regulation of trichome development and catechins biosynthesis in tea plant domestication. New Phytol. 2022, 234, 902–917. [Google Scholar] [CrossRef]
- Dai, X.; Liu, Y.; Zhuang, J.; Yao, S.; Liu, L.; Jiang, X.; Zhou, K.; Wang, Y.; Xie, D.; Bennetzen, J.L.; et al. Discovery and characterization of tannase genes in plants: Roles in hydrolysis of tannins. New Phytol. 2020, 226, 1104–1116. [Google Scholar] [CrossRef]
- Xie, H.; Zhu, J.; Wang, H.; Zhang, L.; Tong, X.; Huang, F.; Zhang, C.; Mi, X.; Qiao, D.; Li, F.; et al. An Enhancer Transposable Element from the Genome of Purple Leaf Tea Variety Reveals a Genetic Mechanism Turning Leaves from Evergreen to Purple Color. Plant Commun. 2024, 6, 101176. [Google Scholar] [CrossRef]
- Yang, J.; Guo, R.; Yang, Y.; Luo, Y.; Wei, G.; Bian, L.; Xu, J. Integrative analysis of the transcriptome, targeted metabolome, and anatomical observation provides insights into the brassinosteroids-mediated seasonal variation of cambial activity in Chinese fir. Ind. Crops Prod. 2024, 222, 119977. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, J.-Q.; Zhang, R.; He, M.; Wang, L.; Mao, Z.; Gan, M.; Wu, L.; Chen, L.; Wang, L.; et al. Association analysis of BSA-seq, BSR-seq, and RNA-seq reveals key genes involved in purple leaf formation in a tea population (Camellia sinensis). Hortic. Res. 2024, 11, uhae191. [Google Scholar] [CrossRef]
- Zhang, K.; Lin, C.; Chen, B.; Lin, Y.; Su, H.; Du, Y.; Zhang, H.; Zhou, H.; Ji, R.; Zhang, L. A light responsive transcription factor CsbHLH89 positively regulates anthocyanidin synthesis in tea (Camellia sinensis). Sci. Hortic. 2023, 327, 112784. [Google Scholar] [CrossRef]
- Shi, J.; Simal-Gandara, J.; Mei, J.; Ma, W.; Peng, Q.; Shi, Y.; Xu, Q.; Lin, Z.; Lv, H. Insight into the pigmented anthocyanins and the major potential co-pigmented flavonoids in purple-coloured leaf teas. Food Chem. 2021, 363, 130278. [Google Scholar] [CrossRef]
- Li, M.; Shen, Y.; Ling, T.; Ho, C.-T.; Li, D.; Guo, H.; Xie, Z. Analysis of Differentiated Chemical Components between Zijuan Purple Tea and Yunkang Green Tea by UHPLC–Orbitrap–MS/MS Combined with Chemometrics. Foods 2021, 10, 1070. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Zou, Z.; Zhang, X.; Zhou, L.; Wang, Y.; Fang, W.; Zhu, X. Metabolic analyses reveal different mechanisms of leaf color change in two purple-leaf tea plant (Camellia sinensis L.) cultivars. Hortic. Res. 2018, 5, 7. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, W.; Zhan, X.; Zhang, M.; Xiao, Y.; Hou, X.; Gao, M.; Xiao, B.; Gao, Y. CsCHLI plays an important role in chlorophyll biosynthesis of tea plant (Camellia sinensis). Beverage Plant Res. 2023, 4, e004. [Google Scholar] [CrossRef]
- Li, C.-Y.; Hu, S.-Y.; Yang, W.-T.; Yang, H.-Z.; Zhang, W.-W.; Ye, J.-H.; Zheng, X.-Q.; Liang, Y.-R.; Dong, Z.-B.; Lu, J.-L. Conversion obstacle from Mg-protoporphyrin IX to protochlorophyllide might be responsible for chlorophyll-deficient phenotype of the Huangjinya’s albino offspring. Plant Physiol. Biochem. 2024, 212, 108778. [Google Scholar] [CrossRef]
- Fu, X.; Cheng, S.; Liao, Y.; Xu, X.; Wang, X.; Hao, X.; Xu, P.; Dong, F.; Yang, Z. Characterization of l-Theanine Hydrolase in Vitro and Subcellular Distribution of Its Specific Product Ethylamine in Tea (Camellia sinensis). J. Agric. Food Chem. 2020, 68, 10842–10851. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wen, B.; Zhang, Y.; Li, Y.; Yu, C.; Peng, Z.; Wang, K.; Liu, Z.; Huang, J.-a.; Xiong, L.; et al. Transcriptomic and biochemical analysis reveal differential regulatory mechanisms of photosynthetic pigment and characteristic secondary metabolites between high amino acids green-leaf and albino tea cultivars. Sci. Hortic. 2021, 295, 110823. [Google Scholar] [CrossRef]
- Dong, F.; Zeng, L.; Yu, Z.; Li, J.; Tang, J.; Su, X.; Yang, Z. Differential Accumulation of Aroma Compounds in Normal Green and Albino-Induced Yellow Tea (Camellia sinensis) Leaves. Molecules 2018, 23, 2677. [Google Scholar] [CrossRef]
- Gao, T.; Hou, B.-H.; Shao, S.-X.; Xu, M.-T.; Zheng, Y.-C.; Jin, S.; Wang, P.-J.; Ye, N.-X. Differential metabolites and their transcriptional regulation in seven major tea cultivars (Camellia sinensis) in China. J. Integr. Agric. 2023, 22, 3346–3363. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, P.; Chen, X.; Sun, Y.; Yue, C.; Ye, N. Transcriptome and Metabolite Profiling Reveal Novel Insights into Volatile Heterosis in the Tea Plant (Camellia sinensis). Molecules 2019, 24, 3380. [Google Scholar] [CrossRef]
- Ashihara, H.; Sano, H.; Crozier, A. Caffeine and related purine alkaloids: Biosynthesis, catabolism, function and genetic engineering. Phytochemistry 2008, 69, 841–856. [Google Scholar] [CrossRef]
- Jin, J.-Q.; Yao, M.-Z.; Ma, C.-L.; Ma, J.-Q.; Chen, L. Natural allelic variations of TCS1 play a crucial role in caffeine biosynthesis of tea plant and its related species. Plant Physiol. Biochem. 2016, 100, 18–26. [Google Scholar] [CrossRef]
- Li, P.; Ye, Z.; Fu, J.; Xu, Y.; Shen, Y.; Zhang, Y.; Tang, D.; Li, P.; Zuo, H.; Tong, W.; et al. CsMYB184 regulates caffeine biosynthesis in tea plants. Plant Biotechnol. J. 2022, 20, 1012–1014. [Google Scholar] [CrossRef]
- Yao, X.; Chen, H.; Ai, A.; Wang, F.; Lian, S.; Tang, H.; Jiang, Y.; Jiao, Y.; He, Y.; Li, T.; et al. The transcription factor CsS40 negatively regulates TCS1 expression and caffeine biosynthesis in connection to leaf senescence in Camellia sinensis. Hortic. Res. 2023, 10, uhad162. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Yang, Z. Understanding different regulatory mechanisms of proteinaceous and non-proteinaceous amino acid formation in tea (Camellia sinensis) provides new insights into the safe and effective alteration of tea flavor and function. Crit. Rev. Food Sci. Nutr. 2019, 60, 844–858. [Google Scholar] [CrossRef]
- Liu, Z.-W.; Wu, Z.-J.; Li, H.; Wang, Y.-X.; Zhuang, J. L-Theanine Content and Related Gene Expression: Novel Insights into Theanine Biosynthesis and Hydrolysis among Different Tea Plant (Camellia sinensis L.) Tissues and Cultivars. Front. Plant Sci. 2017, 8, 498. [Google Scholar] [CrossRef] [PubMed]
- Yao, W.; Huang, X.; Xie, N.; Yan, H.; Li, J.; Wang, K. Acetylation participation in theanine biosynthesis: Insights from transcriptomics, proteomics, and acetylomics. Plant Physiol. Biochem. 2024, 216, 109134. [Google Scholar] [CrossRef]
- Zhu, B.; Guo, J.; Dong, C.; Li, F.; Qiao, S.; Lin, S.; Yang, T.; Wu, Y.; Bao, S.; Lucas, W.J.; et al. CsAlaDC and CsTSI work coordinately to determine theanine biosynthesis in tea plants (Camellia sinensis L.) and confer high levels of theanine accumulation in a non-tea plant. Plant Biotechnol. J. 2021, 19, 2395–2397. [Google Scholar] [CrossRef]
- Xie, N.; Zhang, C.; Zhou, P.; Gao, X.; Wang, M.; Tian, S.; Lu, C.; Wang, K.; Shen, C. Transcriptomic analyses reveal variegation-induced metabolic changes leading to high L-theanine levels in albino sectors of variegated tea (Camellia sinensis). Plant Physiol. Biochem. 2021, 169, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Lv, C.; Zou, Z.; Duan, Y.; Zhou, J.; Zhu, X.; Ma, Y.; Zhang, Z.; Fang, W. CsAAP7.2 is involved in the uptake of amino acids from soil and the long-distance transport of theanine in tea plants (Camellia sinensis L.). Tree Physiol. 2022, 42, 2369–2381. [Google Scholar] [CrossRef]
- Lin, S.; Chen, Z.; Chen, T.; Deng, W.; Wan, X.; Zhang, Z. Theanine metabolism and transport in tea plants (Camellia sinensis L.): Advances and perspectives. Crit. Rev. Biotechnol. 2022, 43, 327–341. [Google Scholar] [CrossRef]
- Chang, M.; Sun, Y.; Fang, K.; Fu, M.; Ma, J.; Gao, Y.; Chen, Q.; Liu, L.; Zhang, Z.; Wan, X.; et al. CsMYB73 negatively regulates theanine accumulation mediated by CsGGT2 and CsGGT4 in tea shoots (Camellia sinensis). Hortic. Res. 2024, 11, uhae012. [Google Scholar] [CrossRef] [PubMed]
- Chao, S.; Avia, S.; Aaron, F.; Nirit, B. Nitrogen deficiency stimulates cannabinoid biosynthesis in medical cannabis plants by inducing a metabolic shift towards production of low-N metabolites. Ind. Crops Prod. 2023, 202, 116969. [Google Scholar]
- Negri, S.; Commisso, M.; Pandolfini, T.; Avesani, L.; Guzzo, F. Temperature and solar irradiation effects on secondary metabolism during ripening of field-grown everbearing strawberries. Plant Physiol. Biochem. PPB 2024, 215, 109081. [Google Scholar] [CrossRef]
- Huang, H.; Yao, Q.; Xia, E.; Gao, L. Metabolomics and Transcriptomics Analyses Reveal Nitrogen Influences on the Accumulation of Flavonoids and Amino Acids in Young Shoots of Tea Plant (Camellia sinensis L.) Associated with Tea Flavor. J. Agric. Food Chem. 2018, 66, 9828–9838. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cheng, X.; Yang, T.; Su, Y.; Lin, S.; Zhang, S.; Zhang, Z. Nitrogen-Regulated Theanine and Flavonoid Biosynthesis in Tea Plant Roots: Protein-Level Regulation Revealed by Multiomics Analyses. J. Agric. Food Chem. 2021, 69, 10002–10016. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, F.; Wu, Z.; Jiang, F.; Yu, W.; Yang, J.; Chen, J.; Jian, G.; You, Z.; Zeng, L. Effects of Long-Term Nitrogen Fertilization on the Formation of Metabolites Related to Tea Quality in Subtropical China. Metabolites 2021, 11, 146. [Google Scholar] [CrossRef]
- Li, L.; Zhang, X.; Li, D.; Su, H.; He, Y.; Xu, Z.; Zhao, Y.; Hong, Y.; Li, Q.; Xu, P.; et al. CsPHRs-CsJAZ3 incorporates phosphate signaling and jasmonate pathway to regulate catechin biosynthesis in Camellia sinensis. Hortic. Res. 2024, 11, uhae178. [Google Scholar] [CrossRef]
- Huang, W.; Lin, M.; Liao, J.; Li, A.; Tsewang, W.; Chen, X.; Sun, B.; Liu, S.; Zheng, P. Effects of Potassium Deficiency on the Growth of Tea (Camelia sinensis) and Strategies for Optimizing Potassium Levels in Soil: A Critical Review. Horticulturae 2022, 8, 660. [Google Scholar] [CrossRef]
- Su, H.; Zhang, X.; He, Y.; Li, L.; Wang, Y.; Hong, G.; Xu, P. Transcriptomic Analysis Reveals the Molecular Adaptation of Three Major Secondary Metabolic Pathways to Multiple Macronutrient Starvation in Tea (Camellia sinensis). Genes 2020, 11, 241. [Google Scholar] [CrossRef]
- Zhou, Z.; Chang, N.; Lv, Y.; Jiang, H.; Yao, C.; Wan, X.; Li, Y.; Zhang, X. K-solubilizing bacteria (Bacillus) promote theanine synthesis in tea roots (Camellia sinensis) by activating CsTSI activity. Tree Physiol. 2022, 42, 1613–1627. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Luo, S.; Ye, X.; Wen, W. Research advances in aluminum tolerance and accumulation in tea plant (Camellia sinensis). Beverage Plant Res. 2023, 3, 18. [Google Scholar] [CrossRef]
- Yang, J.; Liu, C.; Li, J.; Zhang, Y.; Zhu, C.; Gu, D.; Zeng, L. Critical review of fluoride in tea plants (Camellia sinensis): Absorption, transportation, tolerance mechanisms, and defluorination measures. Beverage Plant Res. 2024, 4, e019. [Google Scholar] [CrossRef]
- Shen, J.; Zhang, X.; Hu, J. Dynamic effects of excess calcium on quality components of tea shoots and root growth. Hubei Agric. Sci. 2014, 53, 4108–4111+4138. [Google Scholar] [CrossRef]
- Ruan, J.; Gerendás, J.; Härdter, R.; Sattelmacher, B. Effect of root zone pH and form and concentration of nitrogen on accumulation of quality-related components in green tea. J. Sci. Food Agric. 2007, 87, 1505–1516. [Google Scholar] [CrossRef]
- Li, Q.; Yuan, W.; Deng, X.; Chen, Y.; Li, L.; Chen, L.; Che, R.; Huang, W.; Wu, Y.; Wang, C.; et al. High lead-tolerant mutant Bacillus tropicus AT31-1 from rhizosphere soil of Pu-erh and its remediation mechanism. Bioresour. Technol. 2024, 416, 131751. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Cui, S.; Wu, L.; Qi, W.; Chen, J.; Ye, Z.; Ma, J.; Liu, D. Effects of Bio-organic Fertilizer on Soil Fertility, Yield, and Quality of Tea. J. Soil Sci. Plant Nutr. 2023, 23, 5109–5121. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, R.; Peng, W.; Yang, Y.; Ma, X.; Zhang, W.; Ji, A.; Liu, L.; Liu, P.; Yan, L.; et al. Tea Plants With Gray Blight Have Altered Root Exudates That Recruit a Beneficial Rhizosphere Microbiome to Prime Immunity Against Aboveground Pathogen Infection. Front. Microbiol. 2021, 12, 774438. [Google Scholar] [CrossRef]
- Bhattacharyya, C.; Bakshi, U.; Mallick, I.; Mukherji, S.; Bera, B.; Ghosh, A. Genome-Guided Insights into the Plant Growth Promotion Capabilities of the Physiologically Versatile Bacillus aryabhattai Strain AB211. Front. Microbiol. 2017, 8, 411. [Google Scholar] [CrossRef]
- Zhao, X.; Li, P.; Zuo, H.; Peng, A.; Lin, J.; Li, P.; Wang, K.; Tang, Q.; Tadege, M.; Liu, Z.; et al. CsMYBL2 homologs modulate the light and temperature stress-regulated anthocyanin and catechins biosynthesis in tea plants (Camellia sinensis). Plant J. 2023, 115, 1051–1070. [Google Scholar] [CrossRef]
- Liu, Z.-W.; Li, H.; Wang, W.-L.; Wu, Z.-J.; Cui, X.; Zhuang, J. CsGOGAT Is Important in Dynamic Changes of Theanine Content in Postharvest Tea Plant Leaves under Different Temperature and Shading Spreadings. J. Agric. Food Chem. 2017, 65, 9693–9702. [Google Scholar] [CrossRef]
- Zeng, L.; Tan, H.; Liao, Y.; Jian, G.; Kang, M.; Dong, F.; Watanabe, N.; Yang, Z. Increasing Temperature Changes Flux into Multiple Biosynthetic Pathways for 2-Phenylethanol in Model Systems of Tea (Camellia sinensis) and Other Plants. J. Agric. Food Chem. 2019, 67, 10145–10154. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, H.; Liu, L.; Xia, X.; Yan, X.; Mi, X.; Liu, S.; Wei, C. JA-mediated MYC2/LOX/AOS feedback loop regulates osmotic stress response in tea plant. Hortic. Plant J. 2023, 10, 931–946. [Google Scholar] [CrossRef]
- Tan, X.; Li, H.; Zhang, Z.; Yang, Y.; Jin, Z.; Chen, W.; Tang, D.; Wei, C.; Tang, Q. Characterization of the Difference between Day and Night Temperatures on the Growth, Photosynthesis, and Metabolite Accumulation of Tea Seedlings. Int. J. Mol. Sci. 2023, 24, 6718. [Google Scholar] [CrossRef]
- Chen, L.; Guo, H.; Chen, H.; Zhang, G.; Liao, L.; Zhou, W.; Zhang, M.; Yi, Z. Effects of diurnal temperature difference on volatile and non-volatile quality components and related physiological indices of fresh tea leaves. Chin. J. Trop. Crops 2024, 45, 793–803. [Google Scholar]
- Li, H. Effects of diurnal temperature variation on tea plant growth and tea quality. China Tea 2023, 45, 54–58+64. [Google Scholar]
- Zhao, X.; Zeng, X.; Lin, N.; Yu, S.; Fernie, A.R.; Zhao, J. CsbZIP1-CsMYB12 mediates the production of bitter-tasting flavonols in tea plants (Camellia sinensis) through a coordinated activator–repressor network. Hortic. Res. 2021, 8, 110. [Google Scholar] [CrossRef]
- Shirin, A.; Zhang, Y.; Mao, P.; Lei, Y.; Bai, P.; Wang, Y.; Ruan, L.; Xun, H.; Wu, L.; Cheng, H.; et al. Responses of secondary metabolites and transcriptomes in the tea cultivar ‘Zhong Ming 6’ (Camellia sinensis) to blue light and red light. Plant Growth Regul. 2022, 98, 343–358. [Google Scholar] [CrossRef]
- Ma, Q.; Song, L.; Niu, Z.; Li, J.; Wang, Y.; Sun, H.; Ren, Z.; Zhao, H.; Guo, S.; Ding, Z. Red Light Regulates the Metabolite Biosynthesis in the Leaves of “Huangjinya” Through Amino Acid and Phenylpropanoid Metabolisms. Front. Plant Sci. 2022, 12, 810888. [Google Scholar] [CrossRef]
- Lin, N.; Liu, X.; Zhu, W.; Cheng, X.; Wang, X.; Wan, X.; Liu, L. Ambient Ultraviolet B Signal Modulates Tea Flavor Characteristics via Shifting a Metabolic Flux in Flavonoid Biosynthesis. J. Agric. Food Chem. 2021, 69, 3401–3414. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Chen, Y.; Mei, X.; Katsuno, T.; Kobayashi, E.; Dong, F.; Watanabe, N.; Yang, Z. Regulation of formation of volatile compounds of tea (Camellia sinensis) leaves by single light wavelength. Sci. Rep. 2015, 5, 16858. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; He, C.; Yu, X.; Zhou, J.; Ntezimana, B.; Yu, Z.; Chen, Y.; Ni, D. Study on improving aroma quality of summer-autumn black tea by red-light irradiation during withering. LWT 2022, 154, 112597. [Google Scholar] [CrossRef]
- Wang, W.; Xin, H.; Wang, M.; Ma, Q.; Wang, L.; Kaleri, N.A.; Wang, Y.; Li, X. Transcriptomic Analysis Reveals the Molecular Mechanisms of Drought-Stress-Induced Decreases in Camellia sinensis Leaf Quality. Front. Plant Sci. 2016, 7, 385. [Google Scholar] [CrossRef] [PubMed]
- Zhidong, L.; Chenyu, Z.; Chenyu, S.; Baogui, L.; Enshuo, L.; Danni, Y.; Yuebing, Z.; Chengwen, S. Research progress on the response of tea catechins to drought stress. J. Sci. Food Agric. 2021, 101, 5305–5313. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Liu, J.; Zhou, Y.; Zhou, S.; Zhang, S.; Tong, H.; Zhao, A. Transcriptome and metabolome profiling unveiled mechanisms of tea (Camellia sinensis) quality improvement by moderate drought on pre-harvest shoots. Phytochemistry 2020, 180, 112515. [Google Scholar] [CrossRef]
- Liu, X.; Dong, F.; Li, Y.; Lu, F.; Wang, B.; Zhou, T.; Zhao, D.; Huang, M.; Wang, F. Impact of Mild Field Drought on the Aroma Profile and Metabolic Pathways of Fresh Tea (Camellia sinensis) Leaves Using HS-GC-IMS and HS-SPME-GC-MS. Foods 2024, 13, 3412. [Google Scholar] [CrossRef] [PubMed]
- Shao, C.; Peng, X.; Li, Y.; Chen, Z.; Li, X.; Xu, R.; Qiu, S.; Luo, Y.; Liu, J.; Huang, J.; et al. Synergistic effects of pre-harvest drought and shade on flavor and aroma enhancement in fermented tea: Insights into JA/ABA signaling and metabolic regulation. Food Chem. 2025, 491, 145252. [Google Scholar]
- Wang, J.; Hu, Y.; Guo, D.; Gao, T.; Liu, T.; Jin, J.; Zhao, M.; Yu, K.; Tong, W.; Ge, H.; et al. Evolution and functional divergence of glycosyltransferase genes shaped the quality and cold tolerance of tea plants. Plant Cell 2024, 37, koae268. [Google Scholar] [CrossRef]
- Wen, B.; Ren, S.; Zhang, Y.; Duan, Y.; Shen, J.; Zhu, X.; Wang, Y.; Ma, Y.; Zou, Z.; Fang, W. Effects of geographic locations and topographical factors on secondary metabolites distribution in green tea at a regional scale. Food Control 2020, 110, 106979. [Google Scholar] [CrossRef]
- Ran, W.; Li, Q.; Hu, X.; Zhang, D.; Yu, Z.; Chen, Y.; Wang, M.; Ni, D. Comprehensive analysis of environmental factors on the quality of tea (Camellia sinensis var. sinensis) fresh leaves. Sci. Hortic. 2023, 319, 112177. [Google Scholar] [CrossRef]
- Kfoury, N.; Morimoto, J.; Kern, A.; Scott, E.R.; Orians, C.M.; Ahmed, S.; Griffin, T.; Cash, S.B.; Stepp, J.R.; Xue, D.; et al. Striking changes in tea metabolites due to elevational effects. Food Chem. 2018, 264, 334–341. [Google Scholar] [CrossRef]
- Gong, A.; Lian, S.; Wu, N.; Zhou, Y.; Zhao, S.; Zhang, L.; Cheng, L.; Yuan, H. Integrated transcriptomics and metabolomics analysis of catechins, caffeine and theanine biosynthesis in tea plant (Camellia sinensis) over the course of seasons. BMC Plant Biol. 2020, 20, 294. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, P.; Zheng, P.; Chen, J.; Sun, B.; Liu, S. Transcriptomic Insights into the Enhanced Aroma of Guangdong Oolong Dry Tea ( Camellia sinensis cv. Yashixiang Dancong) in Winter. Foods 2024, 13, 160. [Google Scholar] [CrossRef]
- She, G.; Yu, S.; Li, Z.; Peng, A.; Li, P.; Li, Y.; Chang, M.; Liu, L.; Chen, Q.; Shi, C.; et al. Characterization of CsTSI in the Biosynthesis of Theanine in Tea Plants (Camellia sinensis). J. Agric. Food Chem. 2022, 70, 826–836. [Google Scholar] [CrossRef]
- Ying, Y.; Xiaobing, K.; Ruoshi, G.; Xuefei, C.; Zhen, Z.; Huiling, M.; Jianjie, L.; Anburaj, J.; Kuberan, T.; Rajiv, P.; et al. Glutamine Synthetases Play a Vital Role in High Accumulation of Theanine in Tender Shoots of Albino Tea Germplasm “Huabai 1”. J. Agric. Food Chem. 2021, 69, 13904–13915. [Google Scholar] [CrossRef]
- Cheng, S.; Fu, X.; Wang, X.; Liao, Y.; Zeng, L.; Dong, F.; Yang, Z. Studies on the Biochemical Formation Pathway of the Amino Acid l-Theanine in Tea (Camellia sinensis) and Other Plants. J. Agric. Food Chem. 2017, 65, 7210–7216. [Google Scholar] [CrossRef]
- Cui, L.; Yao, S.; Dai, X.; Yin, Q.; Liu, Y.; Jiang, X.; Wu, Y.; Qian, Y.; Pang, Y.; Gao, L.; et al. Identification of UDP-glycosyltransferases involved in the biosynthesis of astringent taste compounds in tea (Camellia sinensis). J. Exp. Bot. 2016, 67, 2285–2297. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Chawla, V.; Sharma, E.; Mahajan, P.; Shankar, R.; Yadav, S.K. Comparative transcriptome analysis of chinary, assamica and cambod tea (Camellia sinensis) types during development and seasonal variation using RNA-seq technology. Sci. Rep. 2016, 6, 37244. [Google Scholar] [CrossRef]
- Lei, X.; Wang, T.; Yang, B.; Duan, Y.; Zhou, L.; Zou, Z.; Ma, Y.; Zhu, X.; Fang, W. Progress and perspective on intercropping patterns in tea plantations. Beverage Plant Res. 2022, 2, 18. [Google Scholar] [CrossRef]
- Gao, Y.; Lei, Z.; Huang, J.; Sun, Y.; Liu, S.; Yao, L.; Liu, J.; Liu, W.; Liu, Y.; Chen, Y. Characterization of Key Odorants in Lushan Yunwu Tea in Response to Intercropping with Flowering Cherry. Foods 2024, 13, 1252. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Dao, M.; Yang, Z.; Bai, Y.; Qin, Y.; Wu, T. CsAFS2 Gene from the Tea Plant Intercropped with Chinese Chestnut Plays an Important Role in Insect Resistance and Cold Resistance. Forests 2024, 15, 380. [Google Scholar] [CrossRef]
- Wang, H.; Yuan, W.; Huang, W.; Wang, Q.; Wu, T.; Wang, C.; Liu, W.; Zhang, S.; Wang, B. Walnut-tea intercropping model: Variations in secondary metabolites and microbial interactions in tea under metabolomics perspective. Ind. Crops Prod. 2025, 227, 120774. [Google Scholar] [CrossRef]
- Wei, K.; Liu, M.; Shi, Y.; Zhang, H.; Ruan, J.; Zhang, Q.; Cao, M. Metabolomics Reveal That the High Application of Phosphorus and Potassium in Tea Plantation Inhibited Amino-Acid Accumulation but Promoted Metabolism of Flavonoid. Agronomy 2022, 12, 1086. [Google Scholar] [CrossRef]
- Tang, S.; Zhou, J.; Pan, W.; Sun, T.; Liu, M.; Tang, R.; Li, Z.; Ma, Q.; Wu, L. Effects of combined application of nitrogen, phosphorus, and potassium fertilizers on tea (Camellia sinensis) growth and fungal community. Appl. Soil Ecol. 2022, 181, 104661. [Google Scholar] [CrossRef]
- Raza, A.; Chen, C.; Luo, L.; Asghar, M.A.; Liu, L.; Shoaib, N.; Yin, C. Combined application of organic and chemical fertilizers improved the catechins and flavonoids biosynthesis involved in tea quality. Sci. Hortic. 2024, 337, 113518. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, Y.; Wang, Y.; Zou, J.; Lin, S.; Chen, M.; Miao, P.; Jia, X.; Cheng, P.; Pang, X.; et al. Transcriptomic Analysis of the Effect of Pruning on Growth, Quality, and Yield of Wuyi Rock Tea. Plants 2023, 12, 3625. [Google Scholar] [CrossRef]
- Ye, J.; Zhang, Q.; Shi, L.; Wang, Y.; Li, M.; Chen, Y.; Zhang, M.; Chen, J.; Chen, M.; Jia, X.; et al. Joint analysis of transcriptome and hormone metabolome on the mechanism of pruning effect on tea tree (Camellia sinensis) growth. Ind. Crops Prod. 2024, 218, 118929. [Google Scholar] [CrossRef]
- Arkorful, E.; Yu, Y.; Chen, C.; Lu, L.; Hu, S.; Yu, H.; Ma, Q.; Thangaraj, K.; Periakaruppan, R.; Jeyaraj, A.; et al. Untargeted metabolomic analysis using UPLC-MS/MS identifies metabolites involved in shoot growth and development in pruned tea plants (Camellia sinensis (L.) O. Kuntz). Sci. Hortic. 2020, 264, 109164. [Google Scholar] [CrossRef]
- Rubel Mozumder, N.H.M.; Hwang, K.H.; Lee, M.-S.; Kim, E.-H.; Hong, Y.-S. Metabolomic understanding of the difference between unpruning and pruning cultivation of tea (Camellia sinensis) plants. Food Res. Int. 2020, 140, 109978. [Google Scholar] [CrossRef]
- Bora, S.S.; Hazarika, D.J.; Gogoi, R.; Dullah, S.; Gogoi, M.; Barooah, M. Long-term pruning modulates microbial community structure and their functional potential in Tea (Camellia sinensis L.) soils. Appl. Soil Ecol. 2022, 176, 104483. [Google Scholar] [CrossRef]
- Liu, Y.; Tian, J.; Liu, B.; Zhuo, Z.; Shi, C.; Xu, R.; Xu, M.; Liu, B.; Ye, J.; Sun, L.; et al. Effects of pruning on mineral nutrients and untargeted metabolites in fresh leaves of Camellia sinensis cv. Shuixian. Front. Plant Sci. 2022, 13, 1016511. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, L.; Wei, K.; Ruan, L.; Wu, L.; He, M.; Tong, H.; Cheng, H. Differential regulatory mechanisms of secondary metabolites revealed at different leaf positions in two related tea cultivars. Sci. Hortic. 2020, 272, 109579. [Google Scholar] [CrossRef]
- Ren, X.; Lin, M.; Liu, J.; Khan, W.; Zhao, H.; Sun, B.; Liu, S.; Zheng, P. Effects of Altitude on Tea Composition: Dual Regulation by Soil Physicochemical Properties and Microbial Communities. Plants 2025, 14, 1642. [Google Scholar] [CrossRef] [PubMed]
- Global Transcriptional Analysis Reveals the Complex Relationship between Tea Quality, Leaf Senescence and the Responses to Cold-Drought Combined Stress in Camellia sinensis. Front. Plant Sci. 2016, 7, 1858. [CrossRef] [PubMed]
- Manzoor, N.; Dai, Q.; Mo, Y.-X.; Balami, S.; Wang, C.-J.; Shi, X.-M.; Zheng, Y.-J.; Song, L. Habitat and density effects on tea quality: A microclimate and nutrients perspective. Agric. Ecosyst. Environ. 2025, 394, 109866. [Google Scholar] [CrossRef]
Secondary Metabolites | Total Content | Varieties | References | |
---|---|---|---|---|
Purine alkaloid | Caffeine | ≥5.0% | ‘Jianghua Strong Tea’; ‘Preferred No. 1’; ‘Preferred No. 6’; ‘Preferred No. 11’; ‘Preferred No. 13’; ‘Nanquan No. 1’; ‘Nanquan No. 2’; ‘Sage’; ‘Water Beetle’; ‘CMC24’, ‘DT20’; ‘ZP03’; ‘Shangyunbao Black Tea’ | [16,17] |
≤1.5% | C. crassicolumna var. Multiplex; ‘Yuanbaoshancha’; ‘Huangshan Ku Cha’; ‘Hongyacha’; ‘Jin Chang Da Shu Cha’; ‘Ba Da Da Shu Cha’; ‘CafLess1’; ‘CafLess2’ | [18,19] | ||
Theobromine | ≥1.0% | C. Ptilophylla; C. irrawadiensis; C. gymnogyna; ‘Hongyacha’; ‘Yuanbaoshancha’; Camellia yungkiangensis; Camellia costata | [19] | |
Theacrine | ≥2.5% | ‘Baiyacha’; ‘Bald House Tea’; ‘DT06’; ‘DT07’; ‘YX16’; ‘YX11’ | [16,19] | |
Polyphenols | ≥25.0% | ‘Busyga Daishan Tea’; ‘Black Longleaf Tea’; ‘Youanbei White Toothed Tea’; ‘Big Black Tea’; ‘Yellow Bud Tea’; ‘Mengwen Tea’ | [17] | |
Catechins and their derivatives | Catechin | ≥20.0% | C. sinensis cv. ‘Fudingdabai’; ‘Shangyunbao Red Tea’ | [17] |
EGCG | ≥13.0% | ‘Mengshan No. 11’; ‘Huaqiu No. 1’; ‘Huishan Yellow Large-Leaf Tea’; ‘Daping Large-Leaf Tea’; ‘Baotai Red Tea’; ‘Guangxi Hengxian Small Variety’; ‘Yichang Large-Leaf Variety’; ‘Xixiang Dahai No. 12’ | [20] | |
EGCG3”Me | ≥1.0% | TRICAAS-1; TRICAAS-2; TRICAAS-3; TRICAAS-4; s ‘Jinmudan’; d ‘Jinguanyin’ | [21,22] | |
Amino acid | Total amino acids | ≥5.0% | ‘Baojing Golden Tea No. 1’; ‘Golden Tea No. 2’; ‘Anji White Tea’; ‘Lingyun No. 1’; ‘Lingyun No. 2’; ‘Lingyun No. 7’; ‘Lingyun No. 10’ | [20] |
Theanine | ≥3.0% | ‘Anji White Tea’; ‘Golden Bud’; ‘White Leaf No. 1’; ‘Little Snow Bud’; ‘Thousand-Year Snow’; ‘Lingyun No. 1’; ‘Lingyun No. 2’; ‘Anji White Tea’; ‘Simei Snow Bud’; ‘White Leaf No. 1’; ‘Zhonghuang No.1’; ‘Zhongbai No. 4’; ‘Jingbai No. 1’ | [20,23] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, T.; He, J.; Deng, X.; Wang, X.; Yuan, W.; Wang, Q.; Chen, X.; Zou, M.; An, H.; Wang, B.; et al. Influencing Factors and Regulatory Mechanisms of Fresh Tea Leaf Quality: A Review. Foods 2025, 14, 3268. https://doi.org/10.3390/foods14183268
Wu T, He J, Deng X, Wang X, Yuan W, Wang Q, Chen X, Zou M, An H, Wang B, et al. Influencing Factors and Regulatory Mechanisms of Fresh Tea Leaf Quality: A Review. Foods. 2025; 14(18):3268. https://doi.org/10.3390/foods14183268
Chicago/Turabian StyleWu, Tianyu, Junjie He, Xiujuan Deng, Xiaohua Wang, Wenxia Yuan, Qiaomei Wang, Xinya Chen, Man Zou, Hongmei An, Baijuan Wang, and et al. 2025. "Influencing Factors and Regulatory Mechanisms of Fresh Tea Leaf Quality: A Review" Foods 14, no. 18: 3268. https://doi.org/10.3390/foods14183268
APA StyleWu, T., He, J., Deng, X., Wang, X., Yuan, W., Wang, Q., Chen, X., Zou, M., An, H., Wang, B., & Che, R. (2025). Influencing Factors and Regulatory Mechanisms of Fresh Tea Leaf Quality: A Review. Foods, 14(18), 3268. https://doi.org/10.3390/foods14183268