Survival of Salmonella and Listeria monocytogenes on Food Contact Surfaces in Produce Packinghouses
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Inoculum Preparation
2.2. Coupon Preparation and Inoculation
2.3. Coupon Enumeration
2.4. Statistical Analysis
- i.
- Log-linear model [25]
- ii.
- Biphasic die-off model [26]
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- U.S. Food and Drug Administration. Guidance for Industry: Guide to Minimize Microbial Food Safety Hazards of Fresh-Cut Fruits and Vegetables. 2008. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-guide-minimize-microbial-food-safety-hazards-fresh-cut-fruits-and-vegetables (accessed on 28 April 2025).
- Chauret, C.P. Sanitization. In Encyclopedia of Food Microbiology, 2nd ed.; Batt, C.A., Tortorello, M.L., Eds.; Academic Press: Oxford, UK, 2014; pp. 360–364. ISBN 978-0-12-384733-1. [Google Scholar]
- U.S. Food and Drug Administration. 21 CFR Chapter I Subchapter B—Food for Human Consumption. 2025. Available online: https://www.ecfr.gov/current/title-21/chapter-I/subchapter-B (accessed on 28 April 2025).
- Murphy, C.M.; Friedrich, L.M.; Strawn, L.K.; Danyluk, M.D. Salmonella and Listeria monocytogenes Survival on Field Packed Cantaloupe Contact Surfaces. J. Food Prot. 2024, 87, 100299. [Google Scholar] [CrossRef]
- Etaka, C.A.; Weller, D.L.; Le, T.; Hamilton, A.; Critzer, F.J.; Strawn, L.K. Impact of Material Type and Relative Humidity on the Survival of Escherichia coli, Listeria monocytogenes, and Salmonella enterica on Harvest Bags. J. Food Prot. 2025, 88, 100471. [Google Scholar] [CrossRef] [PubMed]
- Allen, R.L.; Warren, B.R.; Archer, D.L.; Schneider, K.R.; Sargent, S.A. Survival of Salmonella spp. on the Surfaces of Fresh Tomatoes and Selected Packing Line Materials. HortTechnology 2005, 15, 831–836. [Google Scholar] [CrossRef]
- Kusumaningrum, H. Survival of Foodborne Pathogens on Stainless Steel Surfaces and Cross-Contamination to Foods. Int. J. Food Microbiol. 2003, 85, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Nyarko, E.; Kniel, K.E.; Zhou, B.; Millner, P.D.; Luo, Y.; Handy, E.T.; East, C.; Sharma, M. Listeria monocytogenes Persistence and Transfer to Cantaloupes in the Packing Environment Is Affected by Surface Type and Cleanliness. Food Control 2018, 85, 177–185. [Google Scholar] [CrossRef]
- Park, S.-H.; Kang, D.-H. Influence of Surface Properties of Produce and Food Contact Surfaces on the Efficacy of Chlorine Dioxide Gas for the Inactivation of Foodborne Pathogens. Food Control 2017, 81, 88–95. [Google Scholar] [CrossRef]
- Piansay, C.M. Salmonella Transfer and Survival on Tomatoes and Contact Surfaces Under Various Transportation and Storage Conditions. Master’s Thesis, University of Georgia, Athens, GA, USA, 2011. [Google Scholar]
- Sreedharan, A.; Schneider, K.R.; Danyluk, M.D. Salmonella Transfer Potential onto Tomatoes during Laboratory-Simulated In-Field Debris Removal. J. Food Prot. 2014, 77, 1062–1068. [Google Scholar] [CrossRef]
- Da Silva, R.T.; De Souza Pedrosa, G.T.; Dos Santos Franco, A.J.; De Souza Grilo, M.M.; De Lucena, F.A.; Barão, C.E.; Jung, J.; Schaffner, D.W.; Magnani, M. Transfer, Survival and Photoinactivation of Salmonella enterica on Fresh Produce and Gloves. Int. J. Food Microbiol. 2025, 431, 111089. [Google Scholar] [CrossRef]
- U.S. Centers for Disease Control and Prevention. Multistate Outbreak of Listeriosis Associated with Jensen Farms Cantaloupe—United States, August–September 2011. 2011. Available online: https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6039a5.htm (accessed on 28 May 2025).
- Angelo, K.M.; Conrad, A.R.; Saupe, A.; Dragoo, H.; West, N.; Sorenson, A.; Barnes, A.; Doyle, M.; Beal, J.; Jackson, K.A.; et al. Multistate Outbreak of Listeria monocytogenes Infections Linked to Whole Apples Used in Commercially Produced, Prepackaged Caramel Apples: United States, 2014–2015. Epidemiol. Infect. 2017, 145, 848–856. [Google Scholar] [CrossRef]
- McCormic, Z.D.; Patel, K.; Higa, J.; Bancroft, J.; Donovan, D.; Edwards, L.; Cheng, J.; Adcock, B.; Bond, C.; Pereira, E.; et al. Bi-National Outbreak of Salmonella Newport Infections Linked to Onions: The United States Experience. Epidemiol. Infect. 2022, 150, e199. [Google Scholar] [CrossRef]
- American Type Culture Collection. Salmonella enterica subsp. enterica (Ex Kauffmann and Edwards) Le Minor and Popoff Serovar Agona—BAA-707|ATCC. 2024. Available online: https://www.atcc.org/products/baa-707 (accessed on 28 May 2025).
- U.S. Food and Drug Administration. Investigation Report: Factors Potentially Contributing to the Contamination of Peaches Implicated in the Summer 2020 Outbreak of Salmonella Enteritidis. 2021. Available online: https://www.fda.gov/food/outbreaks-foodborne-illness/factors-potentially-contributing-contamination-peaches-implicated-summer-2020-outbreak-salmonella (accessed on 11 June 2024).
- Zhuang, R.Y.; Beuchat, L.R.; Angulo, F.J. Fate of Salmonella Montevideo on and in Raw Tomatoes as Affected by Temperature and Treatment with Chlorine. Appl. Environ. Microbiol. 1995, 61, 2127–2131. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration. Factors Potentially Contributing to the Contamination of Red Onions Implicated in the Summer 2020 Outbreak of Salmonella Newport. 2024. Available online: https://www.fda.gov/food/outbreaks-foodborne-illness/factors-potentially-contributing-contamination-red-onions-implicated-summer-2020-outbreak-salmonella (accessed on 26 August 2025).
- U.S. Centers for Disease Control and Prevention. Outbreak of Salmonella Serotype Saintpaul Infections Associated with Multiple Raw Produce Items—United States, 2008. 2008. Available online: https://www.cdc.gov/mmwr/preview/mmwrhtml/mm5734a1.htm (accessed on 28 May 2025).
- U.S. Centers for Disease Control and Prevention. Multistate Outbreak of Listeriosis Linked to Frozen Vegetables|Listeria|CDC. 2024. Available online: https://archive.cdc.gov/www_cdc_gov/listeria/outbreaks/frozen-vegetables-05-16/index.html (accessed on 26 August 2025).
- Fleming, D.W.; Cochi, S.L.; MacDonald, K.L.; Brondum, J.; Hayes, P.S.; Plikaytis, B.D.; Holmes, M.B.; Audurier, A.; Broome, C.V.; Reingold, A.L. Pasteurized Milk as a Vehicle of Infection in an Outbreak of Listeriosis. N. Engl. J. Med. 1985, 312, 404–407. [Google Scholar] [CrossRef] [PubMed]
- Danyluk, M.D.; Uesugi, A.R.; Harris, L.J. Survival of Salmonella Enteritidis PT 30 on Inoculated Almonds after Commercial Fumigation with Propylene Oxide. J. Food Prot. 2005, 68, 1613–1622. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration. Bacteriological Analytical Manual (BAM). 2025. Available online: https://www.fda.gov/food/laboratory-methods-food/bacteriological-analytical-manual-bam (accessed on 8 May 2025).
- Bigelow, W.D.; Esty, J.R. The Thermal Death Point in Relation to Time of Typical Thermophilic Organisms. J. Infect. Dis. 1920, 27, 602–617. [Google Scholar] [CrossRef]
- Cerf, O. A Review of Survival Curves of Bacterial Spores. J. Appl. Bacteriol. 1977, 42, 1–19. [Google Scholar] [CrossRef]
- Kang, D.-H.; Fung, D.Y.C. Development of a Medium for Differentiation between Escherichia coli and Escherichia coli O157:H7. J. Food Prot. 1999, 62, 313–317. [Google Scholar] [CrossRef]
- McCleery, D.R.; Rowe, M.T. Development of a Selective Plating Technique for the Recovery of Escherichia coli O157: H7 after Heat Stress. Lett. Appl. Microbiol. 1995, 21, 252–256. [Google Scholar] [CrossRef]
- Salfinger, Y.; Tortorello, M.L. Compendium of Methods for the Microbiological Examination of Foods; American Public Health Association: Washington, DC, USA, 2013. [Google Scholar]
- Etaka, C.A.; Weller, D.L.; Hamilton, A.M.; Critzer, F.; Strawn, L.K. Sanitation Interventions for Reducing Listeria monocytogenes and Salmonella on Canvas and Cordura® Harvest Bags. J. Food Prot. 2025, 88, 100472. [Google Scholar] [CrossRef]
- Rosenbaum, A.A.; Murphy, C.M.; Wszelaki, A.L.; Hamilton, A.M.; Rideout, S.L.; Strawn, L.K. Survival of Salmonella on Biodegradable Mulch, Landscape Fabric, and Plastic Mulch. J. Food Prot. 2025, 88, 100444. [Google Scholar] [CrossRef]
- NicAogáin, K.; O’Byrne, C.P. The Role of Stress and Stress Adaptations in Determining the Fate of the Bacterial Pathogen Listeria monocytogenes in the Food Chain. Front. Microbiol. 2016, 7, 1865. [Google Scholar] [CrossRef]
- Mu, M.; Liu, S.; DeFlorio, W.; Hao, L.; Wang, X.; Salazar, K.S.; Taylor, M.; Castillo, A.; Cisneros-Zevallos, L.; Oh, J.K.; et al. Influence of Surface Roughness, Nanostructure, and Wetting on Bacterial Adhesion. Langmuir 2023, 39, 5426–5439. [Google Scholar] [CrossRef]
- Prajapati, A.; Narayan Vaidya, A.; Kumar, A.R. Microplastic Properties and Their Interaction with Hydrophobic Organic Contaminants: A Review. Environ. Sci. Pollut. Res. Int. 2022, 29, 49490–49512. [Google Scholar] [CrossRef]
- Kasner, A.I.; Meinecke, E.A. Porosity in Rubber, a Review. Rubber Chem. Technol. 1996, 69, 424–443. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Standards for the Growing, Harvesting, Packing, and Holding of Produce for Human Consumption. 2015. Available online: https://www.regulations.gov/document/FDA-2011-N-0921-18558 (accessed on 29 August 2025).
- Mafart, P.; Couvert, O.; Gaillard, S.; Leguerinel, I. On Calculating Sterility in Thermal Preservation Methods: Application of the Weibull Frequency Distribution Model. Int. J. Food Microbiol. 2002, 72, 107–113. [Google Scholar] [CrossRef]
- Igo, M.J.; Schaffner, D.W. Quantifying the Influence of Relative Humidity, Temperature, and Diluent on the Survival and Growth of Enterobacter Aerogenes. J. Food Prot. 2019, 82, 2135–2147. [Google Scholar] [CrossRef] [PubMed]
- Margas, E.; Meneses, N.; Conde-Petit, B.; Dodd, C.E.R.; Holah, J. Survival and Death Kinetics of Salmonella Strains at Low Relative Humidity, Attached to Stainless Steel Surfaces. Int. J. Food Microbiol. 2014, 187, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Rodríguez, F.; Posada-Izquierdo, G.D.; Valero, A.; García-Gimeno, R.M.; Zurera, G. Modelling Survival Kinetics of Staphylococcus Aureus and Escherichia coli O157:H7 on Stainless Steel Surfaces Soiled with Different Substrates under Static Conditions of Temperature and Relative Humidity. Food Microbiol. 2013, 33, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Posada-Izquierdo, G.D.; Pérez-Rodríguez, F.; Zurera, G. Mathematical Quantification of Microbial Inactivation of Escherichia coli O157:H7 and Salmonella spp. on Stainless Steel Surfaces Soiled with Different Vegetable Juice Substrates. Food Res. Int. 2013, 54, 1688–1698. [Google Scholar] [CrossRef]
- Zhu, Y.; Wu, F.; Trmcic, A.; Wang, S.; Warriner, K. Microbiological Status of Reusable Plastic Containers in Commercial Grower/Packer Operations and Risk of Salmonella Cross-Contamination between Containers and Cucumbers. Food Control 2020, 110, 107021. [Google Scholar] [CrossRef]
- Takahashi, H.; Kuramoto, S.; Miya, S.; Kimura, B. Desiccation Survival of Listeria monocytogenes and Other Potential Foodborne Pathogens on Stainless Steel Surfaces Is Affected by Different Food Soils. Food Control 2011, 22, 633–637. [Google Scholar] [CrossRef]
- Hua, Z.; Korany, A.M.; El-Shinawy, S.H.; Zhu, M.-J. Comparative Evaluation of Different Sanitizers Against Listeria monocytogenes Biofilms on Major Food-Contact Surfaces. Front. Microbiol. 2019, 10, 2462. [Google Scholar] [CrossRef]
Days | Polycarbonate | Polypropylene | PVC | Rubber | Stainless Steel |
---|---|---|---|---|---|
0 | 0.00 ± 0.00 aA a | 0.00 ± 0.00 aA | 0.00 ± 0.00 aA | 0.00 ± 0.00 aA | 0.00 ± 0.00 aA |
0.06 | 0.88 ± 0.09 cB | 0.67 ± 0.28 abB | 0.76 ± 0.15 bB | 0.53 ± 0.34 aB | 0.45 ± 0.24 abB |
0.25 | 0.98 ± 0.22 bBC | 1.05 ± 0.20 bBC | 1.03 ± 0.18 bB | 0.69 ± 0.16 aB | 1.02 ± 0.19 bC |
1 | 1.24 ± 0.38 bcBCD | 1.42 ± 0.26 bcCD | 1.62 ± 0.38 cC | 0.97 ± 0.21 aBC | 1.13 ± 0.35 bCD |
2 | 1.47 ± 0.44 bCD | 1.77 ± 0.22 bDE | 1.76 ± 0.45 bC | 1.18 ± 0.27 aC | 1.46 ± 0.23 bDE |
3 | 1.70 ± 0.55 abDE | 2.01 ± 0.22 bE | 2.06 ± 0.39 bCD | 1.69 ± 0.31 aD | 1.74 ± 0.19 abEF |
7 | 2.01 ± 0.54 abEF | 2.08 ± 0.57 abE | 2.47 ± 0.52 bDE | 1.87 ± 0.54 aDE | 1.98 ± 0.30 abFG |
10 | 2.40 ± 0.57 bFG | 2.25 ± 0.39 abEF | 2.45 ± 0.58 bDE | 2.01 ± 0.52 aDEF | 2.39 ± 0.41 bGH |
14 | 2.56 ± 0.37 bGH | 2.73 ± 0.47 bFG | 2.70 ± 0.49 bE | 2.13 ± 0.39 aDEF | 2.51 ± 0.51 bHI |
21 | 2.56 ± 0.51 bG | 2.78 ± 0.47 bG | 2.82 ± 0.57 bEF | 2.30 ± 0.29 aEF | 2.56 ± 0.41 abHI |
30 | 3.08 ± 0.57 bH | 3.02 ± 0.46 bG | 3.33 ± 0.60 bFG | 2.37 ± 0.19 aF | 2.86 ± 0.25 bI |
60 | 4.17 ± 1.06 bI (1/3) b | 4.22 ± 1.14 bH (1/4) | 3.84 ± 1.01 abG (4/7) | 3.09 ± 0.42 aG | 3.67 ± 0.79 abJ |
90 | 5.56 ± 0.00 bJ (1/10) | 5.66 ± 0.00 bI (3/10) | 5.69 ± 0.00 bH (2/10) | 4.39 ± 1.13 aH (4/5) | 5.37 ± 0.65 bK (3/8) |
Days | Polycarbonate | Polypropylene | PVC | Rubber | Stainless Steel |
---|---|---|---|---|---|
0 | 0.00 ± 0.00 aA a | 0.00 ± 0.00 aA | 0.00 ± 0.00 aA | 0.00 ± 0.00 aA | 0.00 ± 0.00 aA |
0.06 | 0.81 ± 0.34 bB | 0.72 ± 0.15 bB | 0.80 ± 0.35 bB | 0.73 ± 0.40 bB | 1.79 ± 0.43 aB |
0.25 | 1.25 ± 0.54 bC | 2.07 ± 0.90 aC | 1.77 ± 0.75 abC | 1.89 ± 0.94 abC | 2.16 ± 0.61 aBC |
1 | 1.63 ± 0.27 cC | 2.52 ± 0.82 aCD | 2.35 ± 0.83 abD | 1.89 ± 0.76 bcC | 2.38 ± 0.44 abCD |
2 | 2.28 ± 0.37 bcD | 2.22 ± 0.35 cCD | 2.68 ± 0.55 abD | 2.38 ± 0.58 bcCD | 2.82 ± 0.55 aCDE |
3 | 2.29 ± 0.39 cD | 2.61 ± 0.27 bD | 3.51 ± 0.42 aE | 2.86 ± 0.33 bDE | 2.63 ± 0.22 bDEF |
7 | 2.29 ± 0.10 cD | 3.32 ± 0.64 bE | 3.70 ± 0.33 aE | 3.31 ± 0.49 bEF | 2.99 ± 0.28 bEF |
10 | 2.94 ± 0.50 cE | 3.38 ± 0.52 bcE | 4.63 ± 0.54 aF | 3.76 ± 1.06 bF | 3.16 ± 0.41 cF |
14 | 3.18 ± 0.18 cE | 3.55 ± 0.51 bcE | 4.69 ± 0.57 aF (1/1) | 4.45 ± 0.77 aG (3/3) | 3.91 ± 0.73 bG |
21 | 4.06 ± 0.65 bF (2/3) b | 4.93 ± 0.40 aF (2/3) | 5.06 ± 0.36 aFG (0/5) | 4.76 ± 0.52 aGH (4/4) | 4.94 ± 0.63 aH (1/3) |
30 | 4.86 ± 0.42 cG (2/4) | 5.29 ± 0.23 abF (0/5) | 5.31 ± 0.08 abFG (1/7) | 5.10 ± 0.29 bcH (1/3) | 5.42 ± 0.35 aHI (2/5) |
60 | 5.07 ± 0.42 bG (2/8) | 5.12 ± 0.42 bF (4/4) | 5.31 ± 0.08 bG (0/8) | 5.22 ± 0.25 bH (1/6) | 5.64 ± 0.08 abI (2/10) |
90 | 5.27 ± 0.00 aG (2/10) | 5.30 ± 0.19 aF (1/6) | 5.34 ± 0.00 aG (2/10) | 5.31 ± 0.08 aH (2/9) | 5.66 ± 0.00 aI (1/10) |
Surface by Pathogen | Effect Estimate a | 95% Confidence Interval | p-Value | |
---|---|---|---|---|
Salmonella (reference is Rubber) | ||||
Polycarbonate | −0.012 | −0.017, −0.007 | <0.001 | |
Polypropylene | −0.012 | −0.016, −0.007 | <0.001 | |
PVC | −0.009 | −0.014, −0.005 | <0.001 | |
Stainless Steel | −0.009 | −0.013, −0.004 | 0.001 | |
Listeria monocytogenes (reference is Rubber) | ||||
Polycarbonate | −0.004 | −0.012, 0.004 | 0.34 | |
Polypropylene | 0.000 | −0.007, 0.008 | 0.92 | |
PVC | 0.003 | −0.005, 0.011 | 0.46 | |
Stainless Steel | −0.002 | −0.010, 0.006 | 0.57 |
Surface by Pathogen | Linear | Biphasic | |||||
---|---|---|---|---|---|---|---|
Intercept | kmax a | Intercept | f b | kmax1 c | kmax2 d | ||
Salmonella | |||||||
All | 5.614 | 0.047 | 6.446 | −1.379 | 0.828 | 0.037 | |
Polycarbonate | 5.537 | 0.050 | 6.245 | −1.259 | 0.600 | 0.041 | |
Polypropylene | 5.556 | 0.050 | 6.508 | −1.443 | 1.368 | 0.041 | |
PVC | 5.478 | 0.048 | 6.535 | −1.582 | 1.585 | 0.038 | |
Rubber | 5.885 | 0.038 | 6.628 | −1.319 | 0.608 | 0.028 | |
Stainless Steel | 5.615 | 0.047 | 6.425 | −1.395 | 0.713 | 0.037 | |
Listeria monocytogenes | |||||||
All | 4.329 | 0.047 | 5.709 | −2.723 | 0.748 | 0.023 | |
Polycarbonate | 4.686 | 0.050 | 5.876 | −2.185 | 0.785 | 0.033 | |
Polypropylene | 4.341 | 0.046 | 5.633 | −2.630 | 0.660 | 0.022 | |
PVC | 3.917 | 0.043 | 5.748 | −3.574 | 0.980 | 0.013 | |
Rubber | 4.236 | 0.046 | 5.744 | −3.067 | 0.757 | 0.019 | |
Stainless Steel | 4.463 | 0.048 | 5.571 | −2.161 | 0.641 | 0.030 |
Surface by Pathogen | Linear | Biphasic | |||
---|---|---|---|---|---|
AIC a | dAIC b | AIC | dAIC | ||
Salmonella | |||||
All | 2900.00 | 726.35 | 2173.68 | 0.00 | |
Polycarbonate | 546.51 | 131.46 | 415.05 | 0.00 | |
Polypropylene | 555.90 | 187.31 | 368.59 | 0.00 | |
PVC | 605.97 | 184.19 | 421.78 | 0.00 | |
Rubber | 521.60 | 168.43 | 353.17 | 0.00 | |
Stainless Steel | 529.56 | 197.13 | 332.43 | 0.00 | |
Listeria monocytogenes | |||||
All | 4209.99 | 1170.05 | 3039.94 | 0.00 | |
Polycarbonate | 733.72 | 237.36 | 496.36 | 0.00 | |
Polypropylene | 838.81 | 215.74 | 623.07 | 0.00 | |
PVC | 914.41 | 401.68 | 512.73 | 0.00 | |
Rubber | 877.05 | 281.95 | 595.09 | 0.00 | |
Stainless Steel | 788.28 | 162.82 | 625.46 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Etaka, C.A.; Silva, E.M.; Hamilton, A.M.; Murphy, C.M.; Strawn, L.K. Survival of Salmonella and Listeria monocytogenes on Food Contact Surfaces in Produce Packinghouses. Foods 2025, 14, 3247. https://doi.org/10.3390/foods14183247
Etaka CA, Silva EM, Hamilton AM, Murphy CM, Strawn LK. Survival of Salmonella and Listeria monocytogenes on Food Contact Surfaces in Produce Packinghouses. Foods. 2025; 14(18):3247. https://doi.org/10.3390/foods14183247
Chicago/Turabian StyleEtaka, Cyril A., Eugenia M. Silva, Alexis M. Hamilton, Claire M. Murphy, and Laura K. Strawn. 2025. "Survival of Salmonella and Listeria monocytogenes on Food Contact Surfaces in Produce Packinghouses" Foods 14, no. 18: 3247. https://doi.org/10.3390/foods14183247
APA StyleEtaka, C. A., Silva, E. M., Hamilton, A. M., Murphy, C. M., & Strawn, L. K. (2025). Survival of Salmonella and Listeria monocytogenes on Food Contact Surfaces in Produce Packinghouses. Foods, 14(18), 3247. https://doi.org/10.3390/foods14183247